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KYBERNETIKA — VOLUME 50 (2014), NUMBER 3, PAGES 322-362

EQUIVALENCE OF COMPOSITIONAL EXPRESSIONS
AND INDEPENDENCE RELATIONS IN COMPOSITIONAL
MODELS

FRANCESCO M. MALVESTUTO

We generalize Jirousek’s (right) composition operator in such a way that it can be applied to
distribution functions with values in a “semifield”, and introduce (parenthesized) compositional
ezpressions, which in some sense generalize Jirousek’s “generating sequences” of compositional
models. We say that two compositional expressions are equivalent if their evaluations always
produce the same results whenever they are defined. Our first result is that a set system
‘H is star-like with centre X if and only if every two compositional expressions with “base
scheme” H and “key” X are equivalent. This result is stronger than Jirousek’s result which
states that, if H is star-like with centre X, then every two generating sequences with base
scheme H and key X are equivalent. Then, we focus on canonical expressions, by which we
mean compositional expressions 6 such that the sequence of the sets featured in 6 and arranged
in order of appearance enjoys the “running intersection property”. Since every compositional
expression, whose base scheme is a star-like set system with centre X and whose key is X, is a
canonical expression, we investigate the equivalence between two canonical expressions with the
same base scheme and the same key. We state a graphical characterization of those set systems
‘H such that every two canonical expressions with base scheme H and key X are equivalent,
and also provide a graphical algorithm for their recognition. Finally, we discuss the problem of
detecting conditional independences that hold in a compositional model.

Keywords: compositional expression, compositional model, running intersection property,
perfect sequence

Classification: 05C65, 056C85, 1699, 65C50, 60E99, 68T37

1. INTRODUCTION

Data pooling is a common practice in statistics [24] and consists in putting together
“data from multiple data sources relating the same or different populations in order to
obtain more precise estimates of common measurements of statistical information” [30].
In this spirit, probability distributions can be pooled to obtain a higher-dimensional
probability distribution and, to achieve this, in a series of papers [7, 8, [IT] Jirousek
introduced a binary operator “t>", called (right) composition. Moreover, he proved that
compositional models represent an alternative formalism to graphical models which are
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used to model Bayesian networks, and turn out to be useful also in the framework of
belief functions [12} [14] [[5], possibility functions [14] and Shenoy valuations [13].
In the framework of probability distributions, Jirousek [T1] proved that

there are many ‘special situations’ under which the order of application of
the composition operator can be changed without influencing the resulting
composed distribution.

These special situations are reported in Table 8 in [II] and some of them require the
consistency of the system of the input probability distributions. In the spirit of data
pooling and of “knowledge integration” [31], throughout we do not assume consistency
so that the following result [I1] is relevant to the object of this paper.

Theorem 1.1. Let f1, fo and f3 be probability distributions on X7, X5 and X3, re-
spectively. If Xo N X3 C X7, then

i (fad f3) = fi> (fs> f2) = (1> f2) > f3 = (f1 > f3) > fa.

In this paper, we first show how to apply the composition operator to arbitrary addi-
tive multivariate functions (of discrete variables) which take their values in a “semifield”
(see Section |2| for basic definitions). We call them distribution functions and emphasize
that their class includes not only probability distributions, but more in general multi-
variate functions whose values can be added, multiplied and divided, such as “relations”
in databases [I] and “measures” in data warehouses [19, 23, 26, 27]. Then, we introduce
the notion of a compositional expression, by which we mean a parenthesized expres-
sion formed out by distinct sets of variables, and the symbol t>. Structural elements
of a compositional expression are its base scheme, its base sequence and its key. For
example, the compositional expression (AB > CD) > (BC > AD) has the set system
{AB,AD, BC,CD} as its base scheme, the set sequence (AB,CD, BC, AD) as its base
sequence and the set AB as its key. Next, we define the notion of equivalence between
compositional expressions having the same base scheme and the same key. (Note that
our notion of equivalence is stronger than that studied in [16] [17].) Thus, Theorem
can be re-stated as follows: If X5 N X3 C X, then the four compositional expressions

X1|>(X2|>X3) X11>(X3DX2) (X11>X2)>X3 (X1DX3)[>X2

are pairwise equivalent. It should be noted that the four compositional expressions above
are simple in that they contain exactly one subexpression of the form (X >Y).

After Jirousek we call a set system H star-like with centre X if X €e Hand YNZ C X
for every two distinct sets Y and Z in ‘H. Accordingly, in its generalized form Theorem

[T reads:

Given a star-like set system H with centre X, every two simple compositional
expressions with base scheme H and key X are equivalent.

We shall prove the following stronger result (see Theorem [6.5):

A set system H is star-like with centre X if and only if every two composi-
tional expressions with base scheme H and key X are equivalent.
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Next we focus on canonical expressions, a canonical expression being a compositional
expression whose base sequence enjoys the running intersection property [II 18]. Of
course, if H is a star-like set system with centre X, then every two canonical expressions
with base scheme H and key X are equivalent. We then investigate the class of those
set systems H for which every two canonical expressions with base scheme H and key X
are equivalent. We call such set systems X-centric, and provide a graphical recognition
algorithm. As a result, the class of X-centric set systems strictly includes the class of
star-like set systems with centre X.

Finally, we discuss problem of detecting conditional independences in the model gen-
erated by a compositional expression. For generating sequences of probability distribu-
tions this problem was discussed in [9} 10} 16} [17].

The paper is organized as follows. In Section [2| we give a precise definition of what
we mean by a distribution function. In Section [3| we introduce the notion of conditional
independence in a distribution function and state some properties. In Section [] we
introduce our composition operator which generalizes Jirousek’s composition operator to
distribution functions. Section[B]is devoted to compositional expressions and we provide
a general formula for the model generated by a compositional expression. In Section
[6] we introduce the notion of equivalence between compositional expressions, and prove
that star-like set systems with centre X are precisely those set systems H for which every
two compositional expressions with base scheme H and key X are equivalent. In Section
[7] we introduce canonical expressions, and we provide a closed formula for the model
generated by a canonical expression, which is used to characterize those set systems H
such that every two canonical expressions with base scheme H and key X are equivalent.
Section |8 aims at finding out conditional independences holding in the model generated
by a compositional expression. Finally, Section [J] contains a note on the power of the
formalism of compositional expressions, as well as some directions for future research,
and the Appendix contains the proof of the closed formula for canonical expressions.

2. PRELIMINARIES

2.1. Commutative semirings

A commutative semiring is a triple (R, +, x) where R is a set, and 4+ and x stand for
operations such that

(P1) (R,+,0) is a commutative monoid, that is, the operation + is associative and
commutative, and there is an additive identity, denoted by 0, such that a +0 =«
for all a € R;

(P2) (R, x,1) is a commutative monoid, that is, the operation x is associative and
commutative, and there is a multiplicative identity, denoted by 1, such that ax1 =
a for all a € R;

(P3) the distributive law holds, that is, a X (b+ ¢) = (a x b) + (a x ¢) for all triples
(a,b,c) from R.

Commutative semirings having the following two properties serve our purposes:
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(P4) (R, x,1) is a group, that is, for all @ € R — {0} there is an element of R, denoted
by a~ ', such that a x a7 = 1;

(P5) axb=0if and only if a =0 or b = 0.

Such a commutative semiring will be referred to as a semifield since it is actually a
field if every element of R admits an additive inverse. The following is a short list of
semi-fields.

R “(+,0)” “(x,1)” short name
(—00, +00) (+,0) , real field
[0, 00) (+,0) ) sum-product semifield
(0, <] (min, co) , min-product semifield
[0, 0) (max, 0) ) max-product semifield

min-sum semifield

max-sum semifield

Galois field GF(2)
Boolean algebra

(=00, 400] | (min,+00)

[00,+00) | (max, —o0)
{0,1} (+mod2,0)
{0,1} (v,0)

NN N N N N N N
> X + 4+ X X X X[|X
== O O = = ==

N

Finally, observe that the sum-product, min-product, max-product, min-sum and max-
sum semifields as well as Boolean algebra enjoy the property that the additive identity
(“0”) is the only element of R that has an additive inverse (which is equal to “0”), that
is,

(P6) if a+b=0then a=0=0.

Such semifields will be referred to as metric semifields. The simplest example of a
non-metric semifield, to which we will refer, is the Galois field GF(2).

2.2. Distribution functions

Throughout we only consider discrete variables which take their values in finite sets
and whose values are mutually exclusive and collectively exhaustive. We use the initial
capital-case letters of the alphabet (e.g., 4, B,C) to denote variables, and the other
capital-case letters to denote sets of variables (e.g., X,Y, Z); moreover, sets of variables
are written as lists of variables; thus, ABC stands for {4, B,C}. Let X be a set of
variables. An X-tuple is an assignment of values to the variables in X; by dom(X) we
denote the set of all X-tuples. We use the lower-case letter x to denote an X-tuple. Let
Y be a nonempty proper subset of X; given an X-tuple x, by xy we denote the Y-tuple
obtained from x by ignoring the values of the variables in X — Y. It is convenient to
introduce the following two operators of relational algebra [IJ.

Let r be a subset of dom(X) and let Y be a nonempty subset of X. The projection
of r onto Y, denoted by my (r), is the set of Y-tuples y for which there exists an X-tuple
z in r such that zy = y:

wy(r) ={zy :x €r}.

Let X and Y be two sets of variables, let 7 C dom(X) and s C dom(Y). The (natural)

join of r and s, denoted by r x s, is the subset of dom(X UY') defined as follows:

rxs={ze€dom(XUY):zx €rand zy € s}.
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Note that if X N Y = () then r x s is a commutative form of the Cartesian product of r
and s.

Remark 2.1. Let r C dom(X) and let Z be a nonempty proper subset of X. Then
r Cmz(r) x dom(X — Z).

Finally, it is easily seen that the join is an associative and commutative operator.

Let (R,+, x) be a semifield, and let X be a finite set of discrete variables. A dis-
tribution function on X is an R-valued function f on dom(X), whose values can be
added and multiplied according to the two operations of (R,+, x). If (R,+,X) is a
metric semifield, then we call f a metric distribution function on X. Examples of metric
distribution functions are distribution functions over the sum-product field (e.g., prob-
ability distributions) and over the min-product, max-product, min-sum and max-sum
semifields and the Boolean algebra. Note that a distribution function over the Galois
field GF(2) is not a metric distribution function.

A distribution function f on X is uniform if, for some a € R, f(z) = a everywhere
(that is, for every X-tuple x); if a = 1 (respectively, a = 0), f is called a unitary
(respectively, null) distribution function.

