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Kamel Al-Khaled, Muscat
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Abstract. This paper has two objectives. First, we prove the existence of solutions to the
general advection-diffusion equation subject to a reasonably smooth initial condition. We
investigate the behavior of the solution of these problems for large values of time. Secondly, a
numerical scheme using the Sinc-Galerkin method is developed to approximate the solution
of a simple model of turbulence, which is a special case of the advection-diffusion equation,
known as Burgers’ equation. The approximate solution is shown to converge to the exact
solution at an exponential rate. A numerical example is given to illustrate the accuracy of
the method.

Keywords: Sinc-Galerkin method; advection-diffusion equation; numerical solution

MSC 2010 : 35A01, 35K57, 35F05, 65T60

1. Introduction

Nonlinear partial differential equations appear in many branches of physics, engi-

neering and applied mathematics.

We study the behavior as t → ∞ of the solution of the Cauchy problem for the

equation

(1.1) ut + (f ′(u))x = εuxx, (x, t) ∈ R× (0, T )

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ R,(1.2)

u(−∞, t) = γ(t), u(∞, t) = δ(t), t > 0,(1.3)
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where ε is the coefficient of the kinematic viscosity, T is the total time, f is the

flux function, and u0(x), γ(t), δ(t) are given functions of the variables. Our first

aim of this paper is to prove the existence of solutions for the nonlinear advection-

diffusion equation (1.1), and study the behavior of solutions under the condition

that the function u0(x) in equation (1.2) belongs to some class of function Lα that

will be defined later. The solutions to equation (1.1) can approximately describe the

flow through a shock wave in a viscous fluid. Equation (1.1) is of some mathematical

interest in itself, and has applications in the theory of stochastic processes. This type

of equation has been investigated by several authors. Historically, equation (1.1) first

appears in a paper by H.Bateman [3], where he mentioned it as worth studying and

gave a special solution. Dafermos [5] considered the asymptotic behavior of certain

solutions of the initial value problem for the one-dimensional non-homogeneous scalar

balance law. Al-Khaled [1] studied the initial value problem for a balance law

ut + (f(u))x = h(x, t, u, ux, uxx), (x, t) ∈ R× (0, T )

proving two facts regarding the behavior of the solution, if the initial condition

belongs to Lα. However, for our purposes we will, mainly refer to the fundamental

papers of Venttsel’ [13] and Olĕınik [9]. In those papers, they studied the existence

and uniqueness of solutions of the mixed boundary value problem for equation (1.1).

One important application that is of considerable current is the special case where

we substitute f ′(u) = u2/2 into equation (1.1) to get the advection-diffusion equation

(1.4) ut + uux = εuxx, (x, t) ∈ R× (0, T )

which was used as a simple model of turbulence in an extensive study by Burgers.

With regard to the velocity field of a fluid, the essential ingredient of (1.4) in this

study is the competition between the dissipative term εuxx the coefficient of which

is the kinematic viscosity, and the nonlinear term uux. Equation (1.4) appears as

a mathematical model for many physical events such as gas dynamics, turbulence,

and shock wave theory [6]. Many researchers have used various numerical methods

to solve Burgers’ equation [8], [4], [7]. Lund [10] uses Sinc-Galerkin method to find

a numerical solution of the nonlinear advection-diffusion equation (Burgers’ equa-

tion). The method results in an iterative scheme of an error of order O(exp(−c/h))

for some positive constants c and h. In [12], the Burgers’ equation is transformed

into an equivalent integral equation, and a Sinc-collocation procedure is developed

for the integral equation. In this paper, and as a second objective, we will use the

Sinc-Galerkin method to study the solution of equation (1.4). The solution is based

on using the Sinc method, which builds an approximate solution valid on the entire

spatial domain and a small interval in the time domain. The main idea is to replace
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the differential and integral equations by their Sinc approximations. The ease of im-

plementation coupled with the exponential convergence rate have demonstrated the

viability of this method. One avenue that deserves attention is the approximation

by Sinc functions that handles singularities in the problem.

