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Abstract. In this paper, a nonlinear backward heat problem with time-dependent co-
efficient in the unbounded domain is investigated. A modified regularization method is
established to solve it. New error estimates for the regularized solution are given under
some assumptions on the exact solution.
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1. INTRODUCTION

Let T be a positive number. We consider the problem of finding the temperature
u(z,t), (z,t) € R x [0; T], such that

ou 0%u

(1 1) a - a(t)@ = f(x,t,u(x,t)), (xvt) eRx (O’T)’

u(z,T) =p(z), z€R,

where a(t), p(x), f(z,t,z) are given functions satisfying conditions specified later.
This problem is well-known to be severely ill-posed [7] and regularization methods for
it are required. It is called the initial inverse heat problem, backward heat problem,
backward Cauchy problem, or final value problem.

As is known, if the initial temperature distribution in a heat conducting body is
given, then the temperature distribution at a later time can be determined and the
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problem is well-posed. This is the direct problem. In geophysical exploration, one
is often faced with the problem of determining the temperature distribution in the
Earth or any part of the Earth at a time o > 0 from the temperature measurement
at a time t; > tg. This is the backward heat problem. This type of problem is
severely ill-posed; i.e., solutions do not always exist, and in the case of existence,
they do not depend continuously on the given data. In fact, even with a small noise
contaminated physical measurements, the corresponding solutions have large errors.
It makes it difficult to do numerical calculations. Due to the severe ill-posedness of
the problem, it is impossible to solve the backward heat problem by using classical
numerical methods. Hence, regularization strategies are to be employed. In the
simplest cases f = 0 and a(t) = 1, the problem (1.1) becomes

(12 u(z,T) = p(z), zekR.

{ut—um—o, (z,t) € R x (0,T),

Such authors as Lattes and Lions [5], Showalter [12], Clark et al. [2] have approxi-
mated the problem (1.2) by the quasi-reversibility method. Tautenhahn and Schréter
[13] established an optimal error estimate for (2). Liu in [6] introduced a group pre-
serving scheme. Some papers [1], [4] have approximated (1.1) by truncated methods.
A modified quasi-reversibility for problem (1.2) is investigeted by Denche et al. [3], Fu
et al. [8]. Optimal filtering method for (1.2) is established by Seidman [11] Stability
estimate on the homogeneous backward heat has been studied by Yildiz et al. [16].
Very recently, problem (1.2) was also investigated by Wang [15]. Very recently, the
authors [10] regularized problem (1.1) in the homogeneous case f = 0 and more
generally for some nonhomogeneous f. However, the most of the above mentioned
results deal only with the linear case.

Although there are many works on the initial inverse heat problem with constant
coefficients, the literature on the nonlinear case of the problem with time-dependent
coefficient (namely problem (1.1) is quite scarce. In this paper, we present a modified
method in order to regularize problem (1.1). Under some assumptions on the exact
solution, we obtain some faster convergence speeds. In a sense, this is an improvement
of known results in [9], [10], [14].

This paper is organized as follows. In Section 2, we give some auxiliary definitions.
In Section 3, we outline the nonlinear case of the backward heat with time-dependent
coefficient.
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2. SOME AUXILIARY DEFINITIONS

We assume that a: [0,7] — R is a continuous function on [0, T satisfying a(t) > 0.
The function B(t) is defined by

(2.1) B(t) = /0 o

Let §(¢) denote the Fourier transform of a function g € L?(R) defined formally as

(2.2) 99 = 7= [ sl

Let H' = W12, H? = W22 be the Sobolev spaces which are defined by
H'(R) = {g € L*(R), £3(¢) € L*(R)},
H*(R) = {g € L*(R), £%§(¢) € L*(R)}.

We denote by |||, |||z, ||| z2 the norms in L?(R), H'(R), H?(R), respectively,
namely

1,

lglizr = llgl® + llgall* = 11 + €*)23()1,
1

lgliz = Nl + llgall? + lgael* = 11 + € + %) 2 5(E)|1>.

3. THE NONLINEAR PROBLEM WITH TIME-DEPENDENT COEFFICIENT

In this section, we consider the problem (1.1) of finding the temperature u(x,t)
with (z,t) € R x [0;T], where a(t) is defined in Section 2, ¢ € L?(R) and f(z,y, 2)
satisfies the conditions of Lemma 3.1. Let us first make clear what a weak solution
to problem (1.1) is.