The support of a distribution function f on X, denoted by || f||, is the (possibly empty)
set of X-tuples x with f(x) # 0. Note that || f|| uniquely determines f if (R, +, x) is the
Boolean algebra or the Galois field GF(2). Let f and g be two distribution functions on
X; we say that f is dominated by g, written f < g, if || f]| € |lg]|-

Let Y be a nonempty proper subset of X; the marginal of f on Y, written f!¥ using
the Shenoy—Shafer notation [28], is the distribution function on Y defined as follows

My = > @)
zedom(X):xy =y

where the summation symbol Y refers to the operation of addition (+) of the commu-
tative semiring (R, +, X). Let X — Y = {A;,..., Ax}. We can write an X-tuple z with
zy =y as (a1,...,ar,y) where aj, € dom(Ay), 1 < h <k. Then, one has

M) = > flar,... ary).
ay€dom(Ay),...,apEdom(Ay)
Accordingly, in what follows, we also make use of the following sum-expression for f1:

Y= f

AeX-Y

Finally, by f? we denote the “norm” (or “grand-total”) of f, thatis, f\ = >  f(x).
zedom(X)

Remark 2.2. For every Y-tuple y for which f1¥ (y) # 0, there always is an X-tuple
such that xy =y and f(x) # 0. In other words, if y € ||f}¥|| then there exists z € || f]|
such that y = xy so that y € my (|| f]|). To sum up, ||f*Y|| € 7y (|| f])-
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Example 2.3. Let A and B be binary variables, and let f be the unitary distribution
function on AB over the Galois field GF(2). Then || f|| = dom(AB), ma(||f|) = dom(A)
and || £+ = 0.

Let f be a distribution function on X. By an extension of f to a superset V' of X
we mean any distribution function e on V' whose marginal on X coincides with f, that
is, € .

3. INDEPENDENCE RELATIONS

The probability-theoretic notion of conditional independence can be generalized in the
framework of functions over a commutative semiring [21] and, hence, of our distribution
functions. We first recall the definition and properties of probability-theoretic con-
ditional independence, and then state properties of conditional independence in the
framework of distribution functions.

3.1. Probability-theoretic conditional independence

Let X and Y be two disjoint nonempty sets of variables, and let Z be a (possibly empty)
set of variables such that ZN(XUY) = . Let f be a probability distribution on XUYUZ.
The sets X and Y are independent given Z under f if for every (XUY UZ)-tuple (z,y, 2)

flw,y,2) x f12(z) = fFX9% (2, 2) x 1YYy, 2). (1)

Let f be a probability distribution on a superset of XUY UZ. Using Dawid’s notation
[], we say that the conditional independence X Il 'Y | Z holds in f if X and Y are
independent given Z under f1XYYYZ Tt is well-known that conditional independences
satisfy the following properties, called semigraphoid azioms [18| [25].

(symmetry axiom)
if X 1l Y|Zholdsin f, then Y Il X | Z also holds in f;

(decomposition axiom)
if X Il WUY | Z holds under f , then X 1l Y | Z also holds in f;

(weak-union axiom)

if X Il WUY | Z holds in f, then X 1 Y | WU Z also holds in f;

(contraction axiom)

X 1Y |Zand X Il W |YUZholdin f, then X 1l WUY | Z also holds in
f.

Finally, observe that eq. can be re-written as

0 if f1Z(2)=0
f(@,y,2) = ¢ pX9Z (0 )% flYVZ(y )

17 (2) else.
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3.2. Algebraic conditional independence

Consider now a distribution function f on a given semifield, and eqq. and . Note
that the factor ﬂ+@ in eq. does mean the multiplicative inverse of f1#(z), that

is, ﬂ%(z) = (le(z))fl. The following example shows that eq. and eq. are not
equivalent.

Example 3.1. Let A, B and C be binary variables with dom(A) = {a,a}, dom(B) =
{b,b} and dom(C) = {c, ¢}, and let f be the unitary distribution function on ABC over
the Galois field GF(2). Note that the marginal of f on every proper subset of ABC' is
a null distribution function. Therefore, eq. holds everywhere (we always have the
equality 1 x 0 =0 x 0), but, eq. does not hold since f'“(c) =0 and f(a,b,c) = 1.

From Example we learn that the notions underlying eq. and eq. are to be
distinguished, which we are going to do. Let X and Y be two disjoint nonempty sets of
variables, and let Z be a (possibly empty) set of variables such that Z N (X UY) = 0.
Let f be a distribution function on X UY U Z. We say that

— the sets X and Y are (algebraically) independent [21] given Z under f if the
equality in eq. holds everywhere;

— [ is decomposable by the set pair {X U Z,Y U Z} if the equality in eq. holds
everywhere.

Let f be a probability distribution on a superset of X UY U Z. Again, we say that
the conditional independence X 1Y | Z holds in f if X and Y are independent given
Z under fiXVYVZz,

First of all, we prove that both conditional independence and decomposability satisfy
the symmetry axiom and the decomposition axiom.

Theorem 3.2. Conditional independence and decomposability of distribution functions
satisfy the symmetry and decomposition axioms.

Proof. The symmetry axiom is a consequence of the commutativity of the multipli-
cation. As for the decomposition axiom, assume that
flw @y, 2) x f12(2) = P92 (2, 2) x VY92 (w,y, 2).
Summarizing over X UY U Z we obtain
flayy,2) x [ (2) = [FX92(a, 2) x [P (y, 2).
Analogously, from

0 if f1%(2) =0
= Xuz WwWuYuz
flw,z,y,2) [V (2,2) ;{Zi(z) Wy se




Equivalence of compositional expressions and independence relations 329

we obtain
0 if f12(z)=0
f(@,y,2) = ¢ X920 2y x YV (y )

F1Z() else.

O

However, in general neither conditional independence nor decomposability satisfies the
weak-union axiom as is shown by the following two examples.

Example 3.3. Let A, B, C'and D be binary variables with dom(A) = {a,a}, dom(B) =
{b,b}, dom(C) = {¢,¢} and dom(D) = {d,d}, and let f be the distribution function on
ABCD over the Galois field GF(2) with support

£l = {(a,b,c,d), (a,b,&d),(a,b,cd), (a,b,c,d)}.

Consider the two conditional independences A 1l BC | D and A Il B | CD. Since the
marginals of f on D and AD are null distribution functions, A 1. BC | D holds in f.
As for A Il B | CD, since f1°P(c,d) =0 and f14°P(a,c,d) = fLBP(b,c,d) = 1, the
equality

fla,bye,d) x f9P(c,d) = AP (a,¢,d) x fHPOP (b, ¢, d)

is not valid, which proves that A Il B | C'D does not hold in f.

Example 3.4. Let A, B, C and D be the binary variables of Example and let f
be the distribution function on ABCD over the Galois field GF(2) with support

Il = {(a,b,c,d),(a,b,¢d),(a,b,&d),(a,b,c,d)}.

Consider the two set pairs {AD, BCD} and {ACD,BCD}. Since f'P is a unitary
distribution function and

HflAD” = {(a7 d>7 (@,J)} HleCDH = {(b7 G d)? (b7 C d)7 (67 G, CZ>7 (67 G, d)}v

f is decomposable by {AD, BCD}. As for {ACD, BCD}, since f'“P(¢,d) = 0 and
f(a,b,e,d) =1, f is not decomposable by {ACD, BCD}.

We now prove that decomposability implies conditional independence.

Theorem 3.5. Let X and Y be two disjoint nonempty sets of variables, and let Z be
a (possibly empty) set of variables such that Z N (X UY) = . Let f be a distribution
function on X UY U Z. If f is decomposable by {X U Z,Y U Z}, then X and Y are
independent given Z under f.

Proof. Assume that the equality in eq. holds everywhere. We want to prove that
the equality in eq. holds for every (X UY U Z)-tuple (z,y, z). Let us distinguish the
following two cases.

Case 1: f14(z) # 0. In this case, by property (P4) of semifields, f1#(z) has a
multiplicative inverse and, then, the equality in eq. trivially follows from the

equality in eq. .
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Case 2: f!?(z) = 0. In this case, f(x,y,2) = 0 by eq. and, hence, the left-hand
side of eq. is zero by property (P5) of semifields. We now prove that also the
right-hand side of eq. is zero. Consider the factor

leUZ(xv Z) = Z f(z,y’, Z)

on the right-hand side of eq. (1)). Since f1#(z) =0, by eq. (2)) each term f(z,v’, z)
of the sum is 0. Therefore, f1*Y4(z, z) = 0 and, hence, the right-hand side of eq.
(1) is zero by property (P5) of semifields.

O

However, for metric distribution functions (that is, if the underlying semifield enjoys
property (P6)), we shall prove that decomposability and conditional independence are
equivalent, and that conditional independence also satisfies the weak-union and contrac-
tion axioms. To this end, we need the following technical lemma.

Lemma 3.6. Let f be a metric distribution and let f'X and f'¥ be marginals of f
with Y C X. If f¥(y) =0, then f'X(x) = 0 for every X-tuple z with zy = y.

Proof. By property (P6) of metric semifields. O
Note that, by Lemma if f1X(x) # 0 then fYY (zy) #0.

Theorem 3.7. Let X and Y be two disjoint nonempty sets of variables, and let Z be
a (possibly empty) set of variables such that Z N (X UY) = (. A metric distribution
function f on X UY U Z is decomposable by {X U Z,Y U Z} if and only if X and YV are
independent given Z under f.

Proof. (Only if) By Theorem 3.5 (If) Assume that X 1 Y | Z holds in f. We
need to prove that the equality in eq. holds for every (X UY U Z)-tuple (z,y, z). If
fY2(2) =0, then f(x,y,z) = 0 by Lemma and, if f1#(z) # 0, then the equality in
eq. trivially follows from the equality in eq. . O

Theorem 3.8. Conditional independence in metric distribution functions satisfies the
weak-union axiom.

Proof. By Theorem [3.7 it is the same as to prove that decomposability satisfies the
weak-union axiom. Let f be a metric distribution function on WUXUY UZ and assume
that the equality in

0 if f1%(2) =0
= Xuz WwWuYuz
flw,z,y,2) [V (2,2) ;{Zi(z) Wy se
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holds everywhere. We need to prove that the equality in

0 if fAWYZ(w,2) =0

f(w7gj7y’z) = FLWUXUZ (4 0y 5 pLWUYUZ (4 0y 1
FIWOZ (w,2) else

holds everywhere. If f\WYZ(w,2) = 0 then f(w,z,y,z) = 0 by Lemma Assume
that fIWYZ(w,z) # 0. By Lemma one also has f!Z(z) # 0 so that by hypothesis

_ Y@ 2) x YT (w0, y, 2)

f(w,x,y,z)— le(Z)

which entails
leUXUZ(w’ x, Z) B leuZ(% Z)

fWOZ(w,2)  — flZ(z)
Therefore,
leUXUZ(wv xz, Z) X leUYUZ(,w’ Y, Z)
FIWZ (w, 2)
X2 (@, 2) x x VYV (0, y, 2)
= lZ = f(w’ x’ y7 Z)
fH7(2)
which proves the statement. O

Theorem 3.9. Conditional independence in metric distribution functions satisfies the
contraction axiom.

Proof. By Theorem [3.7] it is the same as to prove that decomposability satisfies the
contraction axiom. Let f be a metric distribution function on WUXUY UZ and assume
that both

0 if fl2(2)=0
XUYuz
fl uYu (x,y,Z) :{ flxuz(m;ffg(];;Yuz(y’z) else (3)
0 if fPY9%(y,2) =0
f(w7 ,v, Z) = FLXOYOZ (00 fLWUYUZ () 0 ) ) (4)
Y7 R else

hold everywhere. We need to prove that the equality in

0 it f12(z) =0
f(w7 z,Y, Z) = FEXVZ (g ) fIWOYVZ (4 4 2)

7 else

holds everywhere.