The plan of this work is the following. The existence proof of solutions for equa-

tion (1.1) will be investigated in Section 2. The Sinc function is briefly described

in Section 3. In Section 4, we compute the solution of Burgers’ equation, and write

an algorithm with the notation in Section 3. In the last section, the scheme is

numerically tested on one example.

2. Existence of solutions

We consider the problem (1.1) under the condition that the initial condition u0(x)

in equation (1.2) vanishes as |x| → ∞ (or, equivalently, u0(x) ∈ Lα). We shall

assume regarding f(u) that it is smooth and satisfies the condition

(2.1)
M2

max
|u|6M

|f ′′(u)|+ 1
→ ∞, M → ∞.

Under these assumptions, we have:

Theorem 2.1. For x ∈ R there exists a solution of equations (1.1)–(1.2) that

converges to zero uniformly.

P r o o f. Form the scalar product of equation (1.1) with u, and integrating by

parts over the infinite strip R = {(x, t) ∈ R × (0, T )}, with the use of the identity
(see [11]) 〈u, (f ′(u))x〉 = (∂/∂x)(〈u, f ′(u)〉 − f(u)) yields

(2.2)
1

2

∫ ∞

−∞

u2(x, T ) dx+ ε

∫ T

0

∫ ∞

−∞

(∂u
∂x

)2
dxdt =

1

2

∫ ∞

−∞

u2
0(x) dx.

Now, differentiate equation (1.1) with respect to x and multiply the resulting equa-

tion by ux, then integrating by parts over the strip R yields

1

2

∫ ∞

−∞

u2
x(x, T ) dx+ ε

∫ T

0

∫ ∞

−∞

(∂2u

∂x2

)2
dxdt

=
1

2

∫ ∞

−∞

(u′
0)

2 dx+

∫ T

0

∫ ∞

−∞

〈∂f ′

∂x
,
∂2u

∂x2

〉
dxdt

+

∫ T

0

〈
ε
∂2u

∂x2
− ∂

∂x
f ′(u),

∂u

∂x

〉∣∣∣
∞

−∞
dt.
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However,

ε
∂2u

∂x2
− ∂

∂x
f ′(u) =

∂u

∂t

and using the fact that the initial condition vanishes as |x| → ∞, we obtain
∫ T

0

〈
ε
∂2u

∂x2
− ∂

∂x
f ′(u),

∂u

∂x

〉∣∣∣
∞

−∞
dt =

∫ T

0

〈∂u
∂t

,
∂u

∂x

〉∣∣∣
∞

−∞
dt = 0.

We also note that

〈∂f ′(u)

∂x
,
∂2u

∂x2

〉
6

1

2
ε
(∂2u

∂x2

)2
+

1

2ε

(∂f ′(u)

∂x

)2
.

However, (∂f ′(u)

∂x

)2
=

∣∣∣f ′′(u)
∂u

∂x

∣∣∣
2

6 |f ′′(u)|2
(∂u
∂x

)2

and so

(2.3)
〈∂f ′(u)

∂x
,
∂2u

∂x2

〉
6

1

2
ε
(∂2u

∂x2

)2
+

1

2ε
|f ′′(u)|2

(∂u
∂x

)2
.

For an arbitrary T1 > 0 such that T 6 T1, let M = max t 6 T1|u(x, t)|. Using the
above inequality together with equation (2.2), we get

(2.4)

∫ ∞

−∞

u2
x(x, T ) dx+ ε

∫ T

0

∫ ∞

−∞

(∂2u

∂x2

)2
dxdt

6

∫ ∞

−∞

(u′
0)

2 dx+
1

2ε2
max
|u|6M

|f ′′(u)|2
∫ ∞

−∞

u2
0 dx.

For x ∈ R, and if we assume that u(−∞, t) = 0, we have

(2.5) |u|2 = 〈u, u〉 =
∫ x

−∞

∂

∂x
〈u, u〉dx = 2

∫ x

−∞

〈∂u
∂x

, u
〉
dx

6 2

(∫ ∞

−∞

(∂u
∂x

)2
dx

)1/2(∫ ∞

−∞

u2 dx

)1/2

.

