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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 3 , PAGES 3 2 2 – 3 6 2

EQUIVALENCE OF COMPOSITIONAL EXPRESSIONS
AND INDEPENDENCE RELATIONS IN COMPOSITIONAL
MODELS

Francesco M. Malvestuto

We generalize Jiroušek’s (right) composition operator in such a way that it can be applied to
distribution functions with values in a “semifield”, and introduce (parenthesized) compositional
expressions, which in some sense generalize Jiroušek’s “generating sequences” of compositional
models. We say that two compositional expressions are equivalent if their evaluations always
produce the same results whenever they are defined. Our first result is that a set system
H is star-like with centre X if and only if every two compositional expressions with “base
scheme” H and “key” X are equivalent. This result is stronger than Jiroušek’s result which
states that, if H is star-like with centre X, then every two generating sequences with base
scheme H and key X are equivalent. Then, we focus on canonical expressions, by which we
mean compositional expressions θ such that the sequence of the sets featured in θ and arranged
in order of appearance enjoys the “running intersection property”. Since every compositional
expression, whose base scheme is a star-like set system with centre X and whose key is X, is a
canonical expression, we investigate the equivalence between two canonical expressions with the
same base scheme and the same key. We state a graphical characterization of those set systems
H such that every two canonical expressions with base scheme H and key X are equivalent,
and also provide a graphical algorithm for their recognition. Finally, we discuss the problem of
detecting conditional independences that hold in a compositional model.

Keywords: compositional expression, compositional model, running intersection property,
perfect sequence

Classification: 05C65, 05C85, 1699, 65C50, 60E99, 68T37

1. INTRODUCTION

Data pooling is a common practice in statistics [24] and consists in putting together
“data from multiple data sources relating the same or different populations in order to
obtain more precise estimates of common measurements of statistical information” [30].
In this spirit, probability distributions can be pooled to obtain a higher-dimensional
probability distribution and, to achieve this, in a series of papers [7, 8, 11] Jiroušek
introduced a binary operator “B”, called (right) composition. Moreover, he proved that
compositional models represent an alternative formalism to graphical models which are

DOI: 10.14736/kyb-2014-3-0322

http://doi.org/10.14736/kyb-2014-3-0322


Equivalence of compositional expressions and independence relations 323

used to model Bayesian networks, and turn out to be useful also in the framework of
belief functions [12, 14, 15], possibility functions [14] and Shenoy valuations [13].

In the framework of probability distributions, Jiroušek [11] proved that

there are many ‘special situations’ under which the order of application of
the composition operator can be changed without influencing the resulting
composed distribution.

These special situations are reported in Table 8 in [11] and some of them require the
consistency of the system of the input probability distributions. In the spirit of data
pooling and of “knowledge integration” [31], throughout we do not assume consistency
so that the following result [11] is relevant to the object of this paper.

Theorem 1.1. Let f1, f2 and f3 be probability distributions on X1, X2 and X3, re-
spectively. If X2 ∩X3 ⊆ X1, then

f1 B (f2 B f3) = f1 B (f3 B f2) = (f1 B f2) B f3 = (f1 B f3) B f2.

In this paper, we first show how to apply the composition operator to arbitrary addi-
tive multivariate functions (of discrete variables) which take their values in a “semifield”
(see Section 2 for basic definitions). We call them distribution functions and emphasize
that their class includes not only probability distributions, but more in general multi-
variate functions whose values can be added, multiplied and divided, such as “relations”
in databases [1] and “measures” in data warehouses [19, 23, 26, 27]. Then, we introduce
the notion of a compositional expression, by which we mean a parenthesized expres-
sion formed out by distinct sets of variables, and the symbol B. Structural elements
of a compositional expression are its base scheme, its base sequence and its key. For
example, the compositional expression (AB B CD) B (BC B AD) has the set system
{AB,AD,BC,CD} as its base scheme, the set sequence (AB,CD, BC,AD) as its base
sequence and the set AB as its key. Next, we define the notion of equivalence between
compositional expressions having the same base scheme and the same key. (Note that
our notion of equivalence is stronger than that studied in [16, 17].) Thus, Theorem 1.1
can be re-stated as follows: If X2 ∩X3 ⊆ X1, then the four compositional expressions

X1 B (X2 B X3) X1 B (X3 B X2) (X1 B X2) B X3 (X1 B X3) B X2

are pairwise equivalent. It should be noted that the four compositional expressions above
are simple in that they contain exactly one subexpression of the form (X B Y ).

After Jiroušek we call a set system H star-like with centre X if X ∈ H and Y ∩Z ⊆ X
for every two distinct sets Y and Z in H. Accordingly, in its generalized form Theorem
1.1 reads:

Given a star-like set systemH with centre X, every two simple compositional
expressions with base scheme H and key X are equivalent.

We shall prove the following stronger result (see Theorem 6.5):

A set system H is star-like with centre X if and only if every two composi-
tional expressions with base scheme H and key X are equivalent.
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Next we focus on canonical expressions, a canonical expression being a compositional
expression whose base sequence enjoys the running intersection property [1, 18]. Of
course, if H is a star-like set system with centre X, then every two canonical expressions
with base scheme H and key X are equivalent. We then investigate the class of those
set systems H for which every two canonical expressions with base scheme H and key X
are equivalent. We call such set systems X-centric, and provide a graphical recognition
algorithm. As a result, the class of X-centric set systems strictly includes the class of
star-like set systems with centre X.

Finally, we discuss problem of detecting conditional independences in the model gen-
erated by a compositional expression. For generating sequences of probability distribu-
tions this problem was discussed in [9, 10, 16, 17].

The paper is organized as follows. In Section 2 we give a precise definition of what
we mean by a distribution function. In Section 3 we introduce the notion of conditional
independence in a distribution function and state some properties. In Section 4 we
introduce our composition operator which generalizes Jiroušek’s composition operator to
distribution functions. Section 5 is devoted to compositional expressions and we provide
a general formula for the model generated by a compositional expression. In Section
6 we introduce the notion of equivalence between compositional expressions, and prove
that star-like set systems with centre X are precisely those set systems H for which every
two compositional expressions with base scheme H and key X are equivalent. In Section
7 we introduce canonical expressions, and we provide a closed formula for the model
generated by a canonical expression, which is used to characterize those set systems H
such that every two canonical expressions with base scheme H and key X are equivalent.
Section 8 aims at finding out conditional independences holding in the model generated
by a compositional expression. Finally, Section 9 contains a note on the power of the
formalism of compositional expressions, as well as some directions for future research,
and the Appendix contains the proof of the closed formula for canonical expressions.

2. PRELIMINARIES

2.1. Commutative semirings

A commutative semiring is a triple (R,+,×) where R is a set, and + and × stand for
operations such that

(P1) (R,+, 0) is a commutative monoid, that is, the operation + is associative and
commutative, and there is an additive identity, denoted by 0, such that a + 0 = a
for all a ∈ R;

(P2) (R,×, 1) is a commutative monoid, that is, the operation × is associative and
commutative, and there is a multiplicative identity, denoted by 1, such that a×1 =
a for all a ∈ R;

(P3) the distributive law holds, that is, a × (b + c) = (a × b) + (a × c) for all triples
(a, b, c) from R.

Commutative semirings having the following two properties serve our purposes:
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(P4) (R,×, 1) is a group, that is, for all a ∈ R− {0} there is an element of R, denoted
by a−1, such that a× a−1 = 1;

(P5) a× b = 0 if and only if a = 0 or b = 0.

Such a commutative semiring will be referred to as a semifield since it is actually a
field if every element of R admits an additive inverse. The following is a short list of
semi-fields.

R “(+, 0)” “(×, 1)” short name
(−∞,+∞) (+, 0) (×, 1) real field

[0,∞) (+, 0) (×, 1) sum-product semifield
(0,∞] (min,∞) (×, 1) min-product semifield
[0,∞) (max, 0) (×, 1) max-product semifield

(−∞,+∞] (min,+∞) (+, 0) min-sum semifield
[−∞,+∞) (max,−∞) (+, 0) max-sum semifield
{0, 1} (+mod 2, 0) (×, 1) Galois field GF(2)
{0, 1} (∨, 0) (∧, 1) Boolean algebra

Finally, observe that the sum-product, min-product, max-product, min-sum and max-
sum semifields as well as Boolean algebra enjoy the property that the additive identity
(“0”) is the only element of R that has an additive inverse (which is equal to “0”), that
is,

(P6) if a + b = 0 then a = b = 0.

Such semifields will be referred to as metric semifields. The simplest example of a
non-metric semifield, to which we will refer, is the Galois field GF(2).

2.2. Distribution functions

Throughout we only consider discrete variables which take their values in finite sets
and whose values are mutually exclusive and collectively exhaustive. We use the initial
capital-case letters of the alphabet (e. g., A,B, C) to denote variables, and the other
capital-case letters to denote sets of variables (e. g., X, Y, Z); moreover, sets of variables
are written as lists of variables; thus, ABC stands for {A,B, C}. Let X be a set of
variables. An X-tuple is an assignment of values to the variables in X; by dom(X) we
denote the set of all X-tuples. We use the lower-case letter x to denote an X-tuple. Let
Y be a nonempty proper subset of X; given an X-tuple x, by xY we denote the Y -tuple
obtained from x by ignoring the values of the variables in X − Y . It is convenient to
introduce the following two operators of relational algebra [1].

Let r be a subset of dom(X) and let Y be a nonempty subset of X. The projection
of r onto Y , denoted by πY (r), is the set of Y -tuples y for which there exists an X-tuple
x in r such that xY = y:

πY (r) = {xY : x ∈ r}.
Let X and Y be two sets of variables, let r ⊆ dom(X) and s ⊆ dom(Y ). The (natural)

join of r and s, denoted by r on s, is the subset of dom(X ∪ Y ) defined as follows:

r on s = {z ∈ dom(X ∪ Y ) : zX ∈ r and zY ∈ s}.
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Note that if X ∩ Y = ∅ then r on s is a commutative form of the Cartesian product of r
and s.

Remark 2.1. Let r ⊆ dom(X) and let Z be a nonempty proper subset of X. Then
r ⊆ πZ(r) on dom(X − Z).

Finally, it is easily seen that the join is an associative and commutative operator.

Let (R,+,×) be a semifield, and let X be a finite set of discrete variables. A dis-
tribution function on X is an R-valued function f on dom(X), whose values can be
added and multiplied according to the two operations of (R,+,×). If (R,+,×) is a
metric semifield, then we call f a metric distribution function on X. Examples of metric
distribution functions are distribution functions over the sum-product field (e. g., prob-
ability distributions) and over the min-product, max-product, min-sum and max-sum
semifields and the Boolean algebra. Note that a distribution function over the Galois
field GF(2) is not a metric distribution function.

A distribution function f on X is uniform if, for some a ∈ R, f(x) = a everywhere
(that is, for every X-tuple x); if a = 1 (respectively, a = 0), f is called a unitary
(respectively, null) distribution function.

The support of a distribution function f on X, denoted by ‖f‖, is the (possibly empty)
set of X-tuples x with f(x) 6= 0. Note that ‖f‖ uniquely determines f if (R,+,×) is the
Boolean algebra or the Galois field GF(2). Let f and g be two distribution functions on
X; we say that f is dominated by g, written f � g, if ‖f‖ ⊆ ‖g‖.

Let Y be a nonempty proper subset of X; the marginal of f on Y , written f↓Y using
the Shenoy–Shafer notation [28], is the distribution function on Y defined as follows

f↓Y (y) =
∑

x∈dom(X):xY =y

f(x)

where the summation symbol
∑

refers to the operation of addition (+) of the commu-
tative semiring (R,+,×). Let X − Y = {A1, . . . , Ak}. We can write an X-tuple x with
xY = y as (a1, . . . , ak, y) where ah ∈ dom(Ah), 1 ≤ h ≤ k. Then, one has

f↓Y (y) =
∑

a1∈dom(A1),...,ak∈dom(Ak)

f(a1, . . . , ak, y).

Accordingly, in what follows, we also make use of the following sum-expression for f↓Y :

f↓Y =
∑

A∈X−Y

f.

Finally, by f↓∅ we denote the “norm” (or “grand-total”) of f , that is, f↓∅ =
∑

x∈dom(X)

f(x).

Remark 2.2. For every Y -tuple y for which f↓Y (y) 6= 0, there always is an X-tuple x
such that xY = y and f(x) 6= 0. In other words, if y ∈ ‖f↓Y ‖ then there exists x ∈ ‖f‖
such that y = xY so that y ∈ πY (‖f‖). To sum up, ‖f↓Y ‖ ⊆ πY (‖f‖).
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Example 2.3. Let A and B be binary variables, and let f be the unitary distribution
function on AB over the Galois field GF(2). Then ‖f‖ = dom(AB), πA(‖f‖) = dom(A)
and ‖f↓A‖ = ∅.

Let f be a distribution function on X. By an extension of f to a superset V of X
we mean any distribution function e on V whose marginal on X coincides with f , that
is, e↓X = f .