If f14(2) =0 then f(w,z,y,2) =0 by Lemma
Assume that f!'%(z) # 0. Let us distinguish two cases depending on whether or not

Y2y, 2) = 0.
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Case 1: f1YY%(y, z) = 0. In this case, by Lemmaone has both f(w,z,y,z) =0
and fHWYYVYZ(y 4y, 2) = 0. Therefore, the equality

_ [P @ 2) x YOV (w0, y, 2)

f(w,az,y7z)— fiZ(Z)

holds, which proves the statement.

Case 2: fYYY2(y,z) # 0. Since f'%(z) # 0 and fYYY%(y, z) # 0, by eq. one
has
fXYI @y, 2) XY (2, 2)

fY9%(y.2) ()

so that by eq. one also has

B Flxuruz( x flwoyuz(

T,y, %) w, Y, z)

f(w,:my,z)— leUZ(y Z)

V(g 2) x fVOY V(g 2)

fH2(2)

which proves the statement.

4. THE COMPOSITION OPERATOR

Let f and g be distribution functions on X and Y, respectively, over the same semifield.
We say that f is composable with g, written f o g, if

(a) either X NY =0 and ¢g'? #£0, or
(b) X NY # 0 and, for every X-tuple z, if f(z) # 0 then gtX™Y (zxny) # 0.
Remark 4.1. Condition (b) requires that X NY # @ and wxny (|| f])) C [|g"*™Y .

First of all, we state some simple algebraic properties of composability. First of all,
for X =Y one has that f o ¢ if and only if f < g so that composability turns out
to be a reflexive relation (that is, f o f). Moreover, in general it is not symmetric
(that is, f oc g does not imply g oc f). Finally, it is not transitive (that is, f o g and
g o h do not imply f oc h). To see it, consider a distribution function f on X and two
distribution functions ¢ and h both on Y and assume that X NY =0, ¢'? #£0, h!? =0
and ||g|| = ||h]|. Then, since g*® # 0 and h'? = 0, f o g holds but f oc h does not hold;
on the other hand, g oc h holds since ||g|| = ||2||.

Let f and g be distribution functions on X and Y, respectively. Consider the distri-
bution function £ on V = X UY defined as follows:

o if XNY =0 then k(v) = f(vx) x g;ﬁ??
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0 if f(vx) =0

f(’UX) X %&m else.

. ifXﬁY;é@thenk(v):{

Then, it is easy to see that the distribution function & is well-defined if and only if f is
composable with g. To sum up, we write

k= I x glx% if focg
" | undefined else.

Remark 4.2. If k is defined then ||k|| = || f]| % |lg|| and 7x (||k]|) = || f]]-
The following result is obvious.

Fact 4.3. If f is composable with g then the distribution function k = f x JTXAY Z+ is an
extension of f to X UY.

Theorem 4.4. Let f and g be distribution functions on X and Y, respectively, over
the same semifield, and assume that neither X —Y nor Y — X is the empty set. If f is
composable with g, then the sets X —Y and Y — X are independent given X NY under

k' - f X gix%
Proof. By eq. , we need to prove that
Ex EYXOY = pIX 5 plY (5)

By Fact [4.3| one has k¥ = f and, hence, kXM = fIX0Y  Therefore, the left-hand
side and the right-hand side of can be written as

f % glgmy x fLxoY Fx kY

respectively. Moreover, we can write the marginal of k£ on Y as follows

Yy _ _ XNy
ket = Z k= gumy Z f= umy x f

AeX-Y AeX-Y

so that the left-hand and right-hand sides of are equal. O

The following example shows that the sets X —Y and Y — X are independent given
X NY under k = f X =y, but k is not decomposable by {X,Y}.

Example 4.5. Let A, B and C be binary variables with dom(A) = {a,a}, dom(B) =
{b,b} and dom(C) = {c,¢}. Consider the unitary distribution function f on AB and the
distribution function g on BC with support ||g|| = {(b,c), (b,c)}, both over the Galois
field GF(2). First of all, observe that g!'Z is the unitary distribution on B; therefore,
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f is composable with g and k = f X glLB = f x g. The support of k is ||k]| = ||f]] x
lgll = {(a,b,c), (a,b,¢),(a,b,c),(a,b,c)}. Now, since f}4 is the null distribution on A,
one has that kB¢ (= f!4 x g) is the null distribution on BC and, hence, k'Z is the null
distribution on B. Therefore, eq. holds everywhere which proves that the conditional
independence A |l C' | B holds in k. However, since k'Z(b) = 0 and k(a,b,c) = 1, k is
not decomposable by {AB, BC}.

After Jirousek [7, [II] we use the (binary) composition operator “>>” to denote the
distribution function £ and write:

R qlx% if foog
frg= { undefined  else. (6)

It is worth pointing out that a composition-like operator (see the “fitting operator”
[20]) is tacitly present in the Proportional Fitting (or Scaling) Procedure used in the
statistical analysis of contingency tables [5].

It is easy to see that, in general, the composition operator is neither commutative
nor associative, and is idempotent, that is, f> f = f (for X =Y, f> g is defined if and
only if f <« g and, then, f > g = f).

4.1. Composition of metric distribution functions

In this subsection we first give some properties of the composition of metric distribution
functions.

Remark 4.6. Let f be a metric distribution function on X, and let Y be a nonempty
subset of X. For every X-tuple x € ||f||, the Y-tuple 2y belongs to ||f'¥|| so that by
Remark [2.2 one has that || f*Y|| = my (|| f]])-

Let f and g be metric distribution functions on X and Y, respectively. By Remarks
and the conditions (a) and (b) that ensure that f is composable with g are
equivalent to the following conditions (a’) and (b'), respectively:

(a’) either X NY = () and g is not the null distribution function on Y, or
(b') XNY # 0 and F1XY « gtXOY,

Assume that f is composable with g. We shall prove that f > ¢ = f > h where
h denotes the trivial extension of g to V.= X UY, by which we mean the (metric)
distribution function on V defined as follows: if X C Y then h = g; otherwise, for every
V-tuple v one has
g(vy)
h(v) = ——F—=.
) = Zom(x =7
Note that, if X is not a subset of Y then
ghxny

WYX=y g -
A5« dom(X —Y) dom(X -Y)
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so that
h g
hix — gixny (7)
and
[ = [lg* X ™| % dom(X —Y). (8)

Lemma 4.7. Let f and g be metric distribution functions on X and Y, respectively,
and let h be the trivial extension of g to V=X UY. Then, f>h= f>g.

Proof. The statement is trivially true if X C Y for, then, h = g. Assume that
X —Y # (. Suppose initially that both f > h and f > g are defined. Then, by eq. ,

one has
h= —h = S
feh=fx i =fx fx=frg

At this point, we need only to prove that f oc h if and only if f occ g. F X NY =0
then the statement easily follows from the above-mentioned condition (a’). Assume that
X NY # 0. By the above-mentioned condition (b'), one has that f oc h if and only if
f < h'¥ and that f o g if and only if f1X™MY <« ¢g!XMY' | Therefore, we need to prove
that f < h'X if and only if fIX7Y « ¢g!XNY,

(If) Assume that || f**7Y]| C [|g"*™Y||. By Remarks and and by eq. one has

IS wxay ([l£]]) > dom(X —Y)
= [N ) dom(X —Y) C [|lg" K™ ) dom(X —Y) = ||,
(Only if) Assume that || f|| C ||h*¥]|. By eq. and Remarkone has
LA S Nlg ™I = dom(X —Y) = mxny (lgll) % dom(X —Y)

so that
mxay (1) € ey (mxav (lgl) % dom(X = ¥)) = mxay (lgl)

and again by Remark
IFHEYN S g )

O

Finally, the following result states decomposability of the composition of metric dis-
tribution functions.

Theorem 4.8. Let f and g be metric distribution functions on X and Y, respectively,
over the same (metric) semifield. If f is composable with g, then f > g is decomposable
by {X,Y}.

Proof. By Theorems {4 and [3.7] O
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4.2. Composition of probability distributions

A probability distribution on X is a distribution function f on X over the sum-product
semifield such that f'? = 1. Since the sum-product semifield is metric, every probability
distribution is a metric distribution function. We shall provide an information-theoretic
characterization of the composition of two probability distributions.

Let f and g be probability distributions on X and Y, respectively. By conditions
(a') and (V') in Subsection f is composable with g if and only if either X N Y =0
or fIXNY <« ¢lXOY which are precisely the requirements used in [T} 12]. Assume that
f oc g. By Fact f > gis an extension of f to X UY. We shall prove that f > g is
the extension of f to X UY that is “closest” to g in an information-theoretic sense. To
this end, we first consider two probability distributions e and h on V such that e < h.
It is well-known the I-divergence [3] of h from e (also called the “cross-entropy” of e
with respect to h or the “Kullback—Leibler divergence” of h from e)

I(e,h) = Z e(v) 1og2((1;))
veEell

is a nonnegative quantity which vanishes if and only if e = h. Consider now a probability
distribution f on X, and a probability distribution i on a superset V of X such that
f < ht¥. Jirousek (see Theorem 6.2 in [I1]) proved the following information-theoretic
characterization of f o> h.

Theorem 4.9. For every extension e of f to V', one has I(e, h) = I(fr>h,h)+I(e, f>h).

Since I(e, f > h) > 0, by Theorem one has that I(f > h,h) < I(e, h) for every
extension e of f to V; accordingly, f t> h is called the I-projection of h onto the set of
extensions of f to V' [11]. Finally, let f be a probability distribution on X, and let g be
a probability distribution on Y such that f oc g. Let h be the trivial extension of g to
V =X UY. By Theorem f > h is the I-projection of h onto the set of extensions
of f to V and, by Lemma[d.7] f>h = f>g. Therefore, f > g is the I-projection of the
trivial extension of g to V onto the set of extensions of f to V; in this sense we can say
that f > g is the extension of f that is “closest” to g.

5. COMPOSITIONAL EXPRESSIONS

A compositional expression is a parenthesized expression formed out by distinct non-
empty sets of variables, and the symbol “>". Explicitly, the following provides a formal
definition of a compositional expression:

(1) if X is a set of variables, then X is a compositional expression;

(it) if 1 and Oy are compositional expressions and no set in s occurs in 67, then
(01) > (02) is a compositional expression.

Given a compositional expression 6, by ag we denote the sequence of the sets featured
in @ arranged according to the order of appearance; we call ay the base sequence of 6.
Let ag = (X1, Xo,...,X,), n > 1. We call the set X; the key of 8; moreover, if n > 1,
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for each ¢ > 1 by 0,X; we denote the set (Ui<j<;—1X;) N X;. We also use the following
notation:

V(H) = Ulgiani COM(Q) = Uiyﬁin n Xj UNI(H) = V(9) — COM(Q),

thus, COM(#) is the set of variables that are common to at least two distinct sets in 6.