For x ∈ R, T1 ∈ (0, T ) and from relations (2.2), (2.4) and (2.5) we have

(2.6) |u(x, T1)|2 6
1

ε
K1 max

|u|6M
|f ′′(u)|+K1

for some constant K1 independent of T1. Equation (2.6) implies that

M2 6
1

ε
K1 max

|u|6M
|f ′′(u)|+K1
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or

(2.7) M2
/(

max
|u|6M

f ′′(u) + ε
)
6

1

ε
K1.

From (2.7) and the assumption in (2.1) it follows that M 6 M0 < ∞, where M0 is

independent of T . Thus we have for x ∈ R and t > 0 that |u(x, t)| 6 M0, which shows

the existence of a solution. To show that the solution converges to zero uniformly

for x ∈ R as t → ∞, it is sufficient to show that
∫∞

−∞
u2
x(x, t) dx converges to zero as

t → ∞. To do so, since T1 is arbitrary for T1 6 T , this means

(2.8)

∫ ∞

0

[∫ ∞

−∞

u2
x(x, t) dx

]
dt < ∞.

Moreover,

d

dt

[ ∫ ∞

−∞

u2
x(x, t) dx

]
= 2

∫ ∞

−∞

〈∂u
∂x

,
∂2u

∂x∂t

〉
dx

= 2
〈∂u
∂x

,
∂u

∂t

〉∣∣∣
∞

−∞
− 2

∫ ∞

−∞

〈∂2u

∂x2
,
∂u

∂t

〉
dx = −2

∫ ∞

−∞

〈∂2u

∂x2
,
∂u

∂t

〉
dx,

where we have used the fact that ∂u/∂t vanishes as |x| → ∞. Using equation (1.1),
the above equation becomes

d

dt

[ ∫ ∞

−∞

u2
x(x, t) dx

]
= −2ε

∫ ∞

−∞

(∂2u

∂x2

)2
dx+ 2

∫ ∞

−∞

〈∂2u

∂x2
, f ′′(u)

∂u

∂x

〉
dx

and so using equation (2.3) we have

(2.9)

∫ ∞

0

∣∣∣∣
d

dt

∫ ∞

−∞

u2
x(x, t) dx

∣∣∣∣ dt

< 3ε

∫ ∞

0

∫ ∞

−∞

(∂2u

∂x2

)2
dxdt+

1

ε
max

|u|6M0

|f ′′(u)|2
∫ ∞

0

∫ ∞

−∞

(∂u
∂x

)2
dxdt.

Due to equations (2.3) and (2.7) the first term in equation (2.9) is finite, and by

equation (2.8) the second term in equation (2.9) is also finite. Therefore, the left-

hand side of equation (2.9) is finite, and together with equation (2.8) this shows

that

(2.10)

∫ ∞

−∞

u2
x(x, t) dx → 0 as t → ∞.

Now going back to equation (2.2) with T = t, we have

1

2

∫ ∞

−∞

u2
0(x, t) dx+ ε

∫ t

0

∫ ∞

−∞

(∂u
∂x

)2
dxdt =

1

2

∫ ∞

−∞

u2
0(x) dx.
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Therefore, by equation (2.10) we have
∫ ∞

−∞

u2(x, t) dx <
1

2

∫ ∞

−∞

u2
0(x) dx, t > 0.

Substituting this back into equation (2.4) then with the fact
∫∞

−∞ u2
x(x, t) dx → 0 as

t → ∞, we conclude that u(x, t) → 0 as t → ∞ uniformly for x ∈ R. �

3. Sinc function preliminaries

The goal of this section is to recall the notation and definitions of the Sinc function

that will be used in this paper. These are discussed in [12], [10], [1]. First we denote

the set of all integers, the set of all real numbers, the set of all complex numbers by Z,

R, and C, respectively. Let f be a function defined on R, and h > 0 a step-size. Then

the Whittaker cardinal function is defined by C(f, h, x) =
∞∑

k=−∞

f(kh)S(k, h)(x)

whenever this series converges, and where

S(k, h)(x) =
sin[π(x − kh)/h]

π(x − kh)/h
= sinc

[
π(x− kh)/h

1

]

is known as the k-th sinc function. For a positive integer N , define

(3.1) CN (f, h, x) =
N∑

k=−N

f(kh)S(k, h)(x).