Lemma 3.1. Let f € L>®(R x [0,T] x R) be a function such that f(x,y,0) =0
and

(31) |f(x,t,u)—f(x,t,v)| <I(|1‘L_v|

for all (z,t) € R x [0,T] and for some constant K > 0 independent of x, t, u, v. Let
¢ € L*(R). Assume that u € C([0,T], H*(R))NC*([0,T], L*(R)) is a solution of the
equation

T
(3.2) i€, t) = eBIO=BIDE ¢y / e (BO=BENE f(e s, u) ds.

t

Then uy, uz, € C([0,T], L3(R)).
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Proof. By letting t = T in (3.2), we have immediately 4(¢,T) = $(£). There-
fore, we get u(x, T) = p(x) in L*(R).
Multiplying the above equation by e? (t)gz, we obtain

2 2 T 24
BOE (e 1) = BIDE 5(¢) / PO f(e,s,u)ds, € [0,T).

t

Differentiating the latter equation w.r.t. the time variable ¢, we get

PO (a(e, 1) + Sale, 1) = PO f(e, 1),

namely
EH(0)i(E, 1) + L6 1) = flE tw), t€0,T]

Since u € C([0,T], H?(R)) N C*([0,T], L*(R)) we have that £20(£,t) = 1i,,(€) and
(d/dt)a(&,t) belong to C([0,T], L2(R)). This gives us, uze € C([0,T], L?(R)) and
(3.6) gives a weak formulation of the solution of problem (1.1). This ends the proof.

(]

Let -
B(6) = % / el s

be the Fourier transform of the function p(x) € L?(R). By a solution of problem (1.1)
we understand a function u(z,t) satisfying (1.1) in the classical sense and for every
fixed ¢ € [0, 7], the function u(-,¢) € L*(R). In this class of functions, if the solution
of problem (1.1) exists, then it must be unique (see [9]). In general, we have no
guarantee that the solution to problem (1.1) exists. We do not know any general
condition under which problem (1.1) is solvable. The main goal of this paper is to
find a computation method of the exact solution when it exists. Hence, regularization
techniques are required. Let u(zx,t) be a unique solution of (1.1) (if it exists). Using
the Fourier transform technique to problem (1.1) with respect to the variable z, we
can get the Fourier transform (¢, t) of the exact solution w(z,t) of problem (1.1),
which is given in (3.2). Since t < T, we know from (3.2) that, when || becomes large,
eBWE® and o(B(5)=B)E” jncrease rather quickly. Thus, these terms are the unsta-
bility cause. Hence, to regularize the problem, we have to replace the terms by some
better terms. Our idea is to replace them by e~ (BOFmE /(c¢2k 4 o= (B(T)+m)s)
and e(BE)=BO=B(T)=m)e* j(¢2k | o~ (BT)+m)EY (1 > 0, k > 1), respectively. The

main conclusion of this paper is:
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Theorem 3.2. Let f: Rx[0,7]xR — R be as in Lemma 3.1. Let ¢ € L?(R) and
¢- € L*(R) be measured data such that ||¢. — ¢|| < €. Suppose that problem (1.1)
has a unique solution u € C([0,T],L?*(R)). Let m > 0 and k > 1 be real numbers
such that

(3.3) | 1o 2 ag < oc,

Then we construct a regularized solution w. such that

(3:4)  u(t) —we(-, 1)
< P(k, m)g<B<t>+m>/<B<T>+m><1n (

Y

I(k, m))) (kB(H)~kB(T))/(B(T)+m)
3

for all t € (0,T], where w, is the function whose Fourier transform is defined by

e~ (B(H)+m)¢*

(35) TIJE (57 t) = €§2k + e—(B(T)+m/)f2 4156 (g)
T o(B(s)=B(H)—B(T)-m)&* _
- /t Eka =+ e~ (B(T)+m)e2 f(fv S, ws) ds
and

(3.6) A(k,m) = 2H?*(k,m) sup (/00 |§ke(B(t)+m)52ﬁ(§,t)|2 d§>,

0<t<T s
P(k,m) = /A(k,m)e”™ K H o) /o (e, )™ KH (),
H(k,m) = min{1, (kB(T) + km)*},
BIT) +m)*

(3.7) I(k,m) = ;

The proof will be provided after Lemmas 3.3 and 3.4.