Henceforth, a compositional expression of either form (X) > (0) or () > (X) or
(X) > (Y) will be written simply as X > (0) or () > X or X > Y, respectively.

A subexpression of a compositional expression 6 is defined as usual. Explicitly, a com-
positional expression ¢ is a subexpression of # if 6" is a substring of 6. A subexpression
0" of 0 is atomic if it is of the form #" = X. We shall prove (see Theorem below)
that the number of subexpressions of a compositional expression formed out by n sets
is equal to 2n — 1.

The syntactic structure of a compositional expression 6 can be represented by an (or-
dered full) binary tree T', to be called the syntaz tree for 8, whose leaves correspond one-
to-one to the atomic subexpressions of §, and whose interior nodes correspond one-to-one
to the non-atomic subexpressions of 6; explicitly, an interior node v of T corresponds
to the subexpression ¢ = (61) > (62) of 0 if 0, is the subexpression of 6 corresponding
to the “first” child of v, and 65 is the subexpression of 8 corresponding to the “second”
child of v.

5.1. Compositional model

Let 6 be a compositional expression with ay = (X1, Xo,...,X,). A sequence f =
(f1,-.., fn) in which f; is a distribution function on X;, 1 <14 < n, is called a (functional)
interpretation of . Henceforth, we assume that the distribution functions fi,..., f, are
all over the same semifield.

Let 6" be any subexpression of § and let cg: = (X, ..., X;,) be the base sequence of
¢', for some k and m, 1 < k < m < n. By [¢']¢ we denote the result of replacing each
set X;, k < i < m, with the distribution function f;, and then applying the composition
operator if # is a non-atomic subexpression (that is, if m > k). We say that f is a valid
interpretation of 0 if [f)¢ is defined. It should be noted that f is a valid interpretation of
6 if and only if, for every subexpression (6’) > (6”) of 6, both [¢']¢ and [#”']¢ are defined
and [0']¢ oc [0”]¢. If £ is a valid interpretation of 6 then, by Fact [0]¢ is an extension
to V(0) of the distribution function (f1) on the key (X1) of 8. We call [f]¢ the value of
6 under f. From a computational point of view, [f]¢ can be obtained with a bottom-
up traversal of the syntax tree T for 6. Initially, each leaf of T' is charged with the
corresponding distribution function in f; then, when an interior node v is examined, if u
and w are the first child and the second child of v respectively, the node v is charged with
the distribution function g > h where g and h are the charges on u and w, respectively.
Finally, the charge on the root of T' provides [f]¢.

The model generated by a compositional expression 6, denoted by My, is the set of
the distribution functions [f]¢ for all valid interpretations f of 6.

We shall provide a general formula for the value of a compositional expression under
a valid interpretation. To achieve this, we need the following lemma.
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Lemma 5.1. Let 6 be a compositional expression, and let 8’ be any subexpression of
0. Let ap = (X1,Xs,...,X,) and o = (Xi,...,X,). Given a valid interpretation
f=(f1,...,fn) of 0, one has

le=—x [[ # (9)
where gp is a function of COM(¢’) if COM(6’) # 0, and is a constant otherwise.

Proof. We prove the statement by induction on the number of sets in ay-.

BASIS. If k = m then COM(¢’') = 0 and eq. (9) holds with gg = 1.

INDUCTION. Assume that & < m and let ' = (61) > (62). Let ag, = (Xp,..., X)) and
ag, = (Xi41,...,Xm) for some I, k <1 <m — 1. By the inductive hypothesis, one has

1
[64] —foz e =— =[] #
0 pli< > 1 iy<icm

where qg, is a function of COM(6y) if COM(6,) # 0, and is a constant otherwise,
h =1,2. By eq. @ one has

*XH1+1<'< fi
*X IT 7ix - —

O k<i<i DAV (62) -V (1) ( Hl+1<z<mfl)

which with

qor = qo, X qo, X > (i < 11 fi) (10)

AeV(Oa)—v(e) 102 1<icm

reduces to eq. @[) At this point, we only need to prove that gy is a function of COM(6’)
if COM(0') # 0, and is a constant otherwise. Let us distinguish the following two cases:

Case 1: V(01)NV(62) = (. In this case, DAV (6y)— V(1) <q02 [lyi<icm fl> is a
constant and, since COM(0') = COM(60;) UCOM(63), gy is a function of COM(#’)
if COM(60;) # 0 or COM(63) # 0, and is a constant otherwise.

Case 2: V(01) NV (02) # 0. In this case, 3= 1cyg,)-v(ay) (%2 [liii<icm fz)
is a function of V(1) NV (62) so that, since COM(¢’) = COM(6;) U COM(62) U
(V(01) NV (62)), qo is a function of COM(G')

O

Theorem 5.2. Let 6 be a compositional expression, and let f = (f1,..., f,) be a valid
interpretation of #. Then one has

—x IT # (11)

where gp is a function of COM(0) if COM(0) # (D, and is a constant otherwise.
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Proof. For 0 =46, eq. @D reduces to eq. (11)). |

The following is an illustrative example.
Example 5.3. Consider the following compositional expression
0 =(ABE>CF)> (CDG > ADH).

Then we have oy = (ABE,CF,CDG,ADH), COM(f) = ACD and UNI() = BEFGH.
Consider now the following two subexpressions of 6:

= ABE > CF 0, = CDG 1> ADH.
Then, one has
V(6n) COM(6y,) | UNI(6)
1| ABCEF [ ABCEF
2 | ACDGH D ACGH

Let £ = (f1,..., f4) be an interpretation of 8. Then, f is a valid interpretation of 6 if
— [61]g = f1 > f2 is defined, that is, if f; o fa,
— [02]s = f5 > f4 is defined, that is, if f3 oc fy, and
— [61]¢ > [f2])¢ is defined, that is, if (f1 > f2) o (f3 > fa).

If this is the case, then

— [O1)s = i 1fX 2 which reduces to eq. (EI) with gp, = f2 , which is a constant according
to COM(6;) = 0;

— [62)s = f;’cfg“ which reduces to eq. @ with gp, = fi¥, which is a function of

COM(6,) =
Finally, we have
fax fa
f1x f2 /17
[0]¢ = )
l Z fax fa
D,G,H \"fIP
f1 X fa X f3 X f4
0 1CD_ ;lAD
Ql P x >op L ffo

which reduces to eq. (L1)) with

g0 = Z

which is a function of COM(0) = ACD.

ch iAD
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5.2. Sequential compositional expressions

We now introduce a type of compositional expression of special interest. Recall from the
Introduction that a compositional expression is simple if it has exactly one subexpression
of the type X>Y. If 6 is a simple compositional expression and f is a valid interpretation
of 0, then during the process of evaluation of § under f only one “intermediate table”
is to be maintained at a time. (Note that the compositional expressions involved in
Theorem are all simple.) Special simple compositional expressions are compositional
expressions of the form

9:((...(X1>X2)>...)>Xn_1)>Xn (12)

which we call sequential compositional expressions and correspond to Jirousek’s gener-
ating sequences. Note that a sequential compositional expression is uniquely determined
by its base sequence; accordingly, as in [16] and [I7] the base sequence of a sequential
compositional expression may be called its “structure”. A further property of a sequen-
tial compositional expression is that, by Fact [£:3] each intermediate table is always an
extension of the distribution function f; in f on X; (which is the key of ). Finally, it is
easy to see that for the sequential compositional expression the function gy in eq.
(11)) is simply a product of marginal distribution functions; explicitly, for [f]s one has
the following closed form:

Ol =1 x [] % (13)

2<i<n fi

Before closing this section, we observe that the sequential compositional expression
(12) has exactly n atomic subexpressions and n — 1 non-atomic subexpressions, each of

which is of the form (( (X Xo) > ) > Xi_l) > X;, 2 < i < n. Therefore, the

number of the subexpressions of the sequential compositional expression is 2n — 1.
In other words, the syntax tree for the sequential compositional expression has
2n — 1 nodes (n leaves plus n — 1 interior nodes). Starting from this fact, we can prove
the following more general result.

Theorem 5.4. The number of the subexpressions of a compositional expression formed
out by n sets is 2n — 1.

Proof. Let # be acompositional expression with g = (X1, Xa, ..., X,,). It is sufficient
to prove that the syntax tree T for 6 has exactly 2n — 1 nodes. To achieve this, we
show that T can be transformed into the syntax tree for the sequential compositional
expression without changing the number of nodes of T'. Then, since the syntax tree
for the sequential compositional expression has exactly 2n—1 nodes, we can conclude
that also T has 2n — 1 nodes, which implies that the number of the subexpressions of 6
is 2n — 1.

The transformation of T is carried out by processing the nodes (leaves) vy, vp—1,...,v3
of T corresponding to X,,, X,,_1,..., X3, respectively. Let a be the root of T.

Step 1. If v,, has distance greater than 1 from a, then
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— add one node r,, to T" which becomes the new root of T
— make a the first child of r,,;

— let p be the parent of v,; identify p with its first child and make v, the second
child of r,,.

Step 2. Fori=n—1,...,3, do:

Let u be the sibling of v; 1. If v; has distance greater than 1 from wu, then modify
the subtree T of T rooted at u as follows:

— add one node r; to T” which becomes the new root of 7" (and, hence, the new
sibling of v;41);

— make u the first child of r;;

— let p be the parent of v;; identify p with its first child and make v; the second
child of r;.

It is easy to see that the resulting binary tree equals the syntax tree for the sequential
compositional expression which has exactly 2n — 1 nodes. Moreover, since each
operation does not change the number of nodes of the current tree, we can conclude
that the syntax tree for 6 has exactly 2n — 1 nodes. O

6. EQUIVALENCE OF COMPOSITIONAL EXPRESSIONS

Let 6 be a compositional expression with base sequence oy = (X1, Xs,...,X,). The
system (i.e., the set) of sets Hy = {X1, Xo,..., X} will be referred to as the base
scheme of 6. A set d of functions, one for each set X; in Hy, will be referred to as
a database for 0 if, for each set X; € H, the function in d corresponding to X; is a
distribution function on X;. Again, we assume that the distribution functions in d are
all over the same semifield. Let £ = (fy, f2,..., fn) be the ordering of the distribution
functions in d according to ag, that is, f; is a distribution function on X;, 1 < i < n;
thus, f is an interpretation of 8, and we say that d is a valid database for 0 if f is a valid
interpretation of . Let Ey be the operator that maps every valid database d for 8 to
the distribution function [6]¢, where f is the (valid) interpretation of  provided by d,
that is, Ep(d) = [0]¢. We call Ey the evaluation operator of 6. Accordingly, the model
My generated by 6 is the range of Ejy.

Two compositional expressions 6 and #; with the same base scheme are said to be
equivalent if they have the same evaluation operator, that is, if Fg, (d) = Eg,(d) for
every database d that is valid for both #; and 6,.