3. INDEPENDENCE RELATIONS

The probability-theoretic notion of conditional independence can be generalized in the
framework of functions over a commutative semiring [21] and, hence, of our distribution
functions. We first recall the definition and properties of probability-theoretic con-
ditional independence, and then state properties of conditional independence in the
framework of distribution functions.

3.1. Probability-theoretic conditional independence

Let X and Y be two disjoint nonempty sets of variables, and let Z be a (possibly empty)
set of variables such that Z∩(X∪Y ) = ∅. Let f be a probability distribution on X∪Y ∪Z.
The sets X and Y are independent given Z under f if for every (X∪Y ∪Z)-tuple (x, y, z)

f(x, y, z)× f↓Z(z) = f↓X∪Z(x, z)× f↓Y ∪Z(y, z). (1)

Let f be a probability distribution on a superset of X∪Y ∪Z. Using Dawid’s notation
[4], we say that the conditional independence X |= Y | Z holds in f if X and Y are
independent given Z under f↓X∪Y ∪Z . It is well-known that conditional independences
satisfy the following properties, called semigraphoid axioms [18, 25].

(symmetry axiom)

if X |= Y | Z holds in f , then Y |= X | Z also holds in f ;

(decomposition axiom)

if X |= W ∪ Y | Z holds under f , then X |= Y | Z also holds in f ;

(weak-union axiom)

if X |= W ∪ Y | Z holds in f , then X |= Y | W ∪ Z also holds in f ;

(contraction axiom)

if X |= Y | Z and X |= W | Y ∪Z hold in f , then X |= W ∪ Y | Z also holds in
f .

Finally, observe that eq. (1) can be re-written as

f(x, y, z) =

{
0 if f↓Z(z) = 0
f↓X∪Z(x,z)×f↓Y∪Z(y,z)

f↓Z(z)
else.

(2)
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3.2. Algebraic conditional independence

Consider now a distribution function f on a given semifield, and eqq. (1) and (2). Note
that the factor 1

f↓Z(z)
in eq. (2) does mean the multiplicative inverse of f↓Z(z), that

is, 1
f↓Z(z)

=
(
f↓Z(z)

)−1. The following example shows that eq. (1) and eq. (2) are not
equivalent.

Example 3.1. Let A, B and C be binary variables with dom(A) = {a, ā}, dom(B) =
{b, b̄} and dom(C) = {c, c̄}, and let f be the unitary distribution function on ABC over
the Galois field GF(2). Note that the marginal of f on every proper subset of ABC is
a null distribution function. Therefore, eq. (1) holds everywhere (we always have the
equality 1× 0 = 0× 0), but, eq. (2) does not hold since f↓C(c) = 0 and f(a, b, c) = 1.

From Example 3.1 we learn that the notions underlying eq. (1) and eq. (2) are to be
distinguished, which we are going to do. Let X and Y be two disjoint nonempty sets of
variables, and let Z be a (possibly empty) set of variables such that Z ∩ (X ∪ Y ) = ∅.
Let f be a distribution function on X ∪ Y ∪ Z. We say that

— the sets X and Y are (algebraically) independent [21] given Z under f if the
equality in eq. (1) holds everywhere;

— f is decomposable by the set pair {X ∪ Z, Y ∪ Z} if the equality in eq. (2) holds
everywhere.

Let f be a probability distribution on a superset of X ∪ Y ∪ Z. Again, we say that
the conditional independence X |= Y | Z holds in f if X and Y are independent given
Z under f↓X∪Y ∪Z .

First of all, we prove that both conditional independence and decomposability satisfy
the symmetry axiom and the decomposition axiom.

Theorem 3.2. Conditional independence and decomposability of distribution functions
satisfy the symmetry and decomposition axioms.

P r o o f . The symmetry axiom is a consequence of the commutativity of the multipli-
cation. As for the decomposition axiom, assume that

f(w, x, y, z)× f↓Z(z) = f↓X∪Z(x, z)× f↓W∪Y ∪Z(w, y, z).

Summarizing over X ∪ Y ∪ Z we obtain

f(x, y, z)× f↓Z(z) = f↓X∪Z(x, z)× f↓Y ∪Z(y, z).

Analogously, from

f(w, x, y, z) =

{
0 if f↓Z(z) = 0
f↓X∪Z(x,z)×f↓W∪Y∪Z(w,y,z)

f↓Z(z)
else
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we obtain

f(x, y, z) =

{
0 if f↓Z(z) = 0
f↓X∪Z(x,z)×f↓Y∪Z(y,z)

f↓Z(z)
else.

�

However, in general neither conditional independence nor decomposability satisfies the
weak-union axiom as is shown by the following two examples.

Example 3.3. Let A, B, C and D be binary variables with dom(A) = {a, ā}, dom(B) =
{b, b̄}, dom(C) = {c, c̄} and dom(D) = {d, d̄}, and let f be the distribution function on
ABCD over the Galois field GF(2) with support

‖f‖ = {(a, b, c, d), (a, b̄, c̄, d), (ā, b, c̄, d), (ā, b̄, c, d)}.

Consider the two conditional independences A |= BC | D and A |= B | CD. Since the
marginals of f on D and AD are null distribution functions, A |= BC | D holds in f .
As for A |= B | CD, since f↓CD(c, d) = 0 and f↓ACD(a, c, d) = f↓BCD(b, c, d) = 1, the
equality

f(a, b, c, d)× f↓CD(c, d) = f↓ACD(a, c, d)× f↓BCD(b, c, d)

is not valid, which proves that A |= B | CD does not hold in f .

Example 3.4. Let A, B, C and D be the binary variables of Example 3.3, and let f
be the distribution function on ABCD over the Galois field GF(2) with support

‖f‖ = {(a, b, c, d), (a, b, c̄, d), (a, b̄, c̄, d), (ā, b̄, c, d̄)}.

Consider the two set pairs {AD,BCD} and {ACD,BCD}. Since f↓D is a unitary
distribution function and

‖f↓AD‖ = {(a, d), (ā, d̄)} ‖f↓BCD‖ = {(b, c, d), (b, c̄, d), (b̄, c, d̄), (b̄, c̄, d)},

f is decomposable by {AD,BCD}. As for {ACD,BCD}, since f↓CD(c̄, d) = 0 and
f(a, b, c̄, d) = 1, f is not decomposable by {ACD,BCD}.

We now prove that decomposability implies conditional independence.

Theorem 3.5. Let X and Y be two disjoint nonempty sets of variables, and let Z be
a (possibly empty) set of variables such that Z ∩ (X ∪ Y ) = ∅. Let f be a distribution
function on X ∪ Y ∪ Z. If f is decomposable by {X ∪ Z, Y ∪ Z}, then X and Y are
independent given Z under f .

P r o o f . Assume that the equality in eq. (2) holds everywhere. We want to prove that
the equality in eq. (1) holds for every (X ∪Y ∪Z)-tuple (x, y, z). Let us distinguish the
following two cases.

Case 1: f↓Z(z) 6= 0. In this case, by property (P4) of semifields, f↓Z(z) has a
multiplicative inverse and, then, the equality in eq. (1) trivially follows from the
equality in eq. (2).
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Case 2: f↓Z(z) = 0. In this case, f(x, y, z) = 0 by eq. (2) and, hence, the left-hand
side of eq. (1) is zero by property (P5) of semifields. We now prove that also the
right-hand side of eq. (1) is zero. Consider the factor

f↓X∪Z(x, z) =
∑
y′

f(x, y′, z).

on the right-hand side of eq. (1). Since f↓Z(z) = 0, by eq. (2) each term f(x, y′, z)
of the sum is 0. Therefore, f↓X∪Z(x, z) = 0 and, hence, the right-hand side of eq.
(1) is zero by property (P5) of semifields.

�

However, for metric distribution functions (that is, if the underlying semifield enjoys
property (P6)), we shall prove that decomposability and conditional independence are
equivalent, and that conditional independence also satisfies the weak-union and contrac-
tion axioms. To this end, we need the following technical lemma.

Lemma 3.6. Let f be a metric distribution and let f↓X and f↓Y be marginals of f
with Y ⊆ X. If f↓Y (y) = 0, then f↓X(x) = 0 for every X-tuple x with xY = y.

P r o o f . By property (P6) of metric semifields. �

Note that, by Lemma 3.6, if f↓X(x) 6= 0 then f↓Y (xY ) 6= 0.

Theorem 3.7. Let X and Y be two disjoint nonempty sets of variables, and let Z be
a (possibly empty) set of variables such that Z ∩ (X ∪ Y ) = ∅. A metric distribution
function f on X ∪ Y ∪Z is decomposable by {X ∪Z, Y ∪Z} if and only if X and Y are
independent given Z under f .

P r o o f . (Only if ) By Theorem 3.5. (If ) Assume that X |= Y | Z holds in f . We
need to prove that the equality in eq. (2) holds for every (X ∪ Y ∪ Z)-tuple (x, y, z). If
f↓Z(z) = 0, then f(x, y, z) = 0 by Lemma 3.6 and, if f↓Z(z) 6= 0, then the equality in
eq. (2) trivially follows from the equality in eq. (1). �

Theorem 3.8. Conditional independence in metric distribution functions satisfies the
weak-union axiom.

P r o o f . By Theorem 3.7, it is the same as to prove that decomposability satisfies the
weak-union axiom. Let f be a metric distribution function on W ∪X∪Y ∪Z and assume
that the equality in

f(w, x, y, z) =

{
0 if f↓Z(z) = 0
f↓X∪Z(x,z)×f↓W∪Y∪Z(w,y,z)

f↓Z(z)
else
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holds everywhere. We need to prove that the equality in

f(w, x, y, z) =

{
0 if f↓W∪Z(w, z) = 0
f↓W∪X∪Z(w,x,z)×f↓W∪Y∪Z(w,y,z)

f↓W∪Z(w,z)
else

holds everywhere. If f↓W∪Z(w, z) = 0 then f(w, x, y, z) = 0 by Lemma 3.6. Assume
that f↓W∪Z(w, z) 6= 0. By Lemma 3.6, one also has f↓Z(z) 6= 0 so that by hypothesis

f(w, x, y, z) =
f↓X∪Z(x, z)× f↓W∪Y ∪Z(w, y, z)

f↓Z(z)

which entails
f↓W∪X∪Z(w, x, z)

f↓W∪Z(w, z)
=

f↓X∪Z(x, z)
f↓Z(z)

.

Therefore,
f↓W∪X∪Z(w, x, z)× f↓W∪Y ∪Z(w, y, z)

f↓W∪Z(w, z)

=
f↓X∪Z(x, z)××f↓W∪Y ∪Z(w, y, z)

f↓Z(z)
= f(w, x, y, z)

which proves the statement. �

Theorem 3.9. Conditional independence in metric distribution functions satisfies the
contraction axiom.

P r o o f . By Theorem 3.7, it is the same as to prove that decomposability satisfies the
contraction axiom. Let f be a metric distribution function on W ∪X∪Y ∪Z and assume
that both

f↓X∪Y ∪Z(x, y, z) =

{
0 if f↓Z(z) = 0
f↓X∪Z(x,z)×f↓Y∪Z(y,z)

f↓Z(z)
else

(3)

f(w, x, y, z) =

{
0 if f↓Y ∪Z(y, z) = 0
f↓X∪Y∪Z(x,y,z)×f↓W∪Y∪Z(w,y,z)

f↓Y∪Z(y,z)
else

(4)

hold everywhere. We need to prove that the equality in

f(w, x, y, z) =

{
0 if f↓Z(z) = 0
f↓X∪Z(x,z)×f↓W∪Y∪Z(w,y,z)

f↓Z(z)
else

holds everywhere.
If f↓Z(z) = 0 then f(w, x, y, z) = 0 by Lemma 3.6.
Assume that f↓Z(z) 6= 0. Let us distinguish two cases depending on whether or not
f↓Y ∪Z(y, z) = 0.
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Case 1: f↓Y ∪Z(y, z) = 0. In this case, by Lemma 3.6 one has both f(w, x, y, z) = 0
and f↓W∪Y ∪Z(w, y, z) = 0. Therefore, the equality

f(w, x, y, z) =
f↓X∪Z(x, z)× f↓W∪Y ∪Z(w, y, z)

f↓Z(z)

holds, which proves the statement.

Case 2: f↓Y ∪Z(y, z) 6= 0. Since f↓Z(z) 6= 0 and f↓Y ∪Z(y, z) 6= 0, by eq. (3) one
has

f↓X∪Y ∪Z(x, y, z)
f↓Y ∪Z(y, z)

=
f↓X∪Z(x, z)

f↓Z(z)

so that by eq. (4) one also has

f(w, x, y, z) =
f↓X∪Y ∪Z(x, y, z)× f↓W∪Y ∪Z(w, y, z)

f↓Y ∪Z(y, z)

=
f↓X∪Z(x, z)× f↓W∪Y ∪Z(w, y, z)

f↓Z(z)

which proves the statement.