Definition 3.1. Let d > 0 and let Dd denote the region Dd = {z = x + iy :

|y| < d} in the complex plane C, and ϕ the conformal map of a simply connected

domain D in the complex plane onto Dd such that ϕ(a) = −∞, ϕ(b) = ∞, where a
and b are boundary points of D, i.e., a, b ∈ ∂D. Let ϕ denote the inverse map of ϕ,
and let the arc Γ, with endpoints a and b (a, b /∈ Γ), be given by Γ = ϕ(−∞,∞). For

h > 0, let the points xk on Γ be given by xk = ϕ(kh), k ∈ Z, and ̺(z) = exp(ϕ(z)),

and let H(D) denote the family of all functions that are analytic in D, such that∫
∂D

|f(z)||dz| < ∞. Corresponding to the number α, let Lα(D) denote the family of

all functions f that are analytic for which there exists a constant C0 such that

|f(z)| 6 C0
|̺(z)|α

[1 + |̺(z)|]2α ∀ z ∈ D.

To approximate f (m) on Γ as indicated by [12], we introduce a nullifier function g.

Let g be an analytic function defined on D, and for k ∈ Z set

Sk(z) = g(z) sinc
[ϕ(z)− kh

h

]
= g(z)S(k, h) ◦ ϕ(z), z ∈ D.

If x is on the arc Γ, we obtain the following theorem.
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Theorem 3.1. Let ϕ′f ∈ H(D), sup
−π/h6t6π/h

|(d/dx)ng(x) exp(itϕ(x))| 6 C1h
−n

for n = 0, 1, 2, . . . ,m with C1 a constant depending only on m, ϕ, and g. If f/g ∈
Lα(D), α is a positive constant, then taking h =

√
πd/(αN) it follows that

sup
x∈Γ

∣∣∣∣f
(n)(x) −

N∑

j=−N

f(xj)

g(xj)
S
(n)
j (x)

∣∣∣∣ 6 C2N
(n+1)/2 exp

(
−
√

πdαN
)

for n = 0, 1, . . . ,m with C2 a constant depending only on m,ϕ, g, d, α, and f .

The approximation of the m-th derivative of f in Theorem 3.1 is simply the m-th

derivative of CN (f/g, h, x)/g in (3.1). The weight function g is chosen relative to

the order of the derivative that is to be approximated. For instance, to approxi-

mate the m-th derivative, the choice g(x) = 1/(ϕ′(x))m is often sufficient. So the

approximation of f ′ by sinc expansion is given by

(3.2) f ′(x) ≈
N∑

j=−N

f(xj)

g(xj)
S′
j(x).

The sinc method requires that the derivatives of the sinc functions are evaluated at

the nodes. Technical calculations provide the following results that will be useful in

formulating the discrete system [12], [10], and these quantities are delineated by

δ
(q)
jk = hq dq

dxq
Sj ◦ ϕ(x)

∣∣∣
x=xk

,

where

δ
(0)
jk =

{
1, j = k,

0, j 6= k,
δ
(1)
jk =






0, j = k,

(−1)k−j

(k − j)
, j 6= k,

and δ
(2)
jk =






−π
2

3
, j = k,

−2(−1)k−j

(k − j)2
, j 6= k.

So the approximation in (3.2) at the sinc nodes xk takes the form

(3.3) f ′(xk) ≈
N∑

j=−N

(
δ
(1)
jk

h
+ δ

(0)
jk g′(xj)

)
f(xj)

g(xj)
.