Example 6.1. Let d = {f,g,h} where f, g and h are distribution functions on AB,
BCD and BCE, respectively. Consider the following three compositional expressions:

0, = AB> (BCD > BCE) 0y = (AB1>BCD)1>BCE 03 = (AB> BCE) > BCD.
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Then, (f, g, h) is the interpretation provided by d for both ; and 63, and (f, h, g) is the
interpretation of A3 provided by d. Assume that d is a valid database for all of them.
Then, one has

h h
Eg(d):fx ;iéc :fX ;ff]éc _ fXth
. — )
Y.C.D.E ;%3% Yepg gtP xhiBC

)

Moreover, by eq. , one has

_ [xgxh _ [xgxh
Eez(d)—m Ees(d)—m

Therefore, 6, is equivalent to 65 but is not equivalent to 3.

Note that Kratochvil (see Remark 4.1 in [I7]) calls “equivalent” two (sequential)
compositional expressions 6; and 0y if My, = Mpy,. The following simple example shows
that our notion of equivalence is stronger than Kratochvil’s equivalence.

Example 6.2. Let d = {f, g} where f and g are distribution functions on X and Y,
respectively. Consider the following two compositional expressions §; = X > Y and
0> =Y > X. Assume that d is a valid database for both 6; and 6. Then, one has

_ fxyg
gtXny

 fxg

Ep, (d) = jrxnr

E92 (d)

Since Ey,(d) = Ep,(d) only for those databases d for which flXMY = glXNY = we
can conclude that 6, and 6y are not equivalent. We now prove that My, = My,. To
achieve this, it is sufficient to prove that there exists a valid database d’ for 65 such that
Ey, (d) = Ey,(d’). Let d’ = {f, g’} where ¢’ is the distribution function on Y defined as
follows:

Y (yxny) (14)

O lf ngﬂY (mey) = 0
g(y) x TR () else.

By the very definition of ¢’ one has that if ¢’(y) # 0 then f!*™Y(yxny) # 0 which
proves that ¢’ o< f so that d’ is a valid database for 6. At this point, it is easy to see
that Ep,(d') = ¢' > f = 5% = Ep,(d).

In the light of Example a necessary condition for two compositional expressions
to be equivalent is that their keys are the same.

Recall from the Introduction that a set system H is star-like with centre X if X € H
and, if |H| > 3, then Y N Z C X for every two distinct sets Y and Z in H. If H is a
star-like set system with centre X then, by Theorem|[L.T] every two simple compositional
expressions with base scheme 7 and key X are equivalent. We shall prove a stronger
result (see Theorem below) which states that star-like set systems with centre X
are precisely the set systems H for which every two compositional expressions with base
scheme ‘H and key X are equivalent. To this end, we need the following lemma.
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Lemma 6.3. Let H be a star-like set system with centre X, let 6 be a compositional
expression with base scheme H and key X, let ap = (X7 = X, Xo,...,X,,) and let
f=(f1,...,fn) be a valid interpretation of §. Then one has

f_fl>< H flxlmX (15)

2<i<n J1

Proof. First of all, let us consider the subexpression 8y = X; > (61) of 6. Thus
ag, = (X1 = X, Xa,...,Xk) and ap, = (Xao,...,Xy) for some k, 2 < k < n. By
Theorem [5.1], one has

[81 7X H fz

o1 2<i<k

where ¢y, is either a function of COM(#;) or a constant, so that

H2§i§k fi
- )
qo, X ZAeV(Gl)—Xl (E X H2§i§k fi)

By hypothesis, H is star-like with centre X7, so that

[Oole = f1 %

(1) COM(6:) € X
(44) each variable in V' (61) — X3 occurs in exactly one X; for some i, 2 <7 < k.

Since gp, is either a function of COM(6;) or a constant, by (i) we can move q% to the
1

left of the summation 3° 4y g,)—x,*

H2<i<k fi
[0ole = f1 x ==
qo, X é ZAEV(01)—X1 H2§i§k fi
:f % Hggigk fz

1 .
2oaevon-x; Lo<icr fi

> I A= IT A

A€V (01)—X, 2<i<k 2<i<k

By (#4), one has

so that
QOf_flx H leMTX

2<i<k

If k = n then we are done. Otherwise, consider any subexpression ' of 6 containing 6

and let apr = (X1,...,Xm), £ < m < n. By structural induction, it is easy to prove
that
Te=rfix 11 1X1mxl
2<i<m fz

and for #’ = 6 we obtain eq. . |
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By Lemma [6.3] we have the following property of star-like set systems, which is a first
generalization of Theorem

Corollary 6.4. Let H be a star-like set system with centre X. Every two compositional
expressions with base scheme H and key X are equivalent.

Proof. Let H = {X; = X,Xy,...,X,,} and let 6; and 62 be two compositional
expressions with base scheme H and key X. Let ap, = (Xp, = X, Xp,,..., Xp,) and
ap, = (Xi, = X, Xk,, ..., Xk, ) be the base sequences of §; and 6a, respectively. Let
d={f1, f2,..., fn} be a database in which f; is a distribution function on X;, 1 <i <n.
Assume that d is a valid database for both 6; and #>. By Lemma one has

e
Eg,(d) = f1 x H umxh Ep,(d) = f1 % H LIXNXy,

2<g<n h; 2<i<n f

For each i > 1, let j(i) and I(i) be such that X; = Xj,, = Xy,,,. Then, for each

3 (1)

i > 1 one has fp,, = fi, = fi and X N Xy, ., = X N Xy, = XNX; so that
LXNXp, 1XAX .

hico ") ko i = filXQXI. Therefore, Ey, (d) = Ep,(d) and, hence, 6; and 65
J

are equivalent O

We are now in a position to characterize the set systems H for which every two
compositional expressions with base scheme H and key X are equivalent.

Theorem 6.5. Let H be a set system, and let X € H. Every two compositional
expressions with base scheme H and key X are equivalent if and only if H is star-like
with centre X.

Proof. (If) By Corollary

(Only if ) Suppose, by contradiction, that H is not star-like with centre X. Then, |H| > 3
and there exist two distinct sets Y and Z in H — {X} such that Y N Z is not a subset
of X. Let H ={X;,X2,Xs,...,Xpn}, where X; = X, Xo =Y and X3 = Z. We now
prove that there exist two compositional expressions with base scheme H and key X;
that are not equivalent so that a contradiction arises.

Without loss of generality, we assume that n > 3. (The case n = 3 can be proved
using similar arguments.) Consider the following two sequential expressions with base
scheme H:

0 = ((((Xl I>X2)I>X3)DX4)...>I>XTL

92:(...(((XlI>X3>I>X2)I>X4)...)I>Xn.

We now prove that there exists a valid database d for both #; and 6, for which Ejp, (d) #
FEjp,(d), which entails that #; and 65 are not equivalent.

Let f; denote any distribution function on X;, 1 < i < n; thus, fi, fo and f3 are
distribution functions on X; = X, Xo = Y and X3 = Z, respectively. Consider the
set D of valid databases d = {f1, f2, f3,..., fn} for both 6; and 5, in which f3 is the
unitary distribution function on Z. By eq. (13)), for every d € D one has
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fa f3 fi
Ep,(d) = f1 x Fan% X I ux)nXs 11 199, X
2 3 4<i<n fv

_ fo /3 fi
Ep,(d) = f1 x e X fé(XIUXS)mXQ X H fw%xi'

4<i<n Ji
With
g=fixfaxfox [] —e
a<i<n fi !
one has g
Eo, (d) = 21me 9 f?f(XUY)ﬁZ

and, since Oy, X; = 0y, X; for each i, 4 < i < n, one also has

9

Ep,(d) = f%(xuz)m/ % f?fxmz'

Moreover, since the distribution function f3 is unitary, one has
X0 =ldom(Z - X)| [N = |dom(Z — (X UY))|

so that

9 g

E91 (d) = E92 (d) = .
XY S dom(Z — (X UY))| FHEUDY S dom(Z — X))

Therefore, for every d € D one has Ep, (d) = Ep,(d) if and only if fo is a solution of the
following equation:

XY s dom(Z — (X UY))| = frEYDY s dom(Z — X)) (16)
Since, by hypothesis, Y N Z is not a subset of X, one has
XNY#(XuzZ)nYy Z—-(XUY)#£Z-X
so that eq. is not an identity. Let

a = {flvaaf3af47"'7fn}
be any database in D in which f, is not a solution of eq. . Then, Ey, (d) # Ey,(d),
which proves that ¢; and 6y are not equivalent (contradiction). |
7. CANONICAL EXPRESSIONS

A compositional expression 6 with base sequence ag = (Xi,...,X,) is a canonical
expression if g is a perfect sequence [I8], that is, if the following property holds:

(running intersection property) if n > 1 then, for each ¢ > 1 there exists j < 4 such
that (Ulghgi—th) nxX; cXj.
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Thus, using the notation introduced in Section 5] 0 is a canonical expression if, for each
i > 1, there exists j < 4 such that dy X; C X;.

Given a canonical expression § with base sequence ap = (X1,..., X)), if £ = (f1,..., fa)
is a valid interpretation of 4, then [f]¢ has the following closed-form expression

e =f1x [] waex (17)

2<i<n Y1

The proof of eq. was given in [22] and, for the sake of completeness, is reported
in the Appendix. Note that eq. is the same as eq. and does mean that [0]¢
depends on 6 only through the base sequence ay of 6, more precisely, through the sets
X1,00Xa,...,00X,,.

We shall state a necessary and sufficient condition for the equivalence of two canonical
expressions with the same base scheme and the same key. Next, we shall characterize
those set systems H for which every two canonical expressions with base scheme H and
with the same key, say X, are equivalent. We call such set systems “X-centric”, and
prove that the class of X-centric set systems strictly includes the class of star-like set
systems with centre X. First of all, we recall some useful notions related to canonical
expressions.

7.1. Acyclic hypergraphs

A hypergraph is a system (that is, a set) of distinct nonempty sets. If H is a hypergraph,
by V(H) we denote the union of the sets in H. A hypergraph H is acyclic if there exists
an ordering of the sets in H which is a perfect sequence (see Section . Such orderings
of an acyclic hypergraph H are called perfect orderings of H.

Of course, the base scheme of a canonical expression is always an acyclic hypergraph,
but a compositional expression whose base scheme is an acyclic hypergraph need not
be a canonical expression. Moreover, if H is a star-like set system with centre X, then
every ordering (X1, Xa,...,X,) of H with X; = X (or with Xy = X)) is perfect, which
proves that H is an acyclic hypergraph.

Acyclic hypergraphs are also called decomposable hypergraphs [18] and hypertrees [28],
and an efficient algorithm to test acyclicity of hypergraphs can be found in [29]. There
exist several characterizations of acyclic hypergraphs exist [, [18]. We now recall one of
them, which serves our purpose.

A junction tree [18] (or join tree [I] or clique tree [2l [6] or Markov tree [28]) of a
hypergraph H is an undirected tree J with node set H in which, for every two distinct
nodes X and Y

(junction property) for every edge (E, F') is that is along the X-Y path (that is,
along the unique path joining X and Y in J), one has XNY C ENF.

Theorem 7.1. (Beeri et al. [I], Lauritzen [18]) A hypergraph is acyclic if and only if
it has a junction tree.