Lemma 3.3. For M, e, z > 0, k > 1, we have the inequality

1
exk + e~ Mz

E(k;,M)))*k,

< D(k,M)g—l(ln( -

where D(k, M) = (kM)*, E(k, M) = M* /.

Proof. Let gbe the function defined by g(x) = (ex* +e~™*)~1. The derivative
of g is
ekab~—1 — MeM=
—(5xk+e—M’C)2 !

g (x) =
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The equation ¢'(z) = 0 gives a unique solution z( such that 6kx§_1 — Me Mzo =,
It means that zf 'eM® = M/(ke). Thus the function g achieves its maximum at

a unique point z = xo. Hence,
g(x) < (ex +e7 M)}
Since e~ M0 = (ke/M)zf™*, one has

g(x) < (ea§ + e~ M%) < (eafy + (ke/M)zg ™)™

By using the inequality e™®0 > Muxg, we get
% (Ek 1 Mxo < 1 e(kfl)MzoeMzo _ 1 ekMzo
ke 70 = OME-L T Mk

This gives ekMzo > MF/(ke), or equivalently kMzo > In(M*/(ke)). Therefore,
w9 = 1/(kM)In(MP*/(ke)). Hence, we obtain
1 kM)k
o< L o0t
exg  eln®(MF*/(ke))
(]

Lemma 3.4. Let s, t be real numbers such that 0 <t < s<T. Lete >0, £ € R,
m >0, k > 1. Then the following estimates hold:

—(B(t)+m)¢* B(t)— B(T _[(]g ) kB(t)_kB(T)
e (t)—B(T) ,m B(T)+m
(3.8) ET o ETTmE S < H(k,m)e BT (hl( . ,
(B(s)—B(t)—B(T)—m)¢? B(t)—B(s I(/f ) kEB(t)—kB(s)
e (t) (s) ,m B(T)+m
(3.9) ET o BT < H(k,m)e B+m (1n ( :

Proof. We have
e~ (B®)+m)¢?
€2k 4 o~ (B(T)+m)&?

e~ (B(t)+m)e?

2 2\ BI)—B@)
(55216 + e~ (B(T)+m)¢ )B(T)+7n( €2k 4 e— (B(T)+m)¢ ) B(T)+m

1
S B(T)—B(t)
(Eka + e—(B(T)-i—m)Ez)W

B(T)—B()

(e (o (2)
B(t)—B(T)

_B(t t)— k
Db, B(T) + ) 45852 B (1 (BB ) yy
S

kB(t)—kB(T)

B(t)—B(T) (1n (I(k,m))) BT Tm

H(k,m)e B+m
g
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where H(k,m) = min{l, D(k, B(T)+m)}, I(k,m) = E(k, B(T +m)). We also have

e(B(s)=B(t)~B(T)~m)&*

€2k 4 o (B(T)+m)é?

e(B(s)=B(t)=B(T)~m)E*

B(D)+m—B(s)+B(0) (5)—B(t)
(e€2k 4 o= (BD)+m)E) ™ Brrrm —  (c£2k 4 o= (B(T)+m)E?) Berm

1
(c€2F 4 e~ (BT +m)e?) St

<

s)=B(t t)—B(s L BA)=B(s)
D(k, B(T) + m) B & somn (1n (W)) BT
e

B(t)—B(s) I(k,m LEGIREL)
< H(k, m)e Berts (111(@)) B
g

Next, we continue to prove the main theorem.

Proof of Theorem 3.2. We divide the proof into three steps.
Step 1. Construct a regularized solution w.. We consider the problem

—(B(t)+m)¢*
(310) (E? ) E€2k+e (B(T)—i-m)gz ¢€(§)
o(B(s)=B(t)-B(T)-m)&*
_/ §2k te (B(T)+m)&2 f(€75 ws)d57
or

e~ (B(t)+m)e?

1 .
(3.11) we(z,t) = \/—/ €2k 4 o~ (BI)+m)E? Sae(g)elgxdg

o(B(9)—B(t)—~ B(T)—m)&* i€
\/_/ / £2k+e (B(T)+m)&? f(f;s ws) ds d€.

