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Abstract. In this paper, we consider self-mappings defined on a metric space endowed with
a finite number of graphs. Under certain conditions imposed on the graphs, we establish
a new fixed point theorem for such mappings. The obtained result extends, generalizes
and improves many existing contributions in the literature including standard fixed point
theorems, fixed point theorems on a metric space endowed with a partial order and fixed
point theorems for cyclic mappings.

Keywords: fixed point; graph; metric space; order; cyclic map

MSC 2010 : 47H10, 05C40, 06A06

1. Introduction

Given a nonempty set X and a mapping T : X → X , a point x ∈ X is said to be

fixed under T if Tx = x; the set of all these points will be denoted as Fix(T ). Metric

fixed point theory is the branch of analysis which focuses on the existence, unique-

ness and localization of fixed points under metric conditions on both the domain of

the mapping and the mapping itself. Banach’s contraction principle is considered

a fundamental result of this theory. It guarantees existence and uniqueness of fixed

points for mappings T : X → X , where (X, d) is a complete metric space and T is

a (metrical) contraction, i.e.,

d(Tx, T y) 6 kd(x, y),

for all x, y ∈ X , and some k ∈ (0, 1). This principle has been generalized and

The authors extend their appreciation to the Deanship of Scientific Research at King Saud
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extended by many authors in several directions (see, for example, [6], [7], [8], [11],

[13], [14], [15], [22]).

In [10], Espinola and Kirk provided useful results by combining fixed point theory

and graph theory. In [13], Jachymski developed this idea from a different perspective;

and in [4], Beg, Butt and Radojević extended some of Jachymski’s results to the case

of set-valued mappings. Very recently, Aleomraninejad, Rezapour and Shahzad [2]

presented some iterative scheme results for G-contractive and G-nonexpansive map-

pings on graphs.

In this paper, we establish fixed point results for self-mappings defined on a met-

ric space endowed with a finite number of graphs. Our statements generalize and

improve many existing fixed point theorems in the literature including theorems on

ordered metric spaces and theorems for cyclic mappings.

2. Preliminaries and notation

In this section, we introduce some concepts and give some examples.

Definition 2.1. A graph G is defined as a pair of sets G = (V,E) with E ⊆

V × V . We say that V is the vertex set and E is the edge set.

Definition 2.2. Let G = (V,E) be a graph and D be a subset of V . We say

that D is G-directed if for every x, y ∈ D there exists z ∈ V such that (x, z) and

(y, z) are edges of G.

Example 2.1. Let V = F([0, 1],R) be the set of functions f : [0, 1] → R. Define

E ⊂ V × V by

(u, v) ∈ E ⇐⇒ u(t) 6 v(t), for all t ∈ [0, 1].

Then G = (V,E) is a graph. Let D = C([0, 1],R) be the set of continuous functions

f : [0, 1] → R. Then D is G-directed. Indeed, for every u, v ∈ D, z = max{u, v}

satisfies (u, z) ∈ E and (v, z) ∈ E.

Let (V, d) be a metric space. We consider a family G = {Gi}
p
i=1 of p graphs (p > 1)

such that Gi = (V,Ei), Ei ⊆ V × V , i = 1, 2, . . . , p.

Definition 2.3. Let T : V → V be a given mapping. We say that T is G-

monotone if for all i = 1, 2, . . . , p we have

(x, y) ∈ Ei =⇒ (Tx, T y) ∈ Ei+1,

with Ep+1 = E1.

Remark 2.1. If p = 1 (G = G1), we say that T preserves edges of G (see [13]).
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Example 2.2. Consider the sets

V = [0, 2], E1 = [0, 1]× [1, 2], E2 = [1, 2]× [0, 1].

Let G = {Gi}
2
i=1 be the family of graphs Gi = (V,Ei), i = 1, 2. Define the mapping

T : V → V by

Tx =











x+ 1, if x ∈ [0, 1),

x− 1, if x ∈ (1, 2],

1, if x = 1.

Observe that

(x, y) ∈ E1 =⇒ (Tx, T y) ∈ E2

and

(x, y) ∈ E2 =⇒ (Tx, T y) ∈ E1.