An efficient algorithm for constructing a junction tree of an acyclic hypergraph can be
found in [29]. We now recall a useful property of junction trees.
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Let ‘H be any hypergraph. Let X and Y be two distinct sets in H. An X-Y chain
in H is a sequence (E1,...,E,) of distinct sets in H such that F; = X, E, =Y and
E,NE; 1 # 0, for each i <n. Two sets X and Y in H are connected if either X =Y or
there exists an X-Y chain in H. A subset S of V(H) such that X —S # @ and Y — S # 0,
is an X-Y separator of H if either X and Y in H are not connected or, for every X-Y
chain (Ey,..., E,), there exists ¢ for which E; N E;1; C S.

Consider now an acyclic hypergraph H, and let J be a junction tree of H. A path
p in J corresponds to a chain in H if and only if there is no edge (E, F') along p for
which ENF = (). In other words, two distinct sets X and Y in H are connected if and
only if there is a junction tree J of H in which, for every edge (F, F) along the X-Y
path, one has E N F # (). The following is a well-known (e.g., see [2]) characterization
of separators of an acyclic hypergraph.

Lemma 7.2. Let H be an acyclic hypergraph, let X and Y, X # Y, be two distinct
sets in H, and let J be a junction tree of H. A subset S of V(H) is an X-Y separator
of H if and only if X — S # 0, Y — S # 0 and there is an edge (E, F) along the X-Y
path in J such that ENF C S.

Let H be an acyclic hypergraph, let J be a junction tree of H, and let X be any node
of J. An X-rooted junction tree of H is the directed tree T obtained by rooting J at
the node X and orienting the edges of J away from the root X. Thus, an edge (E, F)
is ordiented from F to F, written £ — F'| if in J the distance of E from X is less than
the distance of I’ from X. To avoid ambiguity, we call the oriented edge F — F an arc
of T'; moreover, we say that E is the parent of F' in T, written E = par(F). Let Y and
Z be two distinct nodes of T'; by LCA(Y, Z) we denote the lowest common ancestor of
Y and Z in T. Again, T enjoys the junction property which now reads: For every two
distinct nodes Y and Z of T,

— it Y = LCA(Y,Z) (or Z = LCA(Y, Z)) then, for every arc E — F of T that
is along the directed path from Y to Z (from Z to Y, respectively), one has
YNZCENF,

— it LCA(Y,Z) ¢ {Y, Z} then, for every arc E — F of T that is along the directed
path from LCA(Y, Z) to Y or along the directed path from LCA(Y, Z) to Z, one
hasYNZCENF.

There exists a many-to-many correspondence between X-rooted junction trees of an
acyclic hypergraph H and perfect orderings of ‘H beginning with X.

Given an X-rooted junction tree T' of H, top-down (i.e., root-to-leaf) traversals of
T generate perfect orderings of H. If « is such a perfect ordering of H then, for every
non-root node Y of T, one has 9,Y = Y Npar(Y), and we call « a perfect ordering of H
associated with T. On the other hand, given a perfect ordering o = (X; = X, ..., X,,)
of H, an X-rooted junction tree of H can be obtained as follows. For each ¢ > 1, take
par(X;) to be one of the nodes X, j < ¢, for which 9,X; C X;. We call a tree such as
T an X-rooted junction tree of H associated with «.

Corollary 7.3. Let H be an acyclic hypergraph, and let X and Y, X # Y, be two sets
in H. Let Ty and T» be two X-rooted junction trees of H, and let S, =Y N par, (Y),
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h = 1,2. There is an arc £ — F along the directed path from X to Y in 73 such that
ENFCSNS,.

Proof. Let p, be the directed path from X to Y in T}, h = 1,2. The statement is
obvious if X and Y are not connected in H for, then, there is an arc E — F' along p;
such that ENF = (. Assume that X and Y are connected in H. Let us distinguish the
following three cases.

Case 1: X C S3. In this case, X C Y and, by the junction property of 77, each node
along p; is a set that contains X; therefore, X is a subset of par, (Y') and, hence, of
Y Npar, (Y) = Sp. So, X € S1NSy. Let E = X and let F be the child of X on py;
then, the arc E — F'is such that ENF =X C 51N Ss.

Case 2: S =Y. In this case, since S; C Y, one has S; NSy = 5;. Let E = par, (V)
and F' =Y then, the arc E — F is such that ENF =5, = 51 N Ss.

Case 3: X — Sy # 0 and Y — Sy # 0. Since the arc par,(Y) — Y of Ty is along po
and Sy =Y Npar,(Y), by Lemma applied to Ty the set Sy is an X-Y separator of
‘H. Therefore, by Lemma applied to Ti, there is an arc F — F' along p; such that
ENF CS;. On the other hand, since Sy C Y, one has that ENF C Y and, hence
ENF C ENY. By the junction property of T4, ENY C par, (Y)NY = S; so that
ENFCENY CS;. To sum up, the arc E — F of T} is such that ENF C S1NSy. O

Example 7.4. Consider the acyclic hypergraph H = {AF, ABC, ABE, ACD}, and let
X =AF andY = ABC. Let T} be the X-rooted junction tree of H in which the directed
path from X to Y is p; = (AF, ABE, ABC), and let T be the X-rooted junction tree of
‘H in which the directed path from X to Y is p; = (AF, ACD, ABC). Then par, (Y) =
ABE and par,(Y) = ACD, so that S1 =Y Npaq, (V) = AB, So =Y Npar,(Y) = AC
and S1 NSy = A. The arc AF — ABFE along p; is such that AFNABE C S1 NS5, and
the arc AFF — ACD along ps is such that AF N ACD C §1 N Ss.

7.2. An equivalence criterion

The proof of the following result is similar to the proof of Theorem

Theorem 7.5. Let H be an acyclic hypergraph, and let X € H. Two canonical expres-
sions 61 and 0 with base scheme H and key X are equivalent if and only if, for every
Y € H— {X}, one has 05, Y = 0y, Y.

Proof. (If) By eq. , 0, and 0y are equivalent.

(Only if) By hypothesis, 61 and 05 are equivalent. Suppose, by contradiction, that there
exists Y € H — {X} such that 0p,Y # 0p,Y. We now prove that there exists a valid
database d for both #; and 6, such that Ep, (d) # Eg,(d) so that a contradiction arises.
Let H={X: =X, X5 =Y, X5,...,X,}, n > 3. Counsider the set D of valid databases
d = {f1, f2, f3,..., fn} for both 6 and 6y in which, for each i # 2, f; is a unitary
distribution function on X;. For each ¢ > 2, since f; is a unitary distribution function,
one has

£ 2 Jdom(X; — 89, X3)| (b =1,2).
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Therefore, by eq. , for every d € D one has

1 f2
Ep,(d) = " 100,y
2

(h=1,2)
where
mp = H |d0m(X, — 69hX7)| (h = 152)

3<i<n

So, for every d € D, Ey,(d) = Ep,(d) if and only if f5 is a solution of the following
equation:

my X fglasly = Mg X f2lé)92Y
which is not an identity since dg, Y # 0p,Y. Let d={f1,f f3- -, In A
in D in which f3 is not a solution of the equation above. Then, Ey, (d) # Ep,(d) and,
hence, a contradiction arises. O

} be a database
)

Theorem [7.5|can be re-phrased in graphical terms using tree representations of perfect
sequences mentioned in Subsection

Corollary 7.6. Let H be an acyclic hypergraph, and let X € H. Let #; and 65 be two
canonical expressions with base scheme H and key X, and let T}, be an X-rooted junction
tree of H associated with the base sequence of 6, h = 1,2. The expressions #; and 65
are equivalent if and only if, for every Y € H—{X}, one has Y Npap, (Y) = Y Npar, (Y).

Proof. By Theorem 61 and 5 are equivalent if and only if, for every Y € H—{X},
one has 0y, Y = 0p,Y. The statement then follows from the hypothesis that T}, is an
X-rooted junction tree of H associated with the base sequence of 6, which implies that
89hY:YﬂpaTh(Y), h=1,2. O

7.3. X-centric set systems

Let ‘H be an acyclic hypergraph and let X € ‘H. We say that H is an X-centric set system
if, for every two X-rooted junction trees 77 and T5 of H, one has that Y N par, (Y) =
Y Npar,(Y) for every Y € H — {X}. Note that, if H is star-like with centre X, then H
is an X-centric set system.

Example 7.7. The acyclic hypergraph H = {AB, BCD,BCE} has two AB-rooted
junction trees T and Tb: the arcs of 77 are AB — BCD and BCD — BCE, and
the arcs of Ty are AB — BCE and BCE — BCD. Since BCD N par, (BCD) #
BCD npar,(BCD), H is not an AB-centric set system.

Theorem 7.8. Let H be an acyclic hypergraph and let X € H. Every two canonical
expressions with base scheme H and key X are equivalent if and only if H is an X-centric
set system.
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Proof. (If) Assume that H is an X-centric set system. Let #; and 6 be any two
canonical expressions with base scheme H and key X, and let T}, be an X-rooted junction
tree of H associated with the base sequence of 6, h = 1,2. Since H is an X-centric
hypergraph, for each Y € H — {X} one has that Y Npap, (Y) = Y Npar,(Y). By
Corollary 0, and 65 are equivalent.

(Only if ) Assume that every two canonical expressions with base scheme H and key X
are equivalent and suppose, by contradiction, that H is not an X-centric set system.
Then, there exist two X-rooted junction trees 77 and T» of H and a set Y € H — {X}
such that Y Npar, (Y) # Y Npap,(Y). Let ap be a perfect ordering of H associated
with T}, and let 65, be a canonical expression with base scheme H and base sequence
ap, h=1,2. By Corollary 61 and 65 are not equivalent (contradiction). O

The next theorem provides an efficient algorithm to recognize X-centric set system.

Theorem 7.9. Let H be an acyclic hypergraph, let X € H and let T" be an X-rooted
junction tree of H. H is an X-centric set system if and only if T enjoys the following

property

(m) For every interior node Y # X of T, there is no child Z of Y such that Y Npar(Y) C
Y NZ (that is, Y Npar(Y) is a proper subset of Y N Z).

Proof. (Onlyif) Assume that H is an X-centric set system and suppose, by contra-
diction, that there exist an interior node Y # X of T and a child Z of Y such that
Y Npar(Y) is a proper subset of Y NZ. Let P = par(Y). SinceYNPCYNZC Z,
one has Y N P C ZN P. On the other hand, by the junction property of 7', one has
that ZNP C Y and, hence, ZNP C Y NP. It follows that Y NP = ZNP. At
this point, we can construct an X-rooted tree T’ of H from T by replacing the arcs
P—-YandY - Zby P— Zand Z — Y. It is easy to see that T” is an X-rooted
junction tree of H. Then, since Y N P C Y N Z by hypothesis, one has Y NP £Y N Z,
that is, Y Npar(Y) # Y Npar (Y) which proves that H is not an X-centric set system
(contradiction).

(If) Assume that T' enjoys property (7) and suppose, by contradiction, that there exists
another X-rooted junction tree T of H containing a node Y # X such that Y Npar(Y) #
Y Npar (V). Let P=par(Y) and P’ =par(Y),and let S=Y NP and S =Y NP
So, S # §’. Let us distinguish two cases depending on whether S C S’ or S — S’ # ().