First, we prove that problem (3.11) has a unique solution w. belonging to C([0,T];
L?(R)). Denote

1 e(B(s)=B(O)=B(T)=m)e* -
G(U))({E,t): \/—2—7_[ (E, \/—/ / §2k+e (B(T)+m)€e2 f(fasaw)e deg

for all w € C([0,T]; L*(R)) and

o e~ (B(t)+m)e? ex
w(xat):/ €2k 1 o (B(T)+m)§2305(€)e d¢.
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Since f(x,y,0) = 0, and due to the Lipschitzian property of f(x,y,w) with respect
to w, we get G(w) € C([0,T]; L*(R)) for every w € C([0,T]; L>(R)). We claim that,
for every w,v € C([0,T]; L*(R)), n > 1, we have

2n _ n n
By 0y e,

(312) G @)(,0) - G@HIP < (T l

where C; = max{T,1} and [-|| is the sup norm in C([0,7]; L*(R)). We shall prove
the latter inequality by induction. When n = 1, we have

(3.13)  [G(w)(-t) — G@)(-)]? = |G(w)(-,t) — G)(- 1)]?

o | [T o(Bs)=BWO=BT)=m)e* ) 2
= / / E€2k + e—(B(T)_;’_m)gz (f(gv S,U}) - (f, S,U)) dS df
—00 t
o0 T/ o(B(s)=B(t)—B(T)—m)&* \ 2
S ds
/m </t < ££2k 4 e~ (B(T)+m)¢? >

T N R 2
<[ If(é,s,w)—f(f,s,v)Ist) .
t

Notice that if 0 < € < 1 then it follows from (B(t) — B(s))/(B(T) + m) > —1 that

B(s)—B(t)—B(T)—m)¢?
el =B~ B —m)s < (B)=B()/(B(T)+m) L 1
€2k 4 e~ (B(D)+m)ez = s

This gives

T/ o(B(s)=B(t)~B(T)—m)e? \ 2 T 1
(3.14) /t <5€2k+e—(B(T)+m)£2 ) dsg/t Sds= (T 1),

Combining (3.13) and (3.14), we obtain

1G@w)(,1) — Gw) (1)
< i(T—t)/t 1705, w(8)) = FCos,0(8)] ds

52
T

ST =) [ 15Cs9) = 1605 [P ds

K? r K?

=0 [ et = o) ds < O (T = llw =l
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Therefore, (3.12) holds for n = 1. Suppose that (3.12) holds for n = p. We prove
that (3.12) holds for n = p+ 1. We have

167 (w) (1) — GP L @)D = [GGP (W) 1) — CGP (o)) (1)
0 T e(s_t—T—m)§2 . ) )
- /—oo /t €2k 4 o~ (TH+m)E2 (f(& s, GP(w)) —

(€,5,G"(v)))ds| dE
IRIEE=E

€§2k + e—(T+m)£2

T 2
X/t |f(€,5,GP(w)) —f(f,s,Gp<v>>l2dS> de.

By using (3.14), we have

IG" (w)(-,8) = G (0) (-, 1)1

T
< 5_12(T — t)/t Hf(757Gp(w)(,S)) - f('757Gp(U)(" S))HQdS
2

K g P P
<=0 [ 167w - 60 s

If follows from

|GP(w)(-, ) = GP()(-, D)||? < (5)2p (T —t)*CY

$ =)0y 2
=) = e =
that

IGT* (w) (-, 1) =GP () (- )2

K? KN\ (T(T —s)P » 9
<r-o(2)" [ S ot
K\20+1) (T — )+ P D)
<(%) o — vl
£ (p+1)!

Therefore, by the induction principle, we have for every m

m m K me/Q -
lem(w) - @)l < (<) T Ol —
for every w,v € C([0,T]; L3(R)). We consider G: C([0,T]; L*(R)) — C([0,T7;
L?(R)). Since

. (K\mT™2CP

n}gnoo (?) vm! - O’
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there exists a positive integer number mg such that G™° is a contraction. It follows
that G™ (w) = w has a unique solution w. € C([0,T]; L*(R)).