The system in (3.3) is more conveniently recorded by defining the vector ~f =

(f−N , . . . , f0, . . . , fN)T. Then define the m × m (m = 2N + 1) Toeplitz matrices

I
(q)
m = [δ

(q)
jk ], q = 0, 1, 2, i.e., the matrix whose jk-entry is given by δ

(q)
jk , q = 0, 1, 2.

The system in (3.3) takes the form

(3.4) f ′ ≈
(−1

h
I(1)m D(1/g) + I(0)m D(g′/g)

)
f ≡ A1f.
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For the present paper the interval Γ in Theorem 3.1 is (−∞,∞). Therefore, to

approximate the first derivative we take ϕ(x) = x and g(x) = 1/ϕ′(x). The square

matrix (3.4) becomes A1 = −h−1I
(1)
m . Then the approximation of the first derivative

can be written as

(3.5) f ′(xi) ∼= A1f(xi).

In the same way, we can approximate the second derivative by

(3.6) f ′′(xi) ∼= A2f(xi),

where the matrix A2 is defined by A2 = −h−2I
(2)
m . Let δ

(−1)
k−j = 1

2 +
∫ k

0
(sin(πt)/πt) dt.

Then define a matrix whose kj-entry is given by δ
(−1)
k−j as I

(−1) = [δ
(−1)
k−j ]. In the

rest of this section, we shall give a general formula for approximating the integral∫ ν

a F (u) du, ν ∈ Γ. To this end, we state the following result, which we will use to

approximate the integral in equation (1.1).

Theorem 3.2. Let F/Υ′ ∈ Lα(D) with 0 < α 6 1, let δ
(−1)
k−j be defined as above,

let Nt be a positive integer, and let ht be selected as ht =
√

πd/(αNt). Then there

exists a positive constant C4 independent of Nt such that

∣∣∣∣
∫ xk

a

F (t) dt− ht

Nt∑

j=−Nt

δ
(−1)
k−j

F (xk)

Υ′(xk)

∣∣∣∣ 6 C4 exp
(
−
√

πdαNt

)
.

4. Implementation of the method

Part of this section has been published in preliminary form in [2]. To determine the

sinc approximation for Burgers’ equation (1.4), we require that the initial condition

u0(x) belong to the class Lα(D). To illustrate the situation where the initial condition

u0(x) is not in Lα(D), consider equation (1.4) with boundary conditions

(4.1) u(−∞, t) = γ(t), u(∞, t) = δ(t), t > 0,

and initial condition

(4.2) u(x, 0) = u0(x) =

{
a, x > 0

b, x < 0,

448



where a and b are constants. Also, let the two conditions γ(0) = u0(−∞) = b and

δ(0) = u0(∞) = a be satisfied. Since the sinc functions composed with various con-

formal maps S(k, hx) ◦ ϕ are zero at the end points of the interval, and since the

boundary conditions in (4.1) are non-homogeneous Dirichlet conditions, the trans-

formation

(4.3) ũ(x, t) = u(x, t)− w(x, t),

where

(4.4) w(x, t) =
γ(t) exp(−x) + δ(t) exp(x)

exp(−x) + exp(x)
,

will convert the partial differential equation in (1.4) into a problem with homogeneous

Dirichlet conditions, and a non-homogeneous smooth initial condition given by

(4.5) ũ0(x) = ũ(x, 0) = u(x, 0)− w(x, 0).

Now, substitute the transformation (4.3) into equation (1.4) and drop the tilde to

get

(4.6) ut + [u+ w]ux + wxu− εuxx = f(x, t),

where f(x, t) = εwxx − wwx, and wx, wt, wxx can be computed exactly from equa-

tion (4.4). Now the initial condition in equation (4.5) is in Lα(D) for |x| large. Inte-
grating equation (4.6) with respect to t, with the initial condition in equation (4.5),

we get

(4.7) u(x, t) =

∫ t

0

[f(x, τ) − (u(x, τ) + w(x, τ))ux(x, τ)

− wx(x, τ)u(x, τ) + εuxx(x, τ)] dτ + u0(x).