�

4. THE COMPOSITION OPERATOR

Let f and g be distribution functions on X and Y , respectively, over the same semifield.
We say that f is composable with g, written f ∝ g, if

(a) either X ∩ Y = ∅ and g↓∅ 6= 0, or

(b) X ∩ Y 6= ∅ and, for every X-tuple x, if f(x) 6= 0 then g↓X∩Y (xX∩Y ) 6= 0.

Remark 4.1. Condition (b) requires that X ∩ Y 6= ∅ and πX∩Y (‖f‖) ⊆ ‖g↓X∩Y ‖.

First of all, we state some simple algebraic properties of composability. First of all,
for X = Y one has that f ∝ g if and only if f � g so that composability turns out
to be a reflexive relation (that is, f ∝ f). Moreover, in general it is not symmetric
(that is, f ∝ g does not imply g ∝ f). Finally, it is not transitive (that is, f ∝ g and
g ∝ h do not imply f ∝ h). To see it, consider a distribution function f on X and two
distribution functions g and h both on Y and assume that X ∩ Y = ∅, g↓∅ 6= 0, h↓∅ = 0
and ‖g‖ = ‖h‖. Then, since g↓∅ 6= 0 and h↓∅ = 0, f ∝ g holds but f ∝ h does not hold;
on the other hand, g ∝ h holds since ‖g‖ = ‖h‖.

Let f and g be distribution functions on X and Y , respectively. Consider the distri-
bution function k on V = X ∪ Y defined as follows:

• if X ∩ Y = ∅ then k(v) = f(vX)× g(vY )
g↓∅

;
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• if X ∩ Y 6= ∅ then k(v) =

{
0 if f(vX) = 0
f(vX)× g(vY )

g↓X∩Y (vX∩Y )
else.

Then, it is easy to see that the distribution function k is well-defined if and only if f is
composable with g. To sum up, we write

k =
{

f × g
g↓X∩Y if f ∝ g

undefined else.

Remark 4.2. If k is defined then ‖k‖ = ‖f‖ on ‖g‖ and πX(‖k‖) = ‖f‖.

The following result is obvious.

Fact 4.3. If f is composable with g then the distribution function k = f × g
g↓X∩Y is an

extension of f to X ∪ Y .

Theorem 4.4. Let f and g be distribution functions on X and Y , respectively, over
the same semifield, and assume that neither X − Y nor Y −X is the empty set. If f is
composable with g, then the sets X −Y and Y −X are independent given X ∩Y under
k = f × g

g↓X∩Y .

P r o o f . By eq. (1), we need to prove that

k × k↓X∩Y = k↓X × k↓Y . (5)

By Fact 4.3, one has k↓X = f and, hence, k↓X∩Y = f↓X∩Y . Therefore, the left-hand
side and the right-hand side of (5) can be written as

f × g

g↓X∩Y
× f↓X∩Y f × k↓Y

respectively. Moreover, we can write the marginal of k on Y as follows

k↓Y =
∑

A∈X−Y

k =
g

g↓X∩Y
×

∑
A∈X−Y

f =
g

g↓X∩Y
× f↓X∩Y

so that the left-hand and right-hand sides of (5) are equal. �

The following example shows that the sets X − Y and Y −X are independent given
X ∩ Y under k = f × g

g↓X∩Y , but k is not decomposable by {X, Y }.

Example 4.5. Let A, B and C be binary variables with dom(A) = {a, ā}, dom(B) =
{b, b̄} and dom(C) = {c, c̄}. Consider the unitary distribution function f on AB and the
distribution function g on BC with support ‖g‖ = {(b, c), (b̄, c)}, both over the Galois
field GF(2). First of all, observe that g↓B is the unitary distribution on B; therefore,
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f is composable with g and k = f × g
g↓B = f × g. The support of k is ‖k‖ = ‖f‖ on

‖g‖ = {(a, b, c), (a, b̄, c), (ā, b, c), (ā, b̄, c)}. Now, since f↓A is the null distribution on A,
one has that k↓BC (= f↓A×g) is the null distribution on BC and, hence, k↓B is the null
distribution on B. Therefore, eq. (1) holds everywhere which proves that the conditional
independence A |= C | B holds in k. However, since k↓B(b) = 0 and k(a, b, c) = 1, k is
not decomposable by {AB,BC}.

After Jirousek [7, 11] we use the (binary) composition operator “B” to denote the
distribution function k and write:

f B g =
{

f × g
g↓X∩Y if f ∝ g

undefined else.
(6)

It is worth pointing out that a composition-like operator (see the “fitting operator”
[20]) is tacitly present in the Proportional Fitting (or Scaling) Procedure used in the
statistical analysis of contingency tables [5].

It is easy to see that, in general, the composition operator is neither commutative
nor associative, and is idempotent, that is, f B f = f (for X = Y , f B g is defined if and
only if f � g and, then, f B g = f).

4.1. Composition of metric distribution functions

In this subsection we first give some properties of the composition of metric distribution
functions.

Remark 4.6. Let f be a metric distribution function on X, and let Y be a nonempty
subset of X. For every X-tuple x ∈ ‖f‖, the Y -tuple xY belongs to ‖f↓Y ‖ so that by
Remark 2.2 one has that ‖f↓Y ‖ = πY (‖f‖).

Let f and g be metric distribution functions on X and Y , respectively. By Remarks
4.1 and 4.6, the conditions (a) and (b) that ensure that f is composable with g are
equivalent to the following conditions (a′) and (b′), respectively:

(a′) either X ∩ Y = ∅ and g is not the null distribution function on Y , or

(b′) X ∩ Y 6= ∅ and f↓X∩Y � g↓X∩Y .

Assume that f is composable with g. We shall prove that f B g = f B h where
h denotes the trivial extension of g to V = X ∪ Y , by which we mean the (metric)
distribution function on V defined as follows: if X ⊆ Y then h = g; otherwise, for every
V -tuple v one has

h(v) =
g(vY )

dom(X − Y )
.

Note that, if X is not a subset of Y then

h↓X =
∑

A∈Y−X

g

dom(X − Y )
=

g↓X∩Y

dom(X − Y )
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so that

h

h↓X
=

g

g↓X∩Y
. (7)

and
‖h↓X‖ = ‖g↓X∩Y ‖ on dom(X − Y ). (8)

Lemma 4.7. Let f and g be metric distribution functions on X and Y , respectively,
and let h be the trivial extension of g to V = X ∪ Y . Then, f B h = f B g.

P r o o f . The statement is trivially true if X ⊆ Y for, then, h = g. Assume that
X − Y 6= ∅. Suppose initially that both f B h and f B g are defined. Then, by eq. (7),
one has

f B h = f × h

h↓X
= f × g

g↓X
= f B g.

At this point, we need only to prove that f ∝ h if and only if f ∝ g. If X ∩ Y = ∅
then the statement easily follows from the above-mentioned condition (a′). Assume that
X ∩ Y 6= ∅. By the above-mentioned condition (b′), one has that f ∝ h if and only if
f � h↓X and that f ∝ g if and only if f↓X∩Y � g↓X∩Y . Therefore, we need to prove
that f � h↓X if and only if f↓X∩Y � g↓X∩Y .
(If ) Assume that ‖f↓X∩Y ‖ ⊆ ‖g↓X∩Y ‖. By Remarks 2.1 and 4.6 and by eq. (8) one has

‖f‖ ⊆ πX∩Y (‖f‖) on dom(X − Y )

= ‖f↓X∩Y ‖ on dom(X − Y ) ⊆ ‖g↓X∩Y ‖ on dom(X − Y ) = ‖h↓X‖.

(Only if ) Assume that ‖f‖ ⊆ ‖h↓X‖. By eq. (8) and Remark 4.6 one has

‖f‖ ⊆ ‖g↓X∩Y ‖ on dom(X − Y ) = πX∩Y (‖g‖) on dom(X − Y )

so that
πX∩Y (‖f‖) ⊆ πX∩Y

(
πX∩Y (‖g‖) on dom(X − Y )

)
= πX∩Y (‖g‖)

and again by Remark 4.6
‖f↓X∩Y ‖ ⊆ ‖g↓X∩Y ‖.

�

Finally, the following result states decomposability of the composition of metric dis-
tribution functions.

Theorem 4.8. Let f and g be metric distribution functions on X and Y , respectively,
over the same (metric) semifield. If f is composable with g, then f B g is decomposable
by {X, Y }.

P r o o f . By Theorems 4.4 and 3.7. �
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4.2. Composition of probability distributions

A probability distribution on X is a distribution function f on X over the sum-product
semifield such that f↓∅ = 1. Since the sum-product semifield is metric, every probability
distribution is a metric distribution function. We shall provide an information-theoretic
characterization of the composition of two probability distributions.

Let f and g be probability distributions on X and Y , respectively. By conditions
(a′) and (b′) in Subsection 4.1, f is composable with g if and only if either X ∩ Y = ∅
or f↓X∩Y � g↓X∩Y , which are precisely the requirements used in [11, 12]. Assume that
f ∝ g. By Fact 4.3, f B g is an extension of f to X ∪ Y . We shall prove that f B g is
the extension of f to X ∪ Y that is “closest” to g in an information-theoretic sense. To
this end, we first consider two probability distributions e and h on V such that e � h.
It is well-known the I-divergence [3] of h from e (also called the “cross-entropy” of e
with respect to h or the “Kullback–Leibler divergence” of h from e)

I(e, h) =
∑

v∈‖e‖

e(v) log
e(v)
h(v)

is a nonnegative quantity which vanishes if and only if e = h. Consider now a probability
distribution f on X, and a probability distribution h on a superset V of X such that
f � h↓X . Jiroušek (see Theorem 6.2 in [11]) proved the following information-theoretic
characterization of f B h.

Theorem 4.9. For every extension e of f to V , one has I(e, h) = I(fBh, h)+I(e, fBh).

Since I(e, f B h) ≥ 0, by Theorem 4.9 one has that I(f B h, h) ≤ I(e, h) for every
extension e of f to V ; accordingly, f B h is called the I-projection of h onto the set of
extensions of f to V [11]. Finally, let f be a probability distribution on X, and let g be
a probability distribution on Y such that f ∝ g. Let h be the trivial extension of g to
V = X ∪ Y . By Theorem 4.9, f B h is the I-projection of h onto the set of extensions
of f to V and, by Lemma 4.7, f B h = f B g. Therefore, f B g is the I-projection of the
trivial extension of g to V onto the set of extensions of f to V ; in this sense we can say
that f B g is the extension of f that is “closest” to g.

5. COMPOSITIONAL EXPRESSIONS

A compositional expression is a parenthesized expression formed out by distinct non-
empty sets of variables, and the symbol “B”. Explicitly, the following provides a formal
definition of a compositional expression:

(i) if X is a set of variables, then X is a compositional expression;

(ii) if θ1 and θ2 are compositional expressions and no set in θ2 occurs in θ1, then
(θ1) B (θ2) is a compositional expression.

Given a compositional expression θ, by αθ we denote the sequence of the sets featured
in θ arranged according to the order of appearance; we call αθ the base sequence of θ.
Let αθ = (X1, X2, . . . , Xn), n ≥ 1. We call the set X1 the key of θ; moreover, if n > 1,
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for each i > 1 by ∂αXi we denote the set (∪1≤j≤i−1Xj)∩Xi. We also use the following
notation:

V (θ) = ∪1≤i≤nXi COM(θ) = ∪i 6=jXi ∩Xj UNI(θ) = V (θ)− COM(θ);

thus, COM(θ) is the set of variables that are common to at least two distinct sets in θ.

Henceforth, a compositional expression of either form (X) B (θ) or (θ) B (X) or
(X) B (Y ) will be written simply as X B (θ) or (θ) B X or X B Y , respectively.

A subexpression of a compositional expression θ is defined as usual. Explicitly, a com-
positional expression θ′ is a subexpression of θ if θ′ is a substring of θ. A subexpression
θ′ of θ is atomic if it is of the form θ′ = X. We shall prove (see Theorem 5.4 below)
that the number of subexpressions of a compositional expression formed out by n sets
is equal to 2n− 1.

The syntactic structure of a compositional expression θ can be represented by an (or-
dered full) binary tree T , to be called the syntax tree for θ, whose leaves correspond one-
to-one to the atomic subexpressions of θ, and whose interior nodes correspond one-to-one
to the non-atomic subexpressions of θ; explicitly, an interior node v of T corresponds
to the subexpression θ′ = (θ1) B (θ2) of θ if θ1 is the subexpression of θ corresponding
to the “first” child of v, and θ2 is the subexpression of θ corresponding to the “second”
child of v.

5.1. Compositional model

Let θ be a compositional expression with αθ = (X1, X2, . . . , Xn). A sequence f =
(f1, . . . , fn) in which fi is a distribution function on Xi, 1 ≤ i ≤ n, is called a (functional)
interpretation of θ. Henceforth, we assume that the distribution functions f1, . . . , fn are
all over the same semifield.