Case 1: S ¢ S’. In T the node P’ must be a descendant of Y for, otherwise, in the
junction tree J underlying 7' P should be on the Y-P’ path and, by the junction property
of J, Y N P’ should be a subset of P and, hence, one would have S’ C S and, since
S # 5,8 C S (contradiction). Let Z be the child of Y that lies on the directed path
in T from Y to P’. By the junction property of T, one has that Y N P/ C Y N Z and,
since S C S/, one has that S € S’ =Y NP’ C Y NZ and, hence, the node Y violates
condition (7) (contradiction).

Case 2: S — 8’ # (). First of all, observe that in this case SN S’ is a proper subset of
S. Let p be the directed path in T from X to Y. By Corollary there exists an arc
E — F along p such that ENF C SNS’. Let E* — F* be the deepest (that is, the
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nearest to Y) of such arcs, and let L = E* N F*; so, L C SNS" and, since SNS’ C S,
one has L C S so that E* — F* # P — Y. Of course, L is a subset of F' and, since
S CY, Lis also a subset of Y so that L C F*NY. Let Z be the child of F* along p.
By the junction property of T, F*NY C F* N Z and, hence, L C F* N Z. The equality
cannot hold for, otherwise, F*NZ =L C SNS’ and E* — F* wouldn’t be the deepest
of the arcs E — F along p for which ENF C SNS’. So, L C F*N Z which proves that

the node F* violates condition (7) (contradiction). O

8. DETECTION OF CONDITIONAL INDEPENDENCES

Let 6 be a compositional expression. A conditional independence X Il Y | Z holds in
the model My generated by 6 if it holds in the distribution function [f]¢, for every valid
interpretation f of . Which conditional independences hold in My?

Let X be the key of 8, and let (61, ...,0;) be the sequence of distinct subexpressions
of 6 such that each 6; contains X and for each i, 1 <7 < k — 1, 6; is a subexpression of
0;r1. Thus, 6; = X and 0, = 0. Let f be a valid interpretation of . By Fact for each
i < k, [0;]¢ is the marginal of [f;11]¢ on V(6;) and, since [0;]¢ = [0]¢, [0:]¢ is the marginal
of [f]¢ on V(6;). Moreover, by Theorem [4.4] for each i < k, if V/(6;) — V(0;11) # 0 and
V(0;+1) — V(0;) # 0 then the conditional independence

V() =V(ir1) 1L V(iy1) = V() | V(0:) NV (0it1) (18)

holds in [f;11]f and, hence, in the marginal of [f]¢ on V(#;41). So, each conditional
independence holds in [f]¢ and, hence, in Mp.

Consider now the case that 6 is a sequential compositional expression with base
sequence ap = (X1,...,X,),n > 1. Then, §; = (... (Xi>X2)>...)> X, for each i > 1,
each conditional independence reduces to

V(0:) = 0pXip1 A Xip1—0sXiy1 | O0pXit1- (19)

Moreover, by the decomposition axiom, one has that, for each A € V(0;) — 9pX;4+1 and
each B € X;;1 — 0pX;41, the conditional independence

Al B|0gXit1

holds in M.

Finally, consider the case that 6 is a canonical expression with base sequence ay =
(X1,...,Xn), n > 1; thus, ap is a perfect sequence. Let 6’ be the sequential compo-
sitional expression with ay = gy, and let f be a valid interpretation of both 6 and
0. Since ap = ag, by Theorem one has [f]¢ = [#']¢, so that all the conditional
independences hold in My. As an application, we can answer the following question
[10]: given two variables A and B in V(6), which are the minimal (with respect to set-
inclusion) sets S (if any) such that the conditional independence A Il B | S holds in My?
The solution algorithm is as follows. Given a junction tree J of Hy, find the shortest
path (Ei,...,E) in T such that A € By and B € E. If k =1 (that is, if both A and
B belong to E7) then there exists no subset S of V(0) — AB for which A1l B|S holds
in My. Otherwise (that is, if & > 1), the minimal sets in {E, N Epy1: 1 < h <k —1}
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are precisely the minimal sets S for which the conditional independence A 1l B |S holds
in Mg.

Before closing this section, we mention that, for a generating sequence of probability
distributions, an effective method for detecting conditional independences was given by
Jirousek [9, [10] based on a tabular representation called persegram. Structural prop-
erties of persegrams are stated by Kratochvil [16], who in [I7] provides a method to
decide, given two generating sequences of probability distributions, whether or not the
conditional independences in the two compositional models are the same.

9. CLOSING NOTE

We have presented an extension of compositional model theory in two ways. First, we
consider general distribution functions, whose class includes not only probability distri-
butions but more in general multivariate functions whose values can be added, multiplied
and divided. Second, we consider models generated by compositional expressions, whose
class includes both simple and sequential compositional expressions. In order to assess
the power of our compositional-expression formalism, we need to answer the following
questions. How many are the sequential compositional expressions with a given base
scheme? and the simple compositional expressions? and the compositional expressions?
We now answer these questions for compositional expressions having in common a base
scheme H with n sets.

It is easy to see that the number of sequential compositional expressions with base
scheme H is n!

Consider now simple compositional expressions with base scheme H. First of all,
observe that, for a fixed ordered couple (X,Y) of distinct sets in H, for each 4, 1 <i <
n — 1, there exist exactly (n — 2)! simple compositional expressions 6 that contain the
subexpression (X >Y) and in which X is the ith term of ag. Therefore, since the number
of ordered couples such as (X,Y) is n- (n— 1), the total number of simple compositional
expressions with base scheme H is

n~(n71)o((nfl)~(nf2)!):(n71)~n!

Finally, consider general compositional expressions with base scheme H. We can
determine the number e, of such compositional expressions by means of a recurrence
relation of the type e,t1 = f(e,) with e = 2. In order to obtain such a recurrence
relation, consider compositional expressions with base scheme H U {X} for X ¢ H.
Each of them can be obtained from a compositional expression 6 with base scheme
‘H by replacing any subexpression 6’ of § by either (8’) > X or X > (6). Since the
number of subexpressions of 6 is 2n — 1 by Theorem 5.4} we generate 2 (2n — 1) distinct
compositional expressions with base scheme HU{X } from each compositional expression
with base scheme H; moreover, the compositional expressions with base scheme HU{X }
generated from two distinct compositional expressions with base scheme H are distinct
too. Therefore, we can write down the following recurrence relation:

ens1=2-2n—1) e,

so that
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enp1=2-2n—1)-e, =2*-2n—1)-(2n—3) -1
=22.2n—1)-(2n—3)-(2n—5) - ep2=...
=21 2n—1)-(2n—3)-...-(2n—2k — 1) - ep_.
For n — k = 2, we know that es = 2 so that for kK = n — 2 we obtain
enp1=2""1-(2n—1)-(2n—3)-...-3-2
=2".(2n—1)-2n—=3)-...-3=2"-2n—- Dl = (n+1)!-C,

where C,, = 2" - % is the nth Catalan number. So, for each n > 1, one has

2. (2n — 3)!
(n—2)!

en=n!-Ch_1=

The following table reports the number s, of sequential compositional expressions,
the number s}, of simple compositional expressions, and the number e,, of compositional
expressions, for n = 2,3,4,5.

n| s, sy en
2 2 2 2

3 6 12 12
41 24 | 72 120
5 120 | 480 | 1680

Before closing this section, we want to mention a number of open problems left to
future research:

— the problem of testing the equivalence of any two compositional expressions with
the same base scheme and the same key;

— the recognition of “multiplicative models”, by which we mean compositional mod-
els for which there exists a closed-form formula (e. g., models generated by sequen-
tial compositional expressions or by canonical expressions);

— efficient procedures for marginalization in compositional models;

— a general form of composition expression in which a set can appear more than
once.

10. APPENDIX

In order to prove eq. , we first provide a formula for [6']¢ (see eq. below) for any
subexpression 6’ of #. To achieve this, we need some useful notations and two technical
lemmas. Let ag = (Xg, Xg41,-..,Xm) be the base sequence of ¢, for some k and m,
1 <k <m < n. It is convenient to partition the base scheme Hg = { Xy, Xpt1,..., Xim}
of #" into two subsystems Ry and Sy which are defined as follows:
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Ry = {Xz € Ho: : E|Xj € Her,j <1, Xj nNx;, = aQXz}
Sy = Hor — Ry .

Note that one always has Spr # ) since X, € Spr. By V(Syr) we denote the union of the
sets in Spr, by COM(Sy) the set of variables that are common to at least two distinct
sets in Sypr, and by UNI(Sy/) the complement of COM(Sy/) in V(Sy).

(20)

Example 10.1. Consider the canonical expression
0 =ABCD1> (((ABE> BCF)> FL)> (CDG > ADH) 1> (CI > BCM))).

Then
ap = (ABCD,ABE,BCF,FL,CDG,ADH,CI,BCM)

and

ABE | 0,ABE = AB
BCF | 9,BCF = BC
FL OFL =F
CDG | 9,CDG = CD
ADH | 0pADH = AD
cI 9CI =C
BCM | 9BCM = BC

For the following three subexpressions of 6:
01 = (ABE > BCF) 1> FL

0, = (CDG > ADH) > (CI>BCM)
(93 = (91) > (92)

we have
Ho, = {ABE,BCF,FL}
Ho, = {CDG,ADH,CI, BCM}
Ho, = {ABE,BCF,FL,CDG,ADH,CI, BCM}

and

h Ro, So, COM(Sy,)

1 {FL} {ABE,BCF} B

2 {CI} {CDG,ADH,BCM} CD

3| {FL,CI,BCM} | {ABE,BCF,CDG,ADH} ABCD

The next lemma states useful properties of Ry and Sy for any subexpression 6’ of a
canonical expression.
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Lemma 10.2. Let 6 be a canonical expression, and let ap = (X7,...,X,,). Let ' be a
subexpression of 8, let agr = (Xk, ..., Xmm), and let (Rg, Sp-) be the bipartition of Hy
defined by eq. .

(a) For each X; € Ry, one has that (X; — 99 X;) NV (Sy) = 0.
(b) For each X; € Sy — {Xl}, X, —09X; C UNI(SQ/)

Proof. (a) Let X; be any set in Ry. Suppose, by contradiction, that there exists a
variable A in X; — 09 X; that also belongs to some X; € Spr. Since 9pX; = (U1<i<iX;) N
X, one has that j > ¢ so that A € X; N X; C 0pX;. Moreover, since X; € Sypr and oy
enjoys the running intersection property, there exists h < k for which 0 X; = X5, N X
so that A € Xj,; but, since h < k < i one has A € X; N X, and, hence, A € 9y X;
(contradiction).

(b) Let X; be any set in Sp»—{X; }. Suppose, by contradiction, that there exists a variable
Ain X; —0p X, that also belongs to some X; € Sp/, j # ¢. Since 0 X; = (U1<i<: X1)NX;,
one has that j > ¢ so that A € 9pX;. Since X; € Spr and ag enjoys the running
intersection property, there exists h < k for which 9yX; = X;, N X;. To sum up,
one has A € 9pX; = Xp, N X, so that A € X;,. Finally, since h < k < ¢, one has
A€ X, NX; C0oyX; sothat A € 9pX; (contradiction). O

The following lemma provides a formula for [6'].