To obtain a direct discretization of equation (4.7), since the domain is R × (0, T ),

the relevant maps are defined as follows: In the space direction, choose the map

ϕ(x) = x which maps the infinite strip Dd = {ξ = ζ + iη : |η| < d} onto Dd.

In the time direction, choose the map Υ(t) = log(t/T − t) which carries the eye-

shaped region Dε = {t = x + iy : |arg(t/(T − t))| < d 6 π/2} onto the infinite
strip Dd. The compositions S(m,hx) ◦ϕ(x), m = −Nx, . . . , Nx, and S(m,ht) ◦Υ(t),

k = −Nt, . . . , Nt define the basis elements for (−∞,∞) and (0, T ), respectively, the

mesh sizes hx and ht represent the mesh sizes in the infinite strip Dd for the uniform

grid {ihx}, −∞ < i < ∞ {jht}, −∞ < j < ∞. The sinc grid points xi ∈ (−∞,∞)
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in Dd and tj ∈ (0, T ) in Dε are the inverse images of the equispaced grid points;

that is xi = ϕ−1(ihx) = jhx, and tj = Υ−1(jht) = T exp(jht)/(1 + exp(jht)). In

equation (4.7) let us carry out the sinc approximation of ux and uxx. To proceed,

use equations (3.5), (3.6) and replace ux and uxx by ux(x, t) ≈ −1
hx

I
(1)
mxu(xi, t) and

uxx(x, t) ≈ −1
h2
x
I
(2)
mxu(xi, t), where mx = 2Nx + 1 and the skew-symmetric matrices

I
(1)
mx , I

(2)
mx are defined as before. In equation (4.7), evaluate u(x, t), w(x, t), and f(x, t)

at the x-nodes, getting the Volterra integral equation

(4.8) ~u(t) =

∫ t

0

[~f(τ)− (~u(τ) + ~w(τ))A1~u(τ) − ~wx(τ)u(τ) + εA2~u(τ)] dτ + ~u0,

where the square matrices A1, A2 are given by A1
∼= −h−1

x I
(1)
mx and A2

∼= −h−2
x ×

I
(2)
mx and ~f(t) = [f−Nx

(t), . . . , fNx
(t)]T, ~w(t) = [w−Nx

(t), . . . , wNx
(t)]T, ~wx(t) =

[(wx)−Nx
(t), . . . , (wx)Nx

(t)]T, ~u0(t) = [u0(z−Nx
)(t), . . . , u0(zNx

)(t)]T, where in gen-

eral ui(t) = u(xi, t). Here the superscript “T” denotes the transpose. We next col-

locate with respect to the t-variable via the use of the indefinite integration formula

(see Theorem 3.2 with the conformal map Υ(t) = log(t/(T−t)). Thus, define the ma-

trix B by B = htI
(−1)
mt D(1/Υ′), with D(1/Υ′(tj)) = diag[1/Υ′(t−Nt

), . . . , 1/Υ′(tNt
)]

and with the nodes tj = Υ−1(jht) for j = −Nt, . . . , Nt, where ht =
√

πd/(αNt),

and I
(−1)
mt as defined in the previous section, with mt = 2Nt + 1. Define the ma-

trices F,W,W ′, and U0 by F = [f(xi, tj)],W = [w(xi, tj)],W
′ = [wx(xi, tj)], and

U0 = [u0(xi, 0)]. Then the solution of equation (4.7) in matrix form is given by the

rectangular mx ×mt matrix U = [uij ]:

(4.9) U = (F − (W + U) ◦A1U −W ′ ◦ U + εA2U)BT + U0,

where the notation ◦ denotes the Hadamard matrix multiplication. Also equa-
tion (4.9) can be written as U = G(U) + ~F , where ~F = FBT + U0 and G(U) =

−((W + U) ◦ A1U − W ′ ◦ U + εA2U)BT. Note that in our discretization we are

taking the time nodes as rows, and the space nodes as columns, so the matrix

(F − (W + U) ◦ A1U − W ′ ◦ U + εA2U) forms the vector nodes for the integral

in (4.7). In (4.9) the vector U0 has the same dimensions as the vector U , and every

column of U0 consists of the same vector u0. Also, W,W ′, and F are mx × mt

rectangular matrices. For the convergence of the method we proved the following

two theorems. The details of the proofs can be found in [1].