Let θ′ be any subexpression of θ and let αθ′ = (Xk, . . . , Xm) be the base sequence of
θ′, for some k and m, 1 ≤ k ≤ m ≤ n. By [θ′]f we denote the result of replacing each
set Xi, k ≤ i ≤ m, with the distribution function fi, and then applying the composition
operator if θ′ is a non-atomic subexpression (that is, if m > k). We say that f is a valid
interpretation of θ if [θ]f is defined. It should be noted that f is a valid interpretation of
θ if and only if, for every subexpression (θ′) B (θ′′) of θ, both [θ′]f and [θ′′]f are defined
and [θ′]f ∝ [θ′′]f . If f is a valid interpretation of θ then, by Fact 4.3, [θ]f is an extension
to V (θ) of the distribution function (f1) on the key (X1) of θ. We call [θ]f the value of
θ under f . From a computational point of view, [θ]f can be obtained with a bottom-
up traversal of the syntax tree T for θ. Initially, each leaf of T is charged with the
corresponding distribution function in f ; then, when an interior node v is examined, if u
and w are the first child and the second child of v respectively, the node v is charged with
the distribution function g B h where g and h are the charges on u and w, respectively.
Finally, the charge on the root of T provides [θ]f .

The model generated by a compositional expression θ, denoted by Mθ, is the set of
the distribution functions [θ]f for all valid interpretations f of θ.

We shall provide a general formula for the value of a compositional expression under
a valid interpretation. To achieve this, we need the following lemma.
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Lemma 5.1. Let θ be a compositional expression, and let θ′ be any subexpression of
θ. Let αθ = (X1, X2, . . . , Xn) and αθ′ = (Xk, . . . , Xm). Given a valid interpretation
f = (f1, . . . , fn) of θ, one has

[θ′]f =
1

qθ′
×

∏
k≤i≤m

fi (9)

where qθ′ is a function of COM(θ′) if COM(θ′) 6= ∅, and is a constant otherwise.

P r o o f . We prove the statement by induction on the number of sets in αθ′ .
BASIS. If k = m then COM(θ′) = ∅ and eq. (9) holds with qθ′ = 1.
INDUCTION. Assume that k < m and let θ′ = (θ1) B (θ2). Let αθ1 = (Xk, . . . , Xl) and
αθ2 = (Xl+1, . . . , Xm) for some l, k ≤ l ≤ m− 1. By the inductive hypothesis, one has

[θ1]f =
1

qθ1

×
∏

k≤i≤l

fi [θ2]f =
1

qθ2

×
∏

l+1≤i≤m

fi

where qθh
is a function of COM(θh) if COM(θh) 6= ∅, and is a constant otherwise,

h = 1, 2. By eq. (6) one has

[θ′]f =
1

qθ1

×
∏

k≤i≤l

fi ×
1

qθ2
×
∏

l+1≤i≤m fi∑
A∈V (θ2)−V (θ1)

(
1

qθ2
×
∏

l+1≤i≤m fi

) ,

which with
qθ′ = qθ1 × qθ2 ×

∑
A∈V (θ2)−V (θ1)

( 1
qθ2

×
∏

l+1≤i≤m

fi

)
(10)

reduces to eq. (9). At this point, we only need to prove that qθ′ is a function of COM(θ′)
if COM(θ′) 6= ∅, and is a constant otherwise. Let us distinguish the following two cases:

Case 1: V (θ1)∩V (θ2) = ∅. In this case,
∑

A∈V (θ2)−V (θ1)

(
1

qθ2
×
∏

l+1≤i≤m fi

)
is a

constant and, since COM(θ′) = COM(θ1)∪COM(θ2), qθ′ is a function of COM(θ′)
if COM(θ1) 6= ∅ or COM(θ2) 6= ∅, and is a constant otherwise.

Case 2: V (θ1) ∩ V (θ2) 6= ∅. In this case,
∑

A∈V (θ2)−V (θ1)

(
1

qθ2
×
∏

l+1≤i≤m fi

)
is a function of V (θ1) ∩ V (θ2) so that, since COM(θ′) = COM(θ1) ∪ COM(θ2) ∪
(V (θ1) ∩ V (θ2)), qθ′ is a function of COM(θ′).

�

Theorem 5.2. Let θ be a compositional expression, and let f = (f1, . . . , fn) be a valid
interpretation of θ. Then one has

[θ]f =
1
qθ
×
∏

1≤i≤n

fi (11)

where qθ is a function of COM(θ) if COM(θ) 6= ∅, and is a constant otherwise.
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P r o o f . For θ′ = θ, eq. (9) reduces to eq. (11). �

The following is an illustrative example.

Example 5.3. Consider the following compositional expression

θ = (ABE B CF ) B (CDG B ADH).

Then we have αθ = (ABE,CF,CDG,ADH), COM(θ) = ACD and UNI(θ) = BEFGH.
Consider now the following two subexpressions of θ:

θ1 = ABE B CF θ2 = CDG B ADH.

Then, one has

h V (θh) COM(θh) UNI(θh)
1 ABCEF ∅ ABCEF
2 ACDGH D ACGH

Let f = (f1, . . . , f4) be an interpretation of θ. Then, f is a valid interpretation of θ if

— [θ1]f = f1 B f2 is defined, that is, if f1 ∝ f2,

— [θ2]f = f3 B f4 is defined, that is, if f3 ∝ f4, and

— [θ1]f B [θ2]f is defined, that is, if (f1 B f2) ∝ (f3 B f4).

If this is the case, then

— [θ1]f = f1×f2

f↓∅2
which reduces to eq. (9) with qθ1 = f↓∅2 , which is a constant according

to COM(θ1) = ∅;

— [θ2]f = f3×f4

f↓D
4

which reduces to eq. (9) with qθ2 = f↓D4 , which is a function of

COM(θ2) = D.

Finally, we have

[θ]f =
f1 × f2

f↓∅2

×
f3×f4

f↓D
4∑

D,G,H

(
f3×f4

f↓D
4

)
=

f1 × f2 × f3 × f4

f↓∅2 × f↓D4 ×
∑

D
f↓CD
3 ×f↓AD

4

f↓D
4

which reduces to eq. (11) with

qθ = f↓∅2 × f↓D4 ×
∑
D

f↓CD
3 × f↓AD

4

f↓D4

which is a function of COM(θ) = ACD.
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5.2. Sequential compositional expressions

We now introduce a type of compositional expression of special interest. Recall from the
Introduction that a compositional expression is simple if it has exactly one subexpression
of the type XBY . If θ is a simple compositional expression and f is a valid interpretation
of θ, then during the process of evaluation of θ under f only one “intermediate table”
is to be maintained at a time. (Note that the compositional expressions involved in
Theorem 1.1 are all simple.) Special simple compositional expressions are compositional
expressions of the form

θ =
((

. . . (X1 B X2) B . . .
)

B Xn−1

)
B Xn (12)

which we call sequential compositional expressions and correspond to Jiroušek’s gener-
ating sequences. Note that a sequential compositional expression is uniquely determined
by its base sequence; accordingly, as in [16] and [17] the base sequence of a sequential
compositional expression may be called its “structure”. A further property of a sequen-
tial compositional expression is that, by Fact 4.3, each intermediate table is always an
extension of the distribution function f1 in f on X1 (which is the key of θ). Finally, it is
easy to see that for the sequential compositional expression (12) the function qθ in eq.
(11) is simply a product of marginal distribution functions; explicitly, for [θ]f one has
the following closed form:

[θ]f = f1 ×
∏

2≤i≤n

fi

f↓∂θXi

i

. (13)

Before closing this section, we observe that the sequential compositional expression
(12) has exactly n atomic subexpressions and n− 1 non-atomic subexpressions, each of
which is of the form

((
. . . (X1 B X2) B . . .

)
B Xi−1

)
B Xi, 2 ≤ i ≤ n. Therefore, the

number of the subexpressions of the sequential compositional expression (12) is 2n− 1.
In other words, the syntax tree for the sequential compositional expression (12) has
2n− 1 nodes (n leaves plus n− 1 interior nodes). Starting from this fact, we can prove
the following more general result.

Theorem 5.4. The number of the subexpressions of a compositional expression formed
out by n sets is 2n− 1.

P r o o f . Let θ be a compositional expression with αθ = (X1, X2, . . . , Xn). It is sufficient
to prove that the syntax tree T for θ has exactly 2n − 1 nodes. To achieve this, we
show that T can be transformed into the syntax tree for the sequential compositional
expression (12) without changing the number of nodes of T . Then, since the syntax tree
for the sequential compositional expression (12) has exactly 2n−1 nodes, we can conclude
that also T has 2n− 1 nodes, which implies that the number of the subexpressions of θ
is 2n− 1.

The transformation of T is carried out by processing the nodes (leaves) vn, vn−1, . . . , v3

of T corresponding to Xn, Xn−1, . . . , X3, respectively. Let a be the root of T .

Step 1. If vn has distance greater than 1 from a, then
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— add one node rn to T which becomes the new root of T ;

— make a the first child of rn;

— let p be the parent of vn; identify p with its first child and make vn the second
child of rn.

Step 2. For i = n− 1, . . . , 3, do:

Let u be the sibling of vi+1. If vi has distance greater than 1 from u, then modify
the subtree T ′ of T rooted at u as follows:

— add one node ri to T ′ which becomes the new root of T ′ (and, hence, the new
sibling of vi+1);

— make u the first child of ri;

— let p be the parent of vi; identify p with its first child and make vi the second
child of ri.

It is easy to see that the resulting binary tree equals the syntax tree for the sequential
compositional expression (12) which has exactly 2n − 1 nodes. Moreover, since each
operation does not change the number of nodes of the current tree, we can conclude
that the syntax tree for θ has exactly 2n− 1 nodes. �

6. EQUIVALENCE OF COMPOSITIONAL EXPRESSIONS

Let θ be a compositional expression with base sequence αθ = (X1, X2, . . . , Xn). The
system (i. e., the set) of sets Hθ = {X1, X2, . . . , Xn} will be referred to as the base
scheme of θ. A set d of functions, one for each set Xi in Hθ, will be referred to as
a database for θ if, for each set Xi ∈ H, the function in d corresponding to Xi is a
distribution function on Xi. Again, we assume that the distribution functions in d are
all over the same semifield. Let f = (f1, f2, . . . , fn) be the ordering of the distribution
functions in d according to αθ, that is, fi is a distribution function on Xi, 1 ≤ i ≤ n;
thus, f is an interpretation of θ, and we say that d is a valid database for θ if f is a valid
interpretation of θ. Let Eθ be the operator that maps every valid database d for θ to
the distribution function [θ]f , where f is the (valid) interpretation of θ provided by d,
that is, Eθ(d) = [θ]f . We call Eθ the evaluation operator of θ. Accordingly, the model
Mθ generated by θ is the range of Eθ.

Two compositional expressions θ1 and θ2 with the same base scheme are said to be
equivalent if they have the same evaluation operator, that is, if Eθ1(d) = Eθ2(d) for
every database d that is valid for both θ1 and θ2.

Example 6.1. Let d = {f, g, h} where f , g and h are distribution functions on AB,
BCD and BCE, respectively. Consider the following three compositional expressions:

θ1 = AB B (BCD B BCE) θ2 = (AB B BCD) B BCE θ3 = (AB B BCE) B BCD.
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Then, (f, g, h) is the interpretation provided by d for both θ1 and θ2, and (f, h, g) is the
interpretation of θ3 provided by d. Assume that d is a valid database for all of them.
Then, one has

Eθ1(d) = f ×
g×h
h↓BC∑

C,D,E
g×h
h↓BC

= f ×
g×h
h↓BC∑
C,D g

=
f × g × h

g↓B × h↓BC
.

Moreover, by eq. (17), one has

Eθ2(d) =
f × g × h

g↓B × h↓BC
Eθ3(d) =

f × g × h

g↓BC × h↓B

Therefore, θ1 is equivalent to θ2 but is not equivalent to θ3.

Note that Kratochv́ıl (see Remark 4.1 in [17]) calls “equivalent” two (sequential)
compositional expressions θ1 and θ2 if Mθ1 = Mθ2 . The following simple example shows
that our notion of equivalence is stronger than Kratochv́ıl’s equivalence.

Example 6.2. Let d = {f, g} where f and g are distribution functions on X and Y ,
respectively. Consider the following two compositional expressions θ1 = X B Y and
θ2 = Y B X. Assume that d is a valid database for both θ1 and θ2. Then, one has

Eθ1(d) =
f × g

g↓X∩Y
Eθ2(d) =

f × g

f↓X∩Y
.

Since Eθ1(d) = Eθ2(d) only for those databases d for which f↓X∩Y = g↓X∩Y , we
can conclude that θ1 and θ2 are not equivalent. We now prove that Mθ1 = Mθ2 . To
achieve this, it is sufficient to prove that there exists a valid database d′ for θ2 such that
Eθ1(d) = Eθ2(d

′). Let d′ = {f, g′} where g′ is the distribution function on Y defined as
follows:

g′(y) =

{
0 if g↓X∩Y (yX∩Y ) = 0
g(y)× f↓X∩Y (yX∩Y )

g↓X∩Y (yX∩Y )
else.

(14)

By the very definition of g′ one has that if g′(y) 6= 0 then f↓X∩Y (yX∩Y ) 6= 0 which
proves that g′ ∝ f so that d′ is a valid database for θ2. At this point, it is easy to see
that Eθ2(d

′) = g′ B f = f×g
g↓X∩Y = Eθ1(d).