We claim that G(w.) = w.. In fact, one has G(G™°(w.)) = G(w.). Hence,
G™ (G(w.)) = G(we). By the uniqueness of the fixed point of G™°, one has G(w.) =
we, i.e., the equation G(w) = w has a unique solution w. in C([0,7T]; L?(R)). The
main purpose of this paper is to estimate the error ||w. —u||. To this end, we proceed
by the next two steps.

Step 2. Let u. be the solution of the problem (3.11) corresponding to the final
value . We shall estimate the error |Jw. — uc||.

From the formulas for w. and u., we have

e~ (B)+m)E?

(3.15) We(§,t) = €2k § o~ BID)TmE? Pe(§)
e(B(s)=B(t)~B(T)~m)&*
_/t s e | (&5 we) ds,
and
—(B(t)+m)¢*
(3.16)

(57 ) 5€2k+e (B(T)+m)&2 90(5)

e(B(s)=B(t)-B(T)—m)&>
_/ €2k 4 e—(B(D)+m)e? f(&;5,uc) ds.

Using the Parseval equality and the inequality (a + b)? < 2a? + 2b%, we get

(3.17) Nwe(,t) — ue( )|* = lwe(, 8) — G-, 1)

o | e (BH+m)E 2
<2 / ngue e (2:(6) — ()] de
(B(&)—B()-B(T)-m)e* . 2
|| o (€)= s as| ag

\J1+J2~

The term (3.17) can be estimated as follows.

[ —(B(t)+m)g? R 2
(3.18) Jy = 2/ ‘€§2k o BmTme (P - w(f))‘ d¢
o 2kB(1)—2kB(T)
< 2H?(E, m)swé_gmfim (ln (@)) pe |6 — ¢l
()=2B(T) Ik e
<2 me I (i () T o
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and

o(B(s)=B()=B(T)-m)&* ) 2
(3.19) .]2:2 ‘/ e mmrme (6 s we) = (& 5,us))ds| dE

2kB(t)—2kB(s)

<2 / /H%m%(m(M)) JOEL
g

X |f(£,s,w€)—f(§,s,u€)| def
T o R 2kB(t)—2kB(s)
<2AT - R k) [ (1 (Lm)yy

¢ €
% Jlwe (-, 5) = ue(:, )[* ds.

Combining (3.17), (3.18), and (3.19), we have

[we (-, 8) = ue (-, )|
2kB(t)—2kB(T)

2B(t)—2B(T) I(k T B(MFm
< 21k, m)e i (1w (LETINY T e
3

T t)— s
+2(T - t)KQHQ(k,m)/ e (m (Lk’m))) P
t €

% Jlwe (-, 8) = ue(:, )% ds.

Hence,

—250) I(k BT
78 (1 (L)) T () = e
—2B(T) I(k o
< 22k m)e 5 (1 (LRI TR e

T 20 I(k BT im
+2K2H? (k, m)(T — t)/ BT (1n (ﬂ» T
t

€
% [lwe (-, 8) = ue(:, 5)|* ds.

By using the Gronwall inequality, we obtain

—2B(t) I1(k, gt
e B(T)+m (ln (%)) ner ||'we('7 t) - ’U:e('a t)||2
B —2kB(T)

ol
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Therefore, we conclude that

l[we (-5 8) = ue (-, 1)

B)—B(T)

< \/QH(k,m)eKsz(k,m)(T—t)zg B(T)Tm (hl

Ty y
€

K2H2 (bom)(T—)2 B@=B) I(k,m) EEQDFED
< V2H(k,m)e (&) (T=1)" ¢ BTy +m <1n( )) £

€
B(t)— kB (T)
— VaH (k. m)eK2H2(’“’m><T*t>2555%17# <ln (I(k,m))) e

€

Step 3. Let u be the exact solution of problem (1.1) corresponding to the final
value ¢. We shall estimate the error ||u. — u].

Let u. be the function defined in step 2. We recall the Fourier transform of v and
ue from (3.2) and (3.16):

T
(320) (&, t) = eBIMI=BIE ey - / e (BO=BENE f(e s, u)ds
t

and

. e~ (B)+m)e*
ue(fvt) = €£2k T e (B(T)+m)e? 90(5)

(3.21)

T o(B(s)=B(H)~B(T)-m)&>
- /t €2k 4 e—(B(D)+m)e? F(&5,ue) ds.