Theorem 4.1. Let the function u(x, t) be as in equation (4.7) with the initial

condition as in equation (4.5), and let the matrix U be defined as in (4.9). Then for
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Nx, Nt > 9/πdα there exists a constant C independent of Nx, Nt such that

sup
(xi,tj)

‖u(xi, tj)− U‖ 6 CN exp(−
√

πdαN),

where N = min{Nx, Nt}.

Theorem 4.2. Given a constant R > 0, there is a constant T > 0 such that if

‖U1−U0‖ 6 R/2, then the equation U = G(U)+ F̃ has a unique solution. Moreover,

the iteration scheme Un+1 = G(Un) + F̃ converges to this unique solution.

5. Numerical example

The example reported here is selected to show the convergence of the scheme.

Consider the problem

(5.1) ut + uux = 0.05uxx, (x, t) ∈ R× (0, T )

with boundary conditions

(5.2) u(−∞, t) = −(1 + t), u(∞, t) = (1 + t), t > 0

and initial condition

(5.3) u(x, 0) = u0(x) =

{
1, x > 0,

−1, x < 0.

The true solution is given in Cole [4]. Here, the supremum norm error between

the numerical approximation uij using our approach, and the true solution u(xi, tj)

at the sinc grid-points is determined and reported as ‖uij − u(xi, tj)‖, see Table 1.
Recall that the asymptotic errors for the approximate solution of the given problem

for the spatial direction is O(exp(−
√

πdαNx)) while along the time direction it is

O(exp(−
√

πdαNt)). Once Nx is chosen, balancing the asymptotic error with respect

to exp(−
√

πdαNx) determines the step-sizes hx =
√

πd/(αNx), ht =
√

πd/(αNt),

where the parameters are taken to be α = 1, d = π/2, and T = 3.

Nx = Nt ‖uij − u(xi, tj)‖
4 8.5450× 10−3

8 5.7183× 10−3

16 1.3617× 10−3

32 8.8632× 10−5

64 5.3823× 10−6

Table 1. Results for Example in Section 5.
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Conclusions

The Sinc-Galerkin method appears to be very promising for solving Burgers’ equa-

tion. For the assumptions considered, the resulting nonlinear system of algebraic

equations was solved efficiently by fixed-point iteration. The example presented

demonstrates the accuracy of the method, which is an improvement over current

methods such as finite elements and finite difference methods. This feature shows

the method to be attractive for numerical solutions to Burgers’ equation.
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[9] A.M. Il’in, O.A.Olĕınik: Asymptotic behavior of solutions of the Cauchy problem for
some quasi-linear equations for large values of the time. Mat. Sb. 51 (1960), 191–216.
(In Russian.)

[10] J. Lund, K. L.Bowers: Sinc Methods for Quadrature and Differential Equations. SIAM,
Philadelphia, 1992.

[11] J. Smoller: Shock Waves and Reaction-Diffusion Equation. Grundlehren der Mathema-
tischen Wissenschaften 258, Springer, New York, 1983.

[12] F. Stenger: Numerical Methods Based on Sinc and Analytic Functions. Springer Series
in Computational Mathematics 20, Springer, New York, 1993.

[13] T.D.Venttsel’: Quasilinear parabolic systems with increasing coefficients. Vestn. Mosk.
Gos. Univ., Series VI (1963), 34–44.

Author’s address: Kamel Al-Khaled, Dept. of Mathematics and Statistics, Faculty of
Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, 123, Muscat, Oman, e-mail:
kamel@squ.edu.om.

452


		webmaster@dml.cz
	2020-07-02T13:59:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