In the light of Example 6.2, a necessary condition for two compositional expressions
to be equivalent is that their keys are the same.

Recall from the Introduction that a set system H is star-like with centre X if X ∈ H
and, if |H| ≥ 3, then Y ∩ Z ⊆ X for every two distinct sets Y and Z in H. If H is a
star-like set system with centre X then, by Theorem 1.1, every two simple compositional
expressions with base scheme H and key X are equivalent. We shall prove a stronger
result (see Theorem 6.5 below) which states that star-like set systems with centre X
are precisely the set systems H for which every two compositional expressions with base
scheme H and key X are equivalent. To this end, we need the following lemma.
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Lemma 6.3. Let H be a star-like set system with centre X, let θ be a compositional
expression with base scheme H and key X, let αθ = (X1 = X, X2, . . . , Xn) and let
f = (f1, . . . , fn) be a valid interpretation of θ. Then one has

[θ]f = f1 ×
∏

2≤i≤n

fi

f↓X1∩Xi

i

. (15)

P r o o f . First of all, let us consider the subexpression θ0 = X1 B (θ1) of θ. Thus
αθ0 = (X1 = X, X2, . . . , Xk) and αθ1 = (X2, . . . , Xk) for some k, 2 ≤ k ≤ n. By
Theorem 5.1, one has

[θ1]f =
1

qθ1

×
∏

2≤i≤k

fi

where qθ1 is either a function of COM(θ1) or a constant, so that

[θ0]f = f1 ×
∏

2≤i≤k fi

qθ1 ×
∑

A∈V (θ1)−X1

(
1

qθ1
×
∏

2≤i≤k fi

) .

By hypothesis, H is star-like with centre X1, so that

(i) COM(θ1) ⊆ X1;

(ii) each variable in V (θ1)−X1 occurs in exactly one Xi for some i, 2 ≤ i ≤ k.

Since qθ1 is either a function of COM(θ1) or a constant, by (i) we can move 1
qθ1

to the
left of the summation

∑
A∈V (θ1)−X1

:

[θ0]f = f1 ×
∏

2≤i≤k fi

qθ1 × 1
qθ1

∑
A∈V (θ1)−X1

∏
2≤i≤k fi

= f1 ×
∏

2≤i≤k fi∑
A∈V (θ1)−X1

∏
2≤i≤k fi

.

By (ii), one has ∑
A∈V (θ1)−X1

∏
2≤i≤k

fi =
∏

2≤i≤k

f↓X1∩Xi

i

so that
[θ0]f = f1 ×

∏
2≤i≤k

fi

f↓X1∩Xi

i

.

If k = n then we are done. Otherwise, consider any subexpression θ′ of θ containing θ0

and let αθ′ = (X1, . . . , Xm), k < m ≤ n. By structural induction, it is easy to prove
that

[θ′]f = f1 ×
∏

2≤i≤m

fi

f↓X1∩Xi

i

and for θ′ = θ we obtain eq. (15). �
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By Lemma 6.3 we have the following property of star-like set systems, which is a first
generalization of Theorem 1.1.

Corollary 6.4. Let H be a star-like set system with centre X. Every two compositional
expressions with base scheme H and key X are equivalent.

P r o o f . Let H = {X1 = X, X2, . . . , Xn} and let θ1 and θ2 be two compositional
expressions with base scheme H and key X. Let αθ1 = (Xh1 = X, Xh2 , . . . , Xhn) and
αθ2 = (Xk1 = X, Xk2 , . . . , Xkn) be the base sequences of θ1 and θ2, respectively. Let
d = {f1, f2, . . . , fn} be a database in which fi is a distribution function on Xi, 1 ≤ i ≤ n.
Assume that d is a valid database for both θ1 and θ2. By Lemma 6.3, one has

Eθ1(d) = f1 ×
∏

2≤j≤n

fhj

f
↓X∩Xhj

hj

Eθ2(d) = f1 ×
∏

2≤l≤n

fkl

f
↓X∩Xkl

kl

.

For each i > 1, let j(i) and l(i) be such that Xi = Xhj(i) = Xkl(i) . Then, for each
i > 1 one has fhj(i) = fkl(i) = fi and X ∩ Xhj(i) = X ∩ Xkl(i) = X ∩ Xi so that

f
↓X∩Xhj(i)

hj(i)
= f

↓X∩Xkl(i)

kl(i)
= f↓X∩Xi

i . Therefore, Eθ1(d) = Eθ2(d) and, hence, θ1 and θ2

are equivalent. �

We are now in a position to characterize the set systems H for which every two
compositional expressions with base scheme H and key X are equivalent.

Theorem 6.5. Let H be a set system, and let X ∈ H. Every two compositional
expressions with base scheme H and key X are equivalent if and only if H is star-like
with centre X.

P r o o f . (If ) By Corollary 6.4.
(Only if ) Suppose, by contradiction, thatH is not star-like with centre X. Then, |H| ≥ 3
and there exist two distinct sets Y and Z in H − {X} such that Y ∩ Z is not a subset
of X. Let H = {X1, X2, X3, . . . , Xn}, where X1 = X, X2 = Y and X3 = Z. We now
prove that there exist two compositional expressions with base scheme H and key X1

that are not equivalent so that a contradiction arises.
Without loss of generality, we assume that n > 3. (The case n = 3 can be proved

using similar arguments.) Consider the following two sequential expressions with base
scheme H:

θ1 = (. . . (((X1 B X2) B X3) B X4) . . .) B Xn

θ2 = (. . . (((X1 B X3) B X2) B X4) . . .) B Xn.

We now prove that there exists a valid database d̄ for both θ1 and θ2 for which Eθ1(d̄) 6=
Eθ2(d̄), which entails that θ1 and θ2 are not equivalent.

Let fi denote any distribution function on Xi, 1 ≤ i ≤ n; thus, f1, f2 and f3 are
distribution functions on X1 = X, X2 = Y and X3 = Z, respectively. Consider the
set D of valid databases d = {f1, f2, f3, . . . , fn} for both θ1 and θ2, in which f3 is the
unitary distribution function on Z. By eq. (13), for every d ∈ D one has
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Eθ1(d) = f1 ×
f2

f↓X1∩X2
2

× f3

f
↓(X1∪X2)∩X3
3

×
∏

4≤i≤n

fi

f
↓∂θ1Xi

i

Eθ2(d) = f1 ×
f2

f↓X1∩X3
2

× f3

f
↓(X1∪X3)∩X2
3

×
∏

4≤i≤n

fi

f
↓∂θ2Xi

i

.

With
g = f1 × f2 × f3 ×

∏
4≤i≤n

fi

f
↓∂θ1Xi

i

one has
Eθ1(d) =

g

f↓X∩Y
2 × f

↓(X∪Y )∩Z
3

and, since ∂θ1Xi = ∂θ2Xi for each i, 4 ≤ i ≤ n, one also has

Eθ2(d) =
g

f
↓(X∪Z)∩Y
2 × f↓X∩Z

3

.

Moreover, since the distribution function f3 is unitary, one has

f↓X∩Z
3 = |dom(Z −X)| f

↓(X∪Y )∩Z
3 = |dom(Z − (X ∪ Y ))|

so that

Eθ1(d) =
g

f↓X∩Y
2 × |dom(Z − (X ∪ Y ))|

Eθ2(d) =
g

f
↓(X∪Z)∩Y
2 × |dom(Z −X)|

.

Therefore, for every d ∈ D one has Eθ1(d) = Eθ2(d) if and only if f2 is a solution of the
following equation:

f↓X∩Y
2 × |dom(Z − (X ∪ Y ))| = f

↓(X∪Z)∩Y
2 × |dom(Z −X)|. (16)

Since, by hypothesis, Y ∩ Z is not a subset of X, one has

X ∩ Y 6= (X ∪ Z) ∩ Y Z − (X ∪ Y ) 6= Z −X

so that eq. (16) is not an identity. Let

d̄ = {f1, f̄2, f3, f4, . . . , fn}

be any database in D in which f̄2 is not a solution of eq. (16). Then, Eθ1(d̄) 6= Eθ2(d̄),
which proves that θ1 and θ2 are not equivalent (contradiction). �

7. CANONICAL EXPRESSIONS

A compositional expression θ with base sequence αθ = (X1, . . . , Xn) is a canonical
expression if αθ is a perfect sequence [18], that is, if the following property holds:

(running intersection property) if n > 1 then, for each i > 1 there exists j < i such
that (∪1≤h≤i−1Xh) ∩Xi ⊆ Xj .
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Thus, using the notation introduced in Section 5, θ is a canonical expression if, for each
i > 1, there exists j < i such that ∂θXi ⊆ Xj .

Given a canonical expression θ with base sequence αθ = (X1, . . . , Xn), if f = (f1, . . . , fn)
is a valid interpretation of θ, then [θ]f has the following closed-form expression

[θ]f = f1 ×
∏

2≤i≤n

fi

f↓∂θXi

i

. (17)

The proof of eq. (17) was given in [22] and, for the sake of completeness, is reported
in the Appendix. Note that eq. (17) is the same as eq. (13) and does mean that [θ]f
depends on θ only through the base sequence αθ of θ, more precisely, through the sets
X1, ∂θX2, . . . , ∂θXn.

We shall state a necessary and sufficient condition for the equivalence of two canonical
expressions with the same base scheme and the same key. Next, we shall characterize
those set systems H for which every two canonical expressions with base scheme H and
with the same key, say X, are equivalent. We call such set systems “X-centric”, and
prove that the class of X-centric set systems strictly includes the class of star-like set
systems with centre X. First of all, we recall some useful notions related to canonical
expressions.

7.1. Acyclic hypergraphs

A hypergraph is a system (that is, a set) of distinct nonempty sets. If H is a hypergraph,
by V (H) we denote the union of the sets in H. A hypergraph H is acyclic if there exists
an ordering of the sets in H which is a perfect sequence (see Section 7). Such orderings
of an acyclic hypergraph H are called perfect orderings of H.
Of course, the base scheme of a canonical expression is always an acyclic hypergraph,
but a compositional expression whose base scheme is an acyclic hypergraph need not
be a canonical expression. Moreover, if H is a star-like set system with centre X, then
every ordering (X1, X2, . . . , Xn) of H with X1 = X (or with X2 = X) is perfect, which
proves that H is an acyclic hypergraph.

Acyclic hypergraphs are also called decomposable hypergraphs [18] and hypertrees [28],
and an efficient algorithm to test acyclicity of hypergraphs can be found in [29]. There
exist several characterizations of acyclic hypergraphs exist [1, 18]. We now recall one of
them, which serves our purpose.

A junction tree [18] (or join tree [1] or clique tree [2, 6] or Markov tree [28]) of a
hypergraph H is an undirected tree J with node set H in which, for every two distinct
nodes X and Y

(junction property) for every edge (E,F ) is that is along the X-Y path (that is,
along the unique path joining X and Y in J), one has X ∩ Y ⊆ E ∩ F .

Theorem 7.1. (Beeri et al. [1], Lauritzen [18]) A hypergraph is acyclic if and only if
it has a junction tree.

An efficient algorithm for constructing a junction tree of an acyclic hypergraph can be
found in [29]. We now recall a useful property of junction trees.
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Let H be any hypergraph. Let X and Y be two distinct sets in H. An X-Y chain
in H is a sequence (E1, . . . , En) of distinct sets in H such that E1 = X, En = Y and
Ei ∩Ei+1 6= ∅, for each i < n. Two sets X and Y in H are connected if either X = Y or
there exists an X-Y chain in H. A subset S of V (H) such that X−S 6= ∅ and Y −S 6= ∅,
is an X-Y separator of H if either X and Y in H are not connected or, for every X-Y
chain (E1, . . . , En), there exists i for which Ei ∩ Ei+1 ⊆ S.

Consider now an acyclic hypergraph H, and let J be a junction tree of H. A path
p in J corresponds to a chain in H if and only if there is no edge (E,F ) along p for
which E ∩ F = ∅. In other words, two distinct sets X and Y in H are connected if and
only if there is a junction tree J of H in which, for every edge (E,F ) along the X-Y
path, one has E ∩ F 6= ∅. The following is a well-known (e. g., see [2]) characterization
of separators of an acyclic hypergraph.

Lemma 7.2. Let H be an acyclic hypergraph, let X and Y , X 6= Y , be two distinct
sets in H, and let J be a junction tree of H. A subset S of V (H) is an X-Y separator
of H if and only if X − S 6= ∅, Y − S 6= ∅ and there is an edge (E,F ) along the X-Y
path in J such that E ∩ F ⊆ S.