Lemma 10.3. Let 6 be a canonical expression, and let ag = (X1,...,X,). Let 8’ be a
subexpression of 6, and let agr = (X, ..., X) for some k and m, 1 <k <m < n. Let
(R, Spr) be the bipartition of Hy: defined by eq. , and let Iy = {i: X; € Rg:} and
Jo ={i: X; €Sp}. = (f1,...,fn) is a valid interpretation of 4, then

[el]f _ HkSiSm ffan. (21)
por X [Lier, Ji™

where pg is a function of COM(Sy) if COM(Sy ) # 0, and is a constant otherwise.

Proof. We now prove the statement by induction on the cardinality of Hy.

BASIS. If k = m, then [0l = fx. On the other hand, Ho = {X)} so that Rg = 0,
Spr = { X} and COM(Sy/) = 0. Therefore, eq. holds with pyr = 1.

INDUCTION. Assume that m > k and let ' = (61) > (62). Let ag, = (X,..., X)) and
ap, = (Xj41,...,Xm). Consider the bipartitions of Hp, and Hyp, defined by eq. (20)):

R91 Z{Xi EH@l 34,k <j<i, XjﬁXi=6gXi} 891 =H91 —Rel

Ro, ={Xi € Hp, : 3l +1<j <, X;NX; = 0pXi}  Sp, = Ho, — Rao,-

Let
Ith{i:XiEReh} JehZ{i:XiES(gh} (h=1,2).

Thus, Iy, U Jy, = {k,...,l} and Ip, U Jp, = {l +1,...,m}.
By the inductive hypothesis, one has
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Hielghucl(,h fi

10 X
Po,, X Hiel(,h I

where pg, is a function of COM(Sy,) if COM(Sy,) # 0, and is a constant otherwise,
h =1,2. Then, one has

[On]e = (h=1,2)

« [02]¢
2o AcV(05)—V (01 02]¢

[0']¢ = [01]¢

Explicitly, one has

"o Hkgigm fi
[0']e = 190 X, (22)
Do, X Po, X 0 X Hiefglufgz fi
where I f
[+1<i<m J %
o= Z [02]F = Z s 106X (23)
A€V (82)—V (61) A€V (62)—V (6,) POz % Hiefez 5

Let J' be the subset of Jp, defined as follows:
J/:{jGJQQZEIXiEHgl Xiﬂijé)ng}.
Then one has
Ig/i[glUIQQUJ/ JQI:J91UJ92—J/,
We shall prove that there exists a function g such that

18 X5,

(1) o =gxler f; ;

(13) po, X pe, X g is a function of COM(Sy ) if COM(Sy) # 0, and is a constant
otherwise.

Then, by (i) and (i1), eq. (22 can be re-written as

Hkgigm fi
106 X

[0']s =
p@l X p92 X g X Hi6191U192UJ' fZ

which proves the statement with pg: = pg, X pg, X g.
At this point, what remains to prove is the existence of a function g having properties

(1) and (i7).
Proof of (i). First of all, observe that, for each set X; € Hy, (that is, for each i €
Iy, U Jy,), since X; NV (0;) C 9pX; one has that (X; — 9pX;) N V(A1) = 0 so that
Xi — 80Xi Q V(eg) — V(@l) Let

U = Uier,, (X; — 09 X;) W = Uieu,, (Xi — 90Xi) VI =V(02) = (UUW).
Therefore, one has U NV (0;) =W NV (6;) =0 and

V(f2) —V(6) =UUWU (V' —=V(6)).
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Consider now the summation ZAev(ez)—v(el) in eq. . We first sum out the variables
in U, then the variables in W, and finally the variables in V' — V(6;). In other words,
we break the summation }_ 4cy g,y -y (g,) int0

2 D D

AEV/ =V (61) Aew AeU

Let us begin to sum out the variables in U. Let Iy, = {i1,...,i5-1,1s} wherei; < ... <

is_1 < 1g; thus,
U = (X“ - 69XZ-1) U...u (Xis—l - 89Xi5_1) U (‘leg - 89X“)

Then we sum out the variables in U in the following order: first the variables in X; —

0o X, next the variables in X;,_, — 09X, ,, ..., last the variables in X;, — 0pX,,:
sy (Mest) (M)
o lBGXiT :
A€Xi —09Xs,  A€Xi, —09Xi, Po, X H1gr§s i

By part (a) of Lemma for each r, 1 <7 < s, one has (X;, —9pX;, )NV (Sp,) = 0 so
that, since Sp, = {X; : i € Jp, } and py, is a function of COM(Sy,) or a constant, we can

Hing Ji
move — " to the left of the leftmost summation X, 95X, - Lhus, we obtain:
HieJ92 fi ngrgs fi.
YRR > 2 0 100X,
2 AGXil 789Xil AGXisfﬁgXis 1<r<s Ji,

Let

= 2 . % Abeshe

A€X; —09X:,  AEX,, —09 X, [h<r<s /i,
We now prove that o/ = 1. First of all, we re-write ¢’ as
=Y Y —ng‘sj}f; x fi..
Aexi —opxi,  Aexn—opx., Llico<s i
Note that, since X; N X, C 0pX;, for each r < s, one has that
Xi, N(X;, —0pX;,) =0

so that we can move L}éef;r to the left of the summation ) ;. 5 x, - Thus,

1<r<s Jip
we have

;o ngrgsfl fir )
ooy oy (e w )
1 A€X;, —0p X,

AeX; —0eXi,  A€Xi, ,—0eXi,_ H1§r§s fi,.
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_ Z Z ( Hl<r<s lfir f¢89X,5>

lagx
AeX;, —0pXiy A€X;,_;—0eXi,_ H1<’r<s

[licrcomi fin
= > > =rs flwsxb,

A€X;, —0p X, AeX; —0Xi,_ H1<7‘<s 1

ts—1

By repeating the same argument for r = s —1,...,1, we obtain ¢/ = 1. So,

o= Z Z 16192 fl

AEV'—V(0,) AEW

We now sum out the variables in W. By part (b) of Lemma for each i € Jy,, each
variable in X; — 0pX; is unique in Sp,. Therefore, one has

(XZ' - 89Xl) N COM(S@Z) = @

so that we can move ﬁ to the left of ), _y;,; moreover, owing to the uniqueness of the
2

> [ a- s

variables in W, we have

AGWiEJ92 i€J92
To sum up, we have
) 10 X
HiEJQQ fl 7,€J92 fZ
P T I I
Aew po. 2 Acw i€Jg, po,

and hence 190X,
HZEJ62 f !

Po,

- ¥

AEV' -V (61)
Note that, since (X; —9gX;) NCOM(Sy,) = 0 for each i € Jp,, one has COM(Sy,) C V'.
Consider now the factors fngxj for j € J' C Jy,. By the very definition of J’ one has

that 9pX; C V(6:1) for each j € J', so that in eq. we can move the factor fjlc?er
to the left of the summation }_ 4.y v (g,

(24)

100X
HZG]Q 7]’f o

Po,

o=1] fjlaexj x>

JjeJ’ AeV’'—V (61)

which with 190X,
[icsp, -0 £

Do,

9= >

AEV/ =V (6y)

reduces to the form stated in (7).
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Proof of (i7). Recall that py, is a function of COM(Sy,) if COM(Sy,) # 0, and is a
constant otherwise, h = 1,2. Moreover, g is a function of the set V/ NV (#;) which is
equal to the union of COM(Sy,) NV (61) with UNI(Sp,) NV (#;). Finally, since

COM(Sr) = COM(Sp, ) U COM(Ss,) U (UNI(Sp,) NV (61)),

Do, X P, X g is a function of COM(Sy/) if COM(Sy) # 0, and is a constant otherwise.
|

The following is an illustrative example of eq. .

Example 10.4. Consider again the canonical expression § of Example [10.1] Let f =
(f1, f2, ..., fs) be a valid interpretation of 6, and let f; be the distribution function on
X;, 1 <1 <8, where

X, =ABCD X, = ABE X3 =BCF Xy =FL

X;=CDG X¢=ADH X;=CI Xg=BCM

We now show that eq. holds for the three subexpressions 6; = (ABE>BCF)>FL,
0, = (CDG > ADH) > (CI > BCM) and 05 = (61) > (f2) of § mentioned in Example
10NN

e Recall that Sy, = {ABE, BCF} and COM(Sp,) = B; moreover, Ry, = {Xy =
FL} so that Iy, = {4}. For [#1]¢ one has

e = (o x L35) x Lo = LX s X N
3

P~ B |F
4 f37 < fy
which reduces to eq. (21) with

— po, = f47, which is a function of COM(Sy, );
— Hielgl f.weX"' = fiF which is the marginal of f4 on 9y X4 = F.

K2

e Recall that Sy, = {CDG,ADH, BCM} and COM(Sy,) = CD; moreover, Ry, =
{X7 = CI} so that Iy, = {7}. For [f2]¢ one has

frxfs
[9]_f5><f6>< 1C  Js X foe X fr X fs
2T THIDT T fixfs ~ 1D o ¢1C  ¢IC
6 B,I,M "fIC 6 7 8

which reduces to eq. with

— pg, = [P x f+€, which is a function of COM(Sp, );

100X _ plC
- Hie]e2 fi ’ - J7 -
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e Recall that Sy, = {ABE, BCF,CDG,ADH} and COM(Sy,) = ABCD; moreover,
Ro, = {X4=FL,X; =CI, Xg = BCM} so that Iy, = {4,7,8}. For [05]¢ one has

f5><f6><f7><f8
fa X f3 X f4 I O x fiC
[ 3]f = X o
?fB % lF ZDG fs X fo X fr X fs

GILH,M LD 16 IO

fox fax fax fs X fo X frx fs

|B lF D 1c |BC FEOPx fiAP
3 X X fo X f7T x 7T X Xp f61D6
which reduces to eq. with
lB fLCD flAD . . .
— po; = Xy St , which is a function of COM(S,);
90X F c BC
_HzEIQSfle l><7l><i
At this point, we are in a position to prove eq. .
Theorem 10.5. Let 6 be a canonical expression and let ag = (X1,...,X,,) be its base
sequence. If £ = (f1,..., fn) is a valid interpretation of 4, then
f - fl X H iaex
2<i<n i

Proof. Since 6 is a subexpression of itself, we can apply Lemma [10.3| with 6’ = 6.
Since Rg = {X2,..., X} and S = {X1}, one has I = {2,...,n}, Jop = {1} and
COM(Sy) = 0, so that eq. reduces to

[e]f o H1<7,<n fl
Do X H2<¢<n flagx

where py is a constant. What remains to prove is that pp = 1. Since [f]¢ is an extension
of fi, one has
Z [0]¢ = fi1.
AeV(0)—X,
On the other hand, it is easy to see that

1<i<nfi
> - Yoy el

AEV(0)—X1 ACXs—09Xs  AEX,—0pX, PO X [lo<icn

- Y ¥ LT

10g X
AEX2—89Xs  AEXp_1—89Xn_1 PO X H2§i§n—1 fi

which implies that pg = 1. |
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