By direct calculation, from (3.20) and (3.21) we get

ﬁ(fat) - ﬁe(fat)

—(B(t)+m)¢?
— (e(B(T)*B(t))? €

- R )e(©)

T T o(B(s)=B(t)~B(T)-m)E
_ —(B(t)~B(s))€* § ¢ ;
K fles s+ | o f(6 5 ue) ds
co(BIT-BW)E T (Be)-BW)E,
— €§2k n o~ (B(T)Tm)e? @(g) - / E§2k + e~ (B(T)+m)e2 f(ga S, U) ds

T o(B(s)=B(t)-B(T)-m)&* N
| e (s = fle s ds.
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Using the Parseval equality, we obtain

o) = w0l = [ fale ) - (e 0)? ag

o | g2he(BT)-B)E T JB)-BWE,
= /—oo Efgk_e,(B(T)er)Ez 50(5)_/ €£2k+ef(B(T)+m)E2 f(g,s,u)ds
T o(B(s)=B(t)-B(T)-m)¢* R 2
/ Eka I e—(B(T)+m)£2 (f(ga S,U) - f(ga S,UE)) ds df
* e A
= || e
Te(B(S)—B(t)—B(T)—m)i2 . R 2
_/t E€2k +e—(B(T)+m)£2 (f(gasau) - f(gasaus)) ds df
oo —(B(t)+m)¢* 2
e 2k (B(t)+m)e2 »
<2 [ | O ale )| g
00 T e(B(S)—B(t)—B(T)—m)i2 . R 2
‘/ 5§2k I e—(B(T)+m)f2 |f(€757u) - f(fvsvuc?)' ds
It follows from Lemma 3.1 that
u(,t) = ue(-, )]
2B()+2m I(k,m)\\ *C5trrm
< 2H? TrFm AW
2H2(k, m)e BT (m( . ))
o0
< [ IO i 2 e 4 207 (k)
o0
2

kB(t)—kB(s)
‘ / Bfgf(zp)fv(n) (I(]f;m))) B(T)+m |f(f, s,u) . f(f; s,u€)| ds

=24, +2/Tz,

where the term ;1: is equal to

2kB(t)—2kB(T)

147:525é?>t’i:?(m(“’“m))) pe / €2k BOTME g (¢ 1) de.
— 0o

3
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We estimate /TQ as follows:
— o | T pw-B I(k, m)\\ et . 2
Ay = / / ¢ B(D+m (111 (M)) B+ [F (& s,u) — F(E,8,us)|ds

oo |/t €
2kB(t)—2kB(T) QkB(T)

< SR ( (M) Ty [ /
g
I(k,m)\\ Lo s
« (1w (1Y) (6,5, 0) — F(E5,u0) ds? de
2kB(t)—2kB(T) T )—2m
25((;))++27::L(1n(1 ))—B<T>+_m (T—t)/ 67%%))+7i
t
(k ) 2kBJ(BTE%)ikB( )
m 2
< (m (=22)) 1£Cosu(8) = (s, ua(,9)) |2 ds

2kB(T)—2kB(s)

2B(t)+2m (1 ( k} m ) B(T)+m

< e BDIm KQ(T — t)

2kB(T)—2kB(s)

T BT+ — d

Cme I(k.m) A\ 2B -2EB ()

x/ 62715]%))4—2(111< - ))) o (-, 8) — uc (-, )| ds.
t

£

This implies

(-, t) = ue (- 1)
2kB(t)—2kB(T)

—2B(s)—2m

00 T
y [ / 2R BOT™E (¢ 1) dg + 2K H2 (ky m)(T — 1) / e
o t

I(k 2kB(T)—2I:’iB(s)
x(ln(w)) P |u(-,s)—u€(~,s)|2ds].