Let H be an acyclic hypergraph, let J be a junction tree of H, and let X be any node
of J . An X-rooted junction tree of H is the directed tree T obtained by rooting J at
the node X and orienting the edges of J away from the root X. Thus, an edge (E,F )
is ordiented from E to F , written E → F , if in J the distance of E from X is less than
the distance of F from X. To avoid ambiguity, we call the oriented edge E → F an arc
of T ; moreover, we say that E is the parent of F in T , written E = paT (F ). Let Y and
Z be two distinct nodes of T ; by LCA(Y, Z) we denote the lowest common ancestor of
Y and Z in T . Again, T enjoys the junction property which now reads: For every two
distinct nodes Y and Z of T ,

— if Y = LCA(Y, Z) (or Z = LCA(Y, Z)) then, for every arc E → F of T that
is along the directed path from Y to Z (from Z to Y , respectively), one has
Y ∩ Z ⊆ E ∩ F ;

— if LCA(Y, Z) /∈ {Y, Z} then, for every arc E → F of T that is along the directed
path from LCA(Y, Z) to Y or along the directed path from LCA(Y, Z) to Z, one
has Y ∩ Z ⊆ E ∩ F .

There exists a many-to-many correspondence between X-rooted junction trees of an
acyclic hypergraph H and perfect orderings of H beginning with X.

Given an X-rooted junction tree T of H, top-down (i. e., root-to-leaf) traversals of
T generate perfect orderings of H. If α is such a perfect ordering of H then, for every
non-root node Y of T , one has ∂αY = Y ∩paT (Y ), and we call α a perfect ordering of H
associated with T . On the other hand, given a perfect ordering α = (X1 = X, . . . , Xn)
of H, an X-rooted junction tree of H can be obtained as follows. For each i > 1, take
paT (Xi) to be one of the nodes Xj , j < i, for which ∂αXi ⊆ Xj . We call a tree such as
T an X-rooted junction tree of H associated with α.

Corollary 7.3. Let H be an acyclic hypergraph, and let X and Y , X 6= Y , be two sets
in H. Let T1 and T2 be two X-rooted junction trees of H, and let Sh = Y ∩ paTh

(Y ),
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h = 1, 2. There is an arc E → F along the directed path from X to Y in T1 such that
E ∩ F ⊆ S1 ∩ S2.

P r o o f . Let ph be the directed path from X to Y in Th, h = 1, 2. The statement is
obvious if X and Y are not connected in H for, then, there is an arc E → F along p1

such that E ∩F = ∅. Assume that X and Y are connected in H. Let us distinguish the
following three cases.

Case 1: X ⊆ S2. In this case, X ⊂ Y and, by the junction property of T1, each node
along p1 is a set that contains X; therefore, X is a subset of paT1(Y ) and, hence, of
Y ∩ paT1(Y ) = Sh. So, X ⊆ S1 ∩ S2. Let E = X and let F be the child of X on p1;
then, the arc E → F is such that E ∩ F = X ⊆ S1 ∩ S2.

Case 2: S2 = Y . In this case, since S1 ⊆ Y , one has S1 ∩ S2 = S1. Let E = paT1(Y )
and F = Y ; then, the arc E → F is such that E ∩ F = S1 = S1 ∩ S2.

Case 3: X − S2 6= ∅ and Y − S2 6= ∅. Since the arc paT2(Y ) → Y of T2 is along p2

and S2 = Y ∩ paT2(Y ), by Lemma 7.2 applied to T2 the set S2 is an X-Y separator of
H. Therefore, by Lemma 7.2 applied to T1, there is an arc E → F along p1 such that
E ∩ F ⊆ S2. On the other hand, since S2 ⊂ Y , one has that E ∩ F ⊂ Y and, hence
E ∩ F ⊆ E ∩ Y . By the junction property of T1, E ∩ Y ⊆ paT1(Y ) ∩ Y = S1 so that
E ∩F ⊆ E ∩ Y ⊆ S1. To sum up, the arc E → F of T1 is such that E ∩F ⊆ S1 ∩S2. �

Example 7.4. Consider the acyclic hypergraph H = {AF,ABC,ABE,ACD}, and let
X = AF and Y = ABC. Let T1 be the X-rooted junction tree ofH in which the directed
path from X to Y is p1 = (AF,ABE,ABC), and let T2 be the X-rooted junction tree of
H in which the directed path from X to Y is p2 = (AF,ACD, ABC). Then paT1(Y ) =
ABE and paT2(Y ) = ACD, so that S1 = Y ∩ paT1(Y ) = AB, S2 = Y ∩ paT2(Y ) = AC
and S1 ∩S2 = A. The arc AF → ABE along p1 is such that AF ∩ABE ⊆ S1 ∩S2, and
the arc AF → ACD along p2 is such that AF ∩ACD ⊆ S1 ∩ S2.

7.2. An equivalence criterion

The proof of the following result is similar to the proof of Theorem 6.5.

Theorem 7.5. Let H be an acyclic hypergraph, and let X ∈ H. Two canonical expres-
sions θ1 and θ2 with base scheme H and key X are equivalent if and only if, for every
Y ∈ H − {X}, one has ∂θ1Y = ∂θ2Y .

P r o o f . (If ) By eq. (17), θ1 and θ2 are equivalent.
(Only if ) By hypothesis, θ1 and θ2 are equivalent. Suppose, by contradiction, that there
exists Y ∈ H − {X} such that ∂θ1Y 6= ∂θ2Y . We now prove that there exists a valid
database d̄ for both θ1 and θ2 such that Eθ1(d̄) 6= Eθ2(d̄) so that a contradiction arises.
Let H = {X1 = X, X2 = Y, X3, . . . , Xn}, n ≥ 3. Consider the set D of valid databases
d = {f1, f2, f3, . . . , fn} for both θ1 and θ2 in which, for each i 6= 2, fi is a unitary
distribution function on Xi. For each i > 2, since fi is a unitary distribution function,
one has

f
↓∂θh

Xi

i = |dom(Xi − ∂θh
Xi)| (h = 1, 2).



Equivalence of compositional expressions and independence relations 349

Therefore, by eq. (17), for every d ∈ D one has

Eθh
(d) =

1
mh

× f2

f
↓∂θh

Y

2

(h = 1, 2)

where
mh =

∏
3≤i≤n

|dom(Xi − ∂θh
Xi)| (h = 1, 2).

So, for every d ∈ D, Eθ1(d) = Eθ2(d) if and only if f2 is a solution of the following
equation:

m1 × f
↓∂θ1Y
2 = m2 × f

↓∂θ2Y
2

which is not an identity since ∂θ1Y 6= ∂θ2Y . Let d̄ = {f1, f̄2, f3, . . . , fn} be a database
in D in which f̄2 is not a solution of the equation above. Then, Eθ1(d̄) 6= Eθ2(d̄) and,
hence, a contradiction arises. �

Theorem 7.5 can be re-phrased in graphical terms using tree representations of perfect
sequences mentioned in Subsection 7.1.

Corollary 7.6. Let H be an acyclic hypergraph, and let X ∈ H. Let θ1 and θ2 be two
canonical expressions with base schemeH and key X, and let Th be an X-rooted junction
tree of H associated with the base sequence of θh, h = 1, 2. The expressions θ1 and θ2

are equivalent if and only if, for every Y ∈ H−{X}, one has Y ∩paT1(Y ) = Y ∩paT2(Y ).

P r o o f . By Theorem 7.5, θ1 and θ2 are equivalent if and only if, for every Y ∈ H−{X},
one has ∂θ1Y = ∂θ2Y . The statement then follows from the hypothesis that Th is an
X-rooted junction tree of H associated with the base sequence of θh, which implies that
∂θh

Y = Y ∩ paTh
(Y ), h = 1, 2. �

7.3. X-centric set systems

LetH be an acyclic hypergraph and let X ∈ H. We say thatH is an X-centric set system
if, for every two X-rooted junction trees T1 and T2 of H, one has that Y ∩ paT1(Y ) =
Y ∩ paT2(Y ) for every Y ∈ H− {X}. Note that, if H is star-like with centre X, then H
is an X-centric set system.

Example 7.7. The acyclic hypergraph H = {AB,BCD,BCE} has two AB-rooted
junction trees T1 and T2: the arcs of T1 are AB → BCD and BCD → BCE, and
the arcs of T2 are AB → BCE and BCE → BCD. Since BCD ∩ paT1(BCD) 6=
BCD ∩ paT2(BCD), H is not an AB-centric set system.

Theorem 7.8. Let H be an acyclic hypergraph and let X ∈ H. Every two canonical
expressions with base scheme H and key X are equivalent if and only if H is an X-centric
set system.
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P r o o f . (If ) Assume that H is an X-centric set system. Let θ1 and θ2 be any two
canonical expressions with base schemeH and key X, and let Th be an X-rooted junction
tree of H associated with the base sequence of θh, h = 1, 2. Since H is an X-centric
hypergraph, for each Y ∈ H − {X} one has that Y ∩ paT1(Y ) = Y ∩ paT2(Y ). By
Corollary 7.6, θ1 and θ2 are equivalent.
(Only if ) Assume that every two canonical expressions with base scheme H and key X
are equivalent and suppose, by contradiction, that H is not an X-centric set system.
Then, there exist two X-rooted junction trees T1 and T2 of H and a set Y ∈ H − {X}
such that Y ∩ paT1(Y ) 6= Y ∩ paT2(Y ). Let αh be a perfect ordering of H associated
with Th, and let θh be a canonical expression with base scheme H and base sequence
αh, h = 1, 2. By Corollary 7.6, θ1 and θ2 are not equivalent (contradiction). �

The next theorem provides an efficient algorithm to recognize X-centric set system.

Theorem 7.9. Let H be an acyclic hypergraph, let X ∈ H and let T be an X-rooted
junction tree of H. H is an X-centric set system if and only if T enjoys the following
property

(π) For every interior node Y 6= X of T , there is no child Z of Y such that Y ∩paT (Y ) ⊂
Y ∩ Z (that is, Y ∩ paT (Y ) is a proper subset of Y ∩ Z).

P r o o f . (Only if ) Assume that H is an X-centric set system and suppose, by contra-
diction, that there exist an interior node Y 6= X of T and a child Z of Y such that
Y ∩ paT (Y ) is a proper subset of Y ∩ Z. Let P = paT (Y ). Since Y ∩ P ⊂ Y ∩ Z ⊆ Z,
one has Y ∩ P ⊆ Z ∩ P . On the other hand, by the junction property of T , one has
that Z ∩ P ⊆ Y and, hence, Z ∩ P ⊆ Y ∩ P . It follows that Y ∩ P = Z ∩ P . At
this point, we can construct an X-rooted tree T ′ of H from T by replacing the arcs
P → Y and Y → Z by P → Z and Z → Y . It is easy to see that T ′ is an X-rooted
junction tree of H. Then, since Y ∩ P ⊂ Y ∩ Z by hypothesis, one has Y ∩ P 6= Y ∩ Z,
that is, Y ∩ paT (Y ) 6= Y ∩ paT ′(Y ) which proves that H is not an X-centric set system
(contradiction).
(If ) Assume that T enjoys property (π) and suppose, by contradiction, that there exists
another X-rooted junction tree T ′ ofH containing a node Y 6= X such that Y ∩paT (Y ) 6=
Y ∩ paT ′(Y ). Let P = paT (Y ) and P ′ = paT ′(Y ), and let S = Y ∩ P and S′ = Y ∩ P ′.
So, S 6= S′. Let us distinguish two cases depending on whether S ⊂ S′ or S − S′ 6= ∅.

Case 1: S ⊂ S′. In T the node P ′ must be a descendant of Y for, otherwise, in the
junction tree J underlying T P should be on the Y -P ′ path and, by the junction property
of J , Y ∩ P ′ should be a subset of P and, hence, one would have S′ ⊆ S and, since
S 6= S′, S′ ⊂ S (contradiction). Let Z be the child of Y that lies on the directed path
in T from Y to P ′. By the junction property of T , one has that Y ∩ P ′ ⊆ Y ∩ Z and,
since S ⊂ S′, one has that S ⊂ S′ = Y ∩ P ′ ⊂ Y ∩ Z and, hence, the node Y violates
condition (π) (contradiction).

Case 2: S − S′ 6= ∅. First of all, observe that in this case S ∩ S′ is a proper subset of
S. Let p be the directed path in T from X to Y . By Corollary 7.3, there exists an arc
E → F along p such that E ∩ F ⊆ S ∩ S′. Let E∗ → F ∗ be the deepest (that is, the
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nearest to Y ) of such arcs, and let L = E∗ ∩ F ∗; so, L ⊆ S ∩ S′ and, since S ∩ S′ ⊂ S,
one has L ⊂ S so that E∗ → F ∗ 6= P → Y . Of course, L is a subset of F and, since
S ⊆ Y , L is also a subset of Y so that L ⊆ F ∗ ∩ Y . Let Z be the child of F ∗ along p.
By the junction property of T , F ∗ ∩ Y ⊆ F ∗ ∩Z and, hence, L ⊆ F ∗ ∩Z. The equality
cannot hold for, otherwise, F ∗ ∩Z = L ⊆ S ∩ S′ and E∗ → F ∗ wouldn’t be the deepest
of the arcs E → F along p for which E ∩F ⊆ S ∩S′. So, L ⊂ F ∗ ∩Z which proves that
the node F ∗ violates condition (π) (contradiction). �

8. DETECTION OF CONDITIONAL INDEPENDENCES

Let θ be a compositional expression. A conditional independence X |= Y | Z holds in
the model Mθ generated by θ if it holds in the distribution function [θ]f , for every valid
interpretation f of θ. Which conditional independences hold in Mθ?

Let X be the key of θ, and let (θ1, . . . , θk) be the sequence of distinct subexpressions
of θ such that each θi contains X and for each i, 1 ≤ i ≤ k − 1, θi is a subexpression of
θi+1. Thus, θ1 = X and θk = θ. Let f be a valid interpretation of θ. By Fact 4.3, for each
i < k, [θi]f is the marginal of [θi+1]f on V (θi) and, since [θk]f = [θ]f , [θi]f is the marginal
of [θ]f on V (θi). Moreover, by Theorem 4.4, for each i < k, if V (θi)− V (θi+1) 6= ∅ and
V (θi+1)− V (θi) 6= ∅ then the conditional independence

V (θi)− V (θi+1) |= V (θi+1)− V (θi) | V (θi) ∩ V (θi+1) (18)

holds in [θi+1]f and, hence, in the marginal of [θ]f on V (θi+1). So, each conditional
independence (18) holds in [θ]f and, hence, in Mθ.

Consider now the case that θ is a sequential compositional expression with base
sequence αθ = (X1, . . . , Xn), n > 1. Then, θi = (. . . (X1 BX2)B . . .)BXi for each i > 1,
each conditional independence (18) reduces to

V (θi)− ∂θXi+1 |= Xi+1 − ∂θXi+1 | ∂θXi+1. (19)

Moreover, by the decomposition axiom, one has that, for each A ∈ V (θi)− ∂θXi+1 and
each B ∈ Xi+1 − ∂θXi+1, the conditional independence

A |= B | ∂θXi+1

holds in Mθ.
Finally, consider the case that θ is a canonical expression with base sequence αθ =

(X1, . . . , Xn), n > 1; thus, αθ is a perfect sequence. Let θ′ be the sequential compo-
sitional expression with αθ′ = αθ, and let f be a valid interpretation of both θ and
θ′. Since αθ′ = αθ, by Theorem 10.5 one has [θ]f = [θ′]f , so that all the conditional
independences (19) hold in Mθ. As an application, we can answer the following question
[10]: given two variables A and B in V (θ), which are the minimal (with respect to set-
inclusion) sets S (if any) such that the conditional independence A |= B |S holds in Mθ?
The solution algorithm is as follows. Given a junction tree J of Hθ, find the shortest
path (E1, . . . , Ek) in T such that A ∈ E1 and B ∈ Ek. If k = 1 (that is, if both A and
B belong to E1) then there exists no subset S of V (θ)− AB for which A |= B |S holds
in Mθ. Otherwise (that is, if k > 1), the minimal sets in {Eh ∩ Eh+1 : 1 ≤ h ≤ k − 1}
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are precisely the minimal sets S for which the conditional independence A |= B |S holds
in Mθ.

Before closing this section, we mention that, for a generating sequence of probability
distributions, an effective method for detecting conditional independences was given by
Jiroušek [9, 10] based on a tabular representation called persegram. Structural prop-
erties of persegrams are stated by Kratochv́ıl [16], who in [17] provides a method to
decide, given two generating sequences of probability distributions, whether or not the
conditional independences in the two compositional models are the same.

9. CLOSING NOTE

We have presented an extension of compositional model theory in two ways. First, we
consider general distribution functions, whose class includes not only probability distri-
butions but more in general multivariate functions whose values can be added, multiplied
and divided. Second, we consider models generated by compositional expressions, whose
class includes both simple and sequential compositional expressions. In order to assess
the power of our compositional-expression formalism, we need to answer the following
questions. How many are the sequential compositional expressions with a given base
scheme? and the simple compositional expressions? and the compositional expressions?
We now answer these questions for compositional expressions having in common a base
scheme H with n sets.

It is easy to see that the number of sequential compositional expressions with base
scheme H is n!

Consider now simple compositional expressions with base scheme H. First of all,
observe that, for a fixed ordered couple (X, Y ) of distinct sets in H, for each i, 1 ≤ i ≤
n − 1, there exist exactly (n − 2)! simple compositional expressions θ that contain the
subexpression (XBY ) and in which X is the ith term of αθ. Therefore, since the number
of ordered couples such as (X, Y ) is n · (n−1), the total number of simple compositional
expressions with base scheme H is

n · (n− 1) ·
(
(n− 1) · (n− 2)!

)
= (n− 1) · n!

Finally, consider general compositional expressions with base scheme H. We can
determine the number en of such compositional expressions by means of a recurrence
relation of the type en+1 = f(en) with e2 = 2. In order to obtain such a recurrence
relation, consider compositional expressions with base scheme H ∪ {X} for X /∈ H.
Each of them can be obtained from a compositional expression θ with base scheme
H by replacing any subexpression θ′ of θ by either (θ′) B X or X B (θ′). Since the
number of subexpressions of θ is 2n−1 by Theorem 5.4, we generate 2 · (2n−1) distinct
compositional expressions with base schemeH∪{X} from each compositional expression
with base scheme H; moreover, the compositional expressions with base scheme H∪{X}
generated from two distinct compositional expressions with base scheme H are distinct
too. Therefore, we can write down the following recurrence relation:

en+1 = 2 · (2n− 1) · en

so that
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en+1 = 2 · (2n− 1) · en = 22 · (2n− 1) · (2n− 3) · en−1

= 23 · (2n− 1) · (2n− 3) · (2n− 5) · en−2 = . . .

= 2k+1 · (2n− 1) · (2n− 3) · . . . · (2n− 2k − 1) · en−k.

For n− k = 2, we know that e2 = 2 so that for k = n− 2 we obtain

en+1 = 2n−1 · (2n− 1) · (2n− 3) · . . . · 3 · 2

= 2n · (2n− 1) · (2n− 3) · . . . · 3 = 2n · (2n− 1)!! = (n + 1)! · Cn

where Cn = 2n · (2n−1)!!
(n+1)! is the nth Catalan number. So, for each n > 1, one has

en = n! · Cn−1 =
2 · (2n− 3)!

(n− 2)!
.

The following table reports the number sn of sequential compositional expressions,
the number s∗n of simple compositional expressions, and the number en of compositional
expressions, for n = 2, 3, 4, 5.

n sn s∗n en

2 2 2 2
3 6 12 12
4 24 72 120
5 120 480 1680

Before closing this section, we want to mention a number of open problems left to
future research:

— the problem of testing the equivalence of any two compositional expressions with
the same base scheme and the same key;

— the recognition of “multiplicative models”, by which we mean compositional mod-
els for which there exists a closed-form formula (e. g., models generated by sequen-
tial compositional expressions or by canonical expressions);

— efficient procedures for marginalization in compositional models;

— a general form of composition expression in which a set can appear more than
once.

10. APPENDIX

In order to prove eq. (17), we first provide a formula for [θ′]f (see eq. (21) below) for any
subexpression θ′ of θ. To achieve this, we need some useful notations and two technical
lemmas. Let αθ′ = (Xk, Xk+1, . . . , Xm) be the base sequence of θ′, for some k and m,
1 ≤ k ≤ m ≤ n. It is convenient to partition the base schemeHθ′ = {Xk, Xk+1, . . . , Xm}
of θ′ into two subsystems Rθ′ and Sθ′ which are defined as follows:
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Rθ′ = {Xi ∈ Hθ′ : ∃Xj ∈ Hθ′ , j < i, Xj ∩Xi = ∂θXi}

Sθ′ = Hθ′ −Rθ′ .
(20)

Note that one always has Sθ′ 6= ∅ since Xk ∈ Sθ′ . By V (Sθ′) we denote the union of the
sets in Sθ′ , by COM(Sθ′) the set of variables that are common to at least two distinct
sets in Sθ′ , and by UNI(Sθ′) the complement of COM(Sθ′) in V (Sθ′).

Example 10.1. Consider the canonical expression

θ = ABCD B (((ABE B BCF ) B FL) B ((CDG B ADH) B (CI B BCM))).

Then
αθ = (ABCD,ABE,BCF,FL,CDG, ADH, CI, BCM)

and

ABE ∂θABE = AB
BCF ∂θBCF = BC
FL ∂θFL = F

CDG ∂θCDG = CD
ADH ∂θADH = AD
CI ∂θCI = C

BCM ∂θBCM = BC

For the following three subexpressions of θ:

θ1 = (ABE B BCF ) B FL

θ2 = (CDG B ADH) B (CI B BCM)

θ3 = (θ1) B (θ2)

we have
Hθ1 = {ABE,BCF,FL}

Hθ2 = {CDG, ADH, CI,BCM}

Hθ3 = {ABE,BCF,FL,CDG, ADH, CI, BCM}

and

h Rθh
Sθh

COM(Sθh
)

1 {FL} {ABE,BCF} B
2 {CI} {CDG, ADH, BCM} CD
3 {FL,CI, BCM} {ABE,BCF,CDG, ADH} ABCD

The next lemma states useful properties of Rθ′ and Sθ′ for any subexpression θ′ of a
canonical expression.
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Lemma 10.2. Let θ be a canonical expression, and let αθ = (X1, . . . , Xn). Let θ′ be a
subexpression of θ, let αθ′ = (Xk, . . . , Xm), and let (Rθ′ ,Sθ′) be the bipartition of Hθ′

defined by eq. (20).

(a) For each Xi ∈ Rθ′ , one has that (Xi − ∂θXi) ∩ V (Sθ′) = ∅.

(b) For each Xi ∈ Sθ′ − {X1}, Xi − ∂θXi ⊆ UNI(Sθ′).

P r o o f . (a) Let Xi be any set in Rθ′ . Suppose, by contradiction, that there exists a
variable A in Xi−∂θXi that also belongs to some Xj ∈ Sθ′ . Since ∂θXi = (∪1≤l<iXl)∩
Xi, one has that j > i so that A ∈ Xi ∩Xj ⊆ ∂θXj . Moreover, since Xj ∈ Sθ′ and αθ

enjoys the running intersection property, there exists h < k for which ∂θXj = Xh ∩Xj

so that A ∈ Xh; but, since h < k ≤ i one has A ∈ Xh ∩ Xi and, hence, A ∈ ∂θXi

(contradiction).
(b) Let Xi be any set in Sθ′−{X1}. Suppose, by contradiction, that there exists a variable
A in Xi−∂θXi that also belongs to some Xj ∈ Sθ′ , j 6= i. Since ∂θXi = (∪1≤l<iXl)∩Xi,
one has that j > i so that A ∈ ∂θXj . Since Xj ∈ Sθ′ and αθ enjoys the running
intersection property, there exists h < k for which ∂θXj = Xh ∩ Xj . To sum up,
one has A ∈ ∂θXj = Xh ∩ Xj so that A ∈ Xh. Finally, since h < k ≤ i, one has
A ∈ Xh ∩Xi ⊆ ∂θXi so that A ∈ ∂θXi (contradiction). �

The following lemma provides a formula for [θ′]f .

Lemma 10.3. Let θ be a canonical expression, and let αθ = (X1, . . . , Xn). Let θ′ be a
subexpression of θ, and let αθ′ = (Xk, . . . , Xm) for some k and m, 1 ≤ k ≤ m ≤ n. Let
(Rθ′ ,Sθ′) be the bipartition of Hθ′ defined by eq. (20), and let Iθ′ = {i : Xi ∈ Rθ′} and
Jθ′ = {i : Xi ∈ Sθ′}. If f = (f1, . . . , fn) is a valid interpretation of θ, then

[θ′]f =

∏
k≤i≤m fi

pθ′ ×
∏

i∈Iθ′
f↓∂θXi

i

(21)

where pθ′ is a function of COM(Sθ′) if COM(Sθ′) 6= ∅, and is a constant otherwise.

P r o o f . We now prove the statement by induction on the cardinality of Hθ′ .
BASIS. If k = m, then [θ′]f = fk. On the other hand, Hθ′ = {Xk} so that Rθ′ = ∅,
Sθ′ = {Xk} and COM(Sθ′) = ∅. Therefore, eq. (21) holds with pθ′ = 1.
INDUCTION. Assume that m > k and let θ′ = (θ1) B (θ2). Let αθ1 = (Xk, . . . , Xl) and
αθ2 = (Xl+1, . . . , Xm). Consider the bipartitions of Hθ1 and Hθ2 defined by eq. (20):

Rθ1 = {Xi ∈ Hθ1 : ∃ j, k ≤ j < i, Xj ∩Xi = ∂θXi} Sθ1 = Hθ1 −Rθ1

Rθ2 = {Xi ∈ Hθ2 : ∃ j, l + 1 ≤ j < i, Xj ∩Xi = ∂θXi} Sθ2 = Hθ2 −Rθ2 .

Let
Iθh

= {i : Xi ∈ Rθh
} Jθh

= {i : Xi ∈ Sθh
} (h = 1, 2).