£

Thus

—2B(t)—2m 72k5éf%;ik3(t)
=50 (In ( ™)) Tl t) = e )

—2B(s)—2m

T
< A(k,m) + 2K2H?(k,m)T / g BUDTm
2kB(T)—2thB(s)

X(IH(M)) T (s s) = ue (-, 8)[2 ds,

€

where A(k,m) is defined in (3.6). Applying the Gronwall inequality, we obtain

2kB(T)—2kB(t)
S (1 (TE)) T ) e
€

< A(k’m)eQK2H2(k,m)T(T7t).
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Hence,

(322)  lu(,t) —ue(-, 1)

2 772 B(t)+m I(k m) %
< VAT e T B (1 (L)) TS
£

By the results of Step 2 and Step 3, we get the following estimate by using the
triangle inequality:
[Jwe () = u( O] < Jlwe(58) —ue( O + llue(,t) —ul-, )]
kB(t)—kB(T)

< VRH (s, m)el H ) (0" B (1 (71 ("“';m) ) T

kB(t)—kB(T)
N A(;ﬁm)eKzH%k,m)T(T—t)EEf%i’:;(m(f(kam))) B
e

kEB(t)—kB(T)

< P(k,m)e B (ln (Lk’m)» B
g

for all ¢ € [0,T]. This completes the proof of Theorem. O

Remark 3.5. (1) a) In Tautenhahn and Schréter [13], the authors regularized
the homogeneous problem (f = 0) and showed that the best possible estimate of the

worst case error is given by

lu(-,t) = uP ()] < 2B /7T,
where F is a positive constant such that
(3.23) Ju(-0)]l < E.

If a(t) =1 and f =k = m = 0 then we have

)
[ 1L o ag = a0
—o0
Then the condition (3.3) is similar to (3.23) and it may be natural and acceptable.
Moreover, in this case, our result (3.4) is of the same order as the results of Tauten-
hahn. Thus, in this case, our method is of optimal order.

b) If a(t) = 1 and f = f(x,t,u), we refer the readers to [9]. In [9], the authors
established a regularized solution u® and, under a strong smoothness assumption on
the exact solution u, they obtained the error estimate

(3.24) () = u (- 0)]|* < Me/T,
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where M is a constant dependent on u. The right-hand side of (3.24) is not close to
zero if t = 0 for any nonzero epsilon. The convergence of the approximate solution is
very slow when ¢ is in a neighborhood of zero. This is an open point of the paper [9].
If m = 0 then the error (3.4) is similar to the results obtained by Trong and Quan [9].
To improve this, we should choose m > 0 to attain the error of Holder type.

(2) If m = 0, then with k£ > 0 we get the logarithmic order

(3) In Theorem 1, if we select m > 0 then under a strong assumption of u, we get
the error which is of order e™/(B(T)+™) This error estimate is much better than the
logarithmic order estimates obtained in some previous results [8], [4].

Remark 3.6. We now compare our result with those in [15] in the case
flz,t,u) = 0 and a(t) = 1. If ||u(-,0)|]|gs < E then there exists a positive F’
such that

T—f—m)s/2

(3.25) we(-,t) — u(-,t)|| < Fat/(T+m)(1n(1/€>

Under the same condition ||u(-,0)||g: < E, the error (3.25) is of the same order as
that of Wang in [15] (see Remark 4.6, Theorem 4.4).

To prove Remark 3.6, we need the following lemma.

Lemma 3.7. Let s >0, X >0, m >0. Then for all 0 <t < T and 0 < e < 1,

we have

€eftX

(14 X)3(e + e (THm)X)

T+m\s
. +/(T+m)
SO, s,m)e (1n(1/€)) ’
where C(k,s,m) = (s(T +m)/m)%e’~5.

Proof. We have two cases.
Case 1: X €[0,1/(T + m)]. It is clear that

ee X < € < co(T+m)X
1+ X)*(e + o T+mX) S (14 X)se-T+mX S5° s e

From the inequality € < (s/e)*(1/In(1/€))®, we get

—tX

ge s, 1—s 1 °
(326) (1 —|—X)k(5+e_(T+m)X) < se (111(1/5)) .
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Case 2: X > 1/(T +m). Set e~ (T+™X = cY". Then we obtain

(3.27) ge tX _ e(eY) T ( T+m )‘?
’ + X)s(e + e~ (THm ete +m —In(e

(1+ X)s( (T+m)X) Y \T In(eY)
—5TlYTL"( T+m )‘?
N 14+Y \T+m—In(eY)
_ngTl”(T+m)S( —In(e) )
B 1+Y \In(1/e)/ \T +m —1In(eY)
T—f—m)SYﬁ( —In(e) )G
In(1/e)/ 1+Y \T+m —In(eY)/ ~

t
= eT+m

We continue to estimate the term (Y*(T+7) /(1 +Y))(—1In(e) /(T +m — In(eY)))*.
If0<Y <1 then 0 < —In(e) < —In(eY’), thus

(3.28)

yt/(T+m) ( —In(e) <1

1+Y T+m—1n(5Y)>

while if Y > 1 then InY > 0 and In(eY) = —(T'+m)X < —1 due to the assumption
X € (1/(T +m),0). Therefore, InY (1 +1In(eY)) < 0. This implies that

—Ine —Ine

0< T+ m —In(eY) <z In(eY)

<1l+nY.