Thus, Iθ1 ∪ Jθ1 = {k, . . . , l} and Iθ2 ∪ Jθ2 = {l + 1, . . . ,m}.
By the inductive hypothesis, one has
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[θh]f =

∏
i∈Iθh

∪Jθh
fi

pθh
×
∏

i∈Iθh
f↓∂θXi

i

(h = 1, 2)

where pθh
is a function of COM(Sθh

) if COM(Sθh
) 6= ∅, and is a constant otherwise,

h = 1, 2. Then, one has

[θ′]f = [θ1]f ×
[θ2]f∑

A∈V (θ2)−V (θ1)
[θ2]f

.

Explicitly, one has

[θ′]f =

∏
k≤i≤m fi

pθ1 × pθ2 × σ ×
∏

i∈Iθ1∪Iθ2
f↓∂θXi

i

(22)

where

σ =
∑

A∈V (θ2)−V (θ1)

[θ2]f =
∑

A∈V (θ2)−V (θ1)

∏
l+1≤i≤m fi

pθ2 ×
∏

i∈Iθ2
f↓∂θXi

i

. (23)

Let J ′ be the subset of Jθ2 defined as follows:

J ′ = {j ∈ Jθ2 : ∃Xi ∈ Hθ1 Xi ∩Xj = ∂θXj}.

Then one has
Iθ′ = Iθ1 ∪ Iθ2 ∪ J ′ Jθ′ = Jθ1 ∪ Jθ2 − J ′.

We shall prove that there exists a function g such that

(i) σ = g ×
∏

j∈J′ f
↓∂θXj

j ;

(ii) pθ1 × pθ2 × g is a function of COM(Sθ′) if COM(Sθ′) 6= ∅, and is a constant
otherwise.

Then, by (i) and (ii), eq. (22) can be re-written as

[θ′]f =

∏
k≤i≤m fi

pθ1 × pθ2 × g ×
∏

i∈Iθ1∪Iθ2∪J′ f
↓∂θXi

i

which proves the statement with pθ′ = pθ1 × pθ2 × g.
At this point, what remains to prove is the existence of a function g having properties

(i) and (ii).

Proof of (i). First of all, observe that, for each set Xi ∈ Hθ2 (that is, for each i ∈
Iθ2 ∪ Jθ2), since Xi ∩ V (θ1) ⊆ ∂θXi one has that (Xi − ∂θXi) ∩ V (θ1) = ∅ so that
Xi − ∂θXi ⊆ V (θ2)− V (θ1). Let

U = ∪i∈Iθ2
(Xi − ∂θXi) W = ∪i∈Jθ2

(Xi − ∂θXi) V ′ = V (θ2)− (U ∪W ).

Therefore, one has U ∩ V (θ1) = W ∩ V (θ1) = ∅ and

V (θ2)− V (θ1) = U ∪W ∪ (V ′ − V (θ1)).
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Consider now the summation
∑

A∈V (θ2)−V (θ1)
in eq. (23). We first sum out the variables

in U , then the variables in W , and finally the variables in V ′ − V (θ1). In other words,
we break the summation

∑
A∈V (θ2)−V (θ1)

into∑
A∈V ′−V (θ1)

∑
A∈W

∑
A∈U

.

Let us begin to sum out the variables in U . Let Iθ2 = {i1, . . . , is−1, is} where i1 < . . . <

is−1 < is; thus,

U = (Xi1 − ∂θXi1) ∪ . . . ∪ (Xis−1 − ∂θXis−1) ∪ (Xis
− ∂θXis

).

Then we sum out the variables in U in the following order: first the variables in Xis −
∂θXis

, next the variables in Xis−1 − ∂θXis−1 , . . . , last the variables in Xi1 − ∂θXi1 :

∑
A∈Xi1−∂θXi1

. . .
∑

A∈Xis−∂θXis

(∏
1≤r≤s fir

)
×
(∏

i∈Jθ2
fi

)
pθ2 ×

∏
1≤r≤s f

↓∂θXir
ir

.

By part (a) of Lemma 10.2 for each r, 1 ≤ r ≤ s, one has (Xir − ∂θXir )∩V (Sθ2) = ∅ so
that, since Sθ2 = {Xi : i ∈ Jθ2} and pθ2 is a function of COM(Sθ2) or a constant, we can

move
Q

i∈Jθ2
fi

pθ2
to the left of the leftmost summation

∑
A∈Xi1−∂θXi1

. Thus, we obtain:∏
i∈Jθ2

fi

pθ2

×
∑

A∈Xi1−∂θXi1

. . .
∑

A∈Xis−∂θXis

∏
1≤r≤s fir∏

1≤r≤s f
↓∂θXir
ir

.

Let

σ′ =
∑

A∈Xi1−∂θXi1

. . .
∑

A∈Xis−∂θXis

∏
1≤r≤s fir∏

1≤r≤s f
↓∂θXir
ir

.

We now prove that σ′ = 1. First of all, we re-write σ′ as

σ′ =
∑

A∈Xi1−∂θXi1

. . .
∑

A∈Xis−∂θXis

∏
1≤r≤s−1 fir∏

1≤r≤s f
↓∂θXir
ir

× fis
.

Note that, since Xir
∩Xis

⊆ ∂θXis
for each r < s, one has that

Xir ∩ (Xis − ∂θXis) = ∅

so that we can move
Q

1≤r≤s−1 firQ
1≤r≤s f

↓∂θXir
ir

to the left of the summation
∑

A∈Xis−∂θXis
. Thus,

we have

σ′ =
∑

A∈Xi1−∂θXi1

. . .
∑

A∈Xis−1−∂θXis−1

( ∏
1≤r≤s−1 fir∏

1≤r≤s f
↓∂θXir
ir

×
∑

A∈Xis−∂θXis

fis

)
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=
∑

A∈Xi1−∂θXi1

. . .
∑

A∈Xis−1−∂θXis−1

( ∏
1≤r≤s−1 fir∏

1≤r≤s f
↓∂θXir
ir

× f
↓∂θXis
is

)

=
∑

A∈Xi1−∂θXi1

. . .
∑

A∈Xis−1−∂θXis−1

∏
1≤r≤s−1 fir∏

1≤r≤s−1 f
↓∂θXir
ir

.

By repeating the same argument for r = s− 1, . . . , 1, we obtain σ′ = 1. So,

σ =
∑

A∈V ′−V (θ1)

∑
A∈W

∏
i∈Jθ2

fi

pθ2

.

We now sum out the variables in W . By part (b) of Lemma 10.2, for each i ∈ Jθ2 , each
variable in Xi − ∂θXi is unique in Sθ2 . Therefore, one has

(Xi − ∂θXi) ∩ COM(Sθ2) = ∅

so that we can move 1
pθ2

to the left of
∑

A∈W ; moreover, owing to the uniqueness of the
variables in W , we have ∑

A∈W

∏
i∈Jθ2

fi =
∏

i∈Jθ2

f↓∂θXi

i .

To sum up, we have

∑
A∈W

∏
i∈Jθ2

fi

pθ2

=
1

pθ2

∑
A∈W

∏
i∈Jθ2

fi =

∏
i∈Jθ2

f↓∂θXi

i

pθ2

and hence

σ =
∑

A∈V ′−V (θ1)

∏
i∈Jθ2

f↓∂θXi

i

pθ2

. (24)

Note that, since (Xi−∂θXi)∩COM(Sθ2) = ∅ for each i ∈ Jθ2 , one has COM(Sθ2) ⊆ V ′.
Consider now the factors f

↓∂θXj

j for j ∈ J ′ ⊆ Jθ2 . By the very definition of J ′ one has

that ∂θXj ⊆ V (θ1) for each j ∈ J ′, so that in eq. (24) we can move the factor f
↓∂θXj

j

to the left of the summation
∑

A∈V ′−V (θ1)
:

σ =
∏
j∈J′

f
↓∂θXj

j ×
∑

A∈V ′−V (θ1)

∏
i∈Jθ2−J′ f

↓∂θXi

i

pθ2

which with

g =
∑

A∈V ′−V (θ1)

∏
i∈Jθ2−J′ f

↓∂θXi

i

pθ2

reduces to the form stated in (i).
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Proof of (ii). Recall that pθh
is a function of COM(Sθh

) if COM(Sθh
) 6= ∅, and is a

constant otherwise, h = 1, 2. Moreover, g is a function of the set V ′ ∩ V (θ1) which is
equal to the union of COM(Sθ2) ∩ V (θ1) with UNI(Sθ2) ∩ V (θ1). Finally, since

COM(Sθ′) = COM(Sθ1) ∪ COM(Sθ2) ∪ (UNI(Sθ2) ∩ V (θ1)),

pθ1 × pθ2 × g is a function of COM(Sθ′) if COM(Sθ′) 6= ∅, and is a constant otherwise.
�

The following is an illustrative example of eq. (21).

Example 10.4. Consider again the canonical expression θ of Example 10.1. Let f =
(f1, f2, . . . , f8) be a valid interpretation of θ, and let fi be the distribution function on
Xi, 1 ≤ i ≤ 8, where

X1 = ABCD X2 = ABE X3 = BCF X4 = FL

X5 = CDG X6 = ADH X7 = CI X8 = BCM

We now show that eq. (21) holds for the three subexpressions θ1 = (ABEBBCF )BFL,
θ2 = (CDG B ADH) B (CI B BCM) and θ3 = (θ1) B (θ2) of θ mentioned in Example
10.1.

• Recall that Sθ1 = {ABE,BCF} and COM(Sθ1) = B; moreover, Rθ1 = {X4 =
FL} so that Iθ1 = {4}. For [θ1]f one has

[θ1]f =
(
f2 ×

f3

f↓B3

)
× f4

f↓F4

=
f2 × f3 × f4

f↓B3 × f↓F4

which reduces to eq. (21) with

− pθ1 = f↓B3 , which is a function of COM(Sθ1);

−
∏

i∈Iθ1
f↓∂θXi

i = f↓F4 which is the marginal of f4 on ∂θX4 = F .

• Recall that Sθ2 = {CDG, ADH, BCM} and COM(Sθ2) = CD; moreover, Rθ2 =
{X7 = CI} so that Iθ2 = {7}. For [θ2]f one has

[θ2]f =
f5 × f6

f↓D6

×
f7×f8

f↓C
8∑

B,I,M
f7×f8

f↓C
8

=
f5 × f6 × f7 × f8

f↓D6 × f↓C7 × f↓C8

which reduces to eq. (21) with

− pθ2 = f↓D6 × f↓C8 , which is a function of COM(Sθ2);

−
∏

i∈Iθ2
f↓∂θXi

i = f↓C7 .
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• Recall that Sθ3 = {ABE,BCF,CDG, ADH} and COM(Sθ3) = ABCD; moreover,
Rθ3 = {X4 = FL,X7 = CI, X8 = BCM} so that Iθ3 = {4, 7, 8}. For [θ3]f one has

[θ3]f =
f2 × f3 × f4

f↓B3 × f↓F4

×
f5×f6×f7×f8

f↓D
6 ×f↓C

7 ×f↓C
8∑

D,G,I,H,M
f5×f6×f7×f8

f↓D
6 ×f↓C

7 ×f↓C
8

=
f2 × f3 × f4 × f5 × f6 × f7 × f8

f↓B3 × f↓F4 × f↓D6 × f↓C7 × f↓BC
8 ×

∑
D

f↓CD
5 ×f↓AD

6

f↓D
6

which reduces to eq. (21) with

− pθ3 = f↓B3 × f↓D6 ×
∑

D
f↓CD
5 ×f↓AD

6

f↓D
6

, which is a function of COM(Sθ3);

−
∏

i∈Iθ3
f↓∂θXi

i = f↓F4 × f↓C7 × f↓BC
8 .

At this point, we are in a position to prove eq. (17).

Theorem 10.5. Let θ be a canonical expression and let αθ = (X1, . . . , Xn) be its base
sequence. If f = (f1, . . . , fn) is a valid interpretation of θ, then

[θ]f = f1 ×
∏

2≤i≤n

fi

f↓∂θXi

i

.

P r o o f . Since θ is a subexpression of itself, we can apply Lemma 10.3 with θ′ = θ.
Since Rθ = {X2, . . . , Xn} and Sθ = {X1}, one has Iθ = {2, . . . , n}, Jθ = {1} and
COM(Sθ) = ∅, so that eq. (21) reduces to

[θ]f =

∏
1≤i≤n fi

pθ ×
∏

2≤i≤n f↓∂θXi

i

where pθ is a constant. What remains to prove is that pθ = 1. Since [θ]f is an extension
of f1, one has ∑

A∈V (θ)−X1

[θ]f = f1.

On the other hand, it is easy to see that

∑
A∈V (θ)−X1

[θ]f =
∑

A∈X2−∂θX2

. . .
∑

A∈Xn−∂θXn

∏
1≤i≤n fi

pθ ×
∏

2≤i≤n f↓∂θXi

i

=
∑

A∈X2−∂θX2

. . .
∑

A∈Xn−1−∂θXn−1

∏
1≤i≤n−1 fi

pθ ×
∏

2≤i≤n−1 f↓∂θXi

i

= . . . =
f1

pθ

which implies that pθ = 1. �
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