Hence, in this case, we get

yt/(T+m)
Y
< (14 InY)syt/T+m-1

yt/(T+m) ( —In(e)

T<(14ly)
1+Y T—l—m—ln(aY)) <(1+hY)

Set g(x) = (14 1nz)%z!/T+™)=1 for g > e~!. Taking the derivative of this function,
we get

g'(z) = (14 Inz)*~ gt/ (THm—2 (s - (1 -7 f_ m) 1+ lnx)).

The function g has maximum at the point zq such that g’(zp) = 0. This implies that
zg = el(s=D(T+m)+t)/(T+m—t) Therefore,

k(T s
(3.29) il;fl)(l Flng) 2t/ THm =1 & g(zo) = (%) ol—k—t/(T+m)
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Since g(xo) > ¢(1) =1 and due to (3.28), (3.29), we have

yt/(T+m) ( —In(e) ) < (M)Sel—s—tﬂﬂw
1+Y \T+m—In(Y) T+m-—t
<<M)Sem,
m

From (3.27), we get

ge 5T+m 1— Gt/(T—i—m) T+m s
3.30
(8:30) 1+ X)(e + e TFrm)X) ( ) c (1n(1/5)>

ﬂﬁ/?) ) s

< C(k,s,m)e t/( TJ””)(

where C(k,s,m) = (s(T +m)/m)%e! 5.
Proof of Remark 2. Since (3.2) and (3.16), we obtain

—(t+ 2
BE 1) — (1) = (o0 _ N o
7 o € + e~ (T+m)¢? ¥

Ee(T_t)Ez

= e arme )

It follows from e7€*3(¢) = a(£,0) that

2
ge 18

a(g,t) — e (&, t) = Wﬁ(f,0)~
Using Lemma 3, we obtain

() —ue (-, t))|* = Iﬂ(f t) —ue(f t)|\2

2
(cremrmeiE0)

/ cetE”
< C?

(1+€)72i(e,0)) de

(14 £2)3/2(g 4 e~ (T+m)E?)

) [ _a+eriacora
) 0l

T+m

In(1/¢)
T+m

In(1/¢)

(k? s m) 2t/( T+m)(
< CQ(kJ, s, m)EQt/(T+m)(

Hence,
T+ m\s/2
ng) G0l

s/2
< EC(k, s, m)e"/(T+m) (f&/f:))
n

s 8) = e (- DIl < Ok s,m)et/ T

Hs
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By the results of Step 2 and Step 3, we get the following estimate by using the
triangle inequality:
l[we (1) = u(- I < Jlwe (5 8) —ue( )N+ lue(,t) —ul-, )]

< ﬁeKz(T_t)ze(t_i_m)/(T_;’_m) + EC(k‘, s, m)€t/(T+m) (m)‘?/Q
In(1/¢)

Since € is small enough, there exists a positive constant D such that

em/(T+m) <D (IT(—;/WL) ) o/2
n 9

Then, we conclude that

/2
lwe (-, t) —u(-t)]] < (\/ﬁeK%T*tﬁD + EC(k, s,m))at/(Ter) ( Lim ) ’ .

In(1/e)

This completes the proof of Remark (3.6). O

4. CONCLUSION

We have considered a regularization problem for a nonlinear backward heat equa-
tions with time-dependent coefficient, namely Problem (1.1). We have also estab-
lished an error estimate of Hoélder type for all ¢ € [0,T]. This estimate improves
some results of several earlier works. In the future, we will consider the regularized
problem for the problem

- % _ %(a(x,t)%) — fla,tulz, 1), (2,1) € R x (0,T),

where a(z,t) is a function dependent on both the variables x, t.
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