Then T is G-monotone.

Definition 2.4. We say that the pair (G, d) is regular if the following condition

holds: if {xn} is a sequence in V such that for all i ∈ {1, 2, . . . , p} there exists

a subsequence {xmi,k
} of {xn} satisfying

(xmi,k
, xmi,k+1) ∈ Ei, for all k;(2.1)

d(xn, x) → 0 as n → ∞ for some x ∈ V,(2.2)

then there exist a subsequence {xnk
} of {xn} and a rank j ∈ {1, 2, . . . , p} such that

(xnk
, x) ∈ Ej , for all k.

Example 2.3. Let V = C([0, 1],R) be the set defined by

V = {f : [0, 1] → R : f is continuous}.

Define E ⊂ V × V by

(u, v) ∈ E ⇐⇒ u(t) 6 v(t), for all t ∈ [0, 1].

Consider the graph G = (V,E). We endow V with the metric d given by

d(u, v) = max
06t61

|u(t)− v(t)|, for all u, v ∈ V.

Let {xn} be a sequence in V and x be a point in V satisfying conditions (2.1) and

(2.2), i.e.,
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(a) there exists a subsequence {xmk
} of {xn} such that

xmk
(t) 6 xmk+1(t), for all k, for all t ∈ [0, 1];

(b) max
06t61

|xn(t)− x(t)| → 0 as n → ∞.

Then (xmk
, x) ∈ E for all k, which implies that the pair (G, d) is regular.

Let Φ be the set of functions ϕ : [0,∞) → [0,∞) satisfying

(P1) ϕ is nondecreasing;

(P2)
∞
∑

n=1

ϕn(t) < ∞ for each t > 0, where ϕn is the n-th iterate of ϕ.

The following auxiliary fact is immediate, so we omit its proof.

Lemma 2.1. Let ϕ be a function in Φ. Then ϕ(t) < t for all t > 0.

3. Main result

Let (V, d) be a metric space. We consider a family G = {Gi}
p
i=1
of p graphs

(p > 1) such that Gi = (V,Ei), Ei ⊆ V × V , i = 1, 2, . . . , p. Let T : V → V be

a given mapping. Our main result is the following.

Theorem 3.1. Suppose that the following conditions hold:

(a) (V, d) is complete;

(b) T is G-monotone;

(c) there exists x0 ∈ V such that (x0, T x0) ∈ E1;

(d) (G, d) is regular;

(e) there exists ϕ ∈ Φ such that

(3.1) d(Tx, T y) 6 ϕ(d(x, y)), for all (x, y) ∈ Ei, i = 1, 2, . . . , p.

Then T has a fixed point. Moreover, if there exists i ∈ {1, 2, . . . , p} such that Fix(T )

is Gi-directed, we obtain uniqueness of the fixed point.

P r o o f. From (c), there exists x0 ∈ V such that (x0, T x0) ∈ E1. Define the

sequence {xn} in V by

xn+1 = Txn, n = 0, 1, 2, . . .

If xn+1 = xn for some n, then xn is a fixed point of T and the existence of a fixed

point is proved. Now, suppose that

(3.2) xn+1 6= xn, n = 0, 1, 2, . . .
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Since T is G-monotone, for all n > 0, there exists i = i(n) ∈ {1, 2, . . . , p} such that

(xn, xn+1) ∈ Ei. For all n > 1, applying the inequality (3.1) with x = xn−1 and

y = xn, we obtain

(3.3) d(xn, xn+1) = d(Txn−1, T xn) 6 ϕ(d(xn−1, xn)).

Using (P1), by induction, we get

(3.4) d(xn, xn+1) 6 ϕn(d(x0, x1)), for all n > 0.

Fix ε > 0 and let h = h(ε) be a positive integer (given by (P2)) such that

∑

n>h

ϕn(d(x1, x0)) < ε.

Let m > n > h. Using the triangular inequality and (3.4), we obtain

d(xn, xm) 6

m−1
∑

k=n

d(xk, xk+1) 6

m−1
∑

k=n

ϕk(d(x0, x1)) 6
∑

n>h

ϕn(d(x0, x1)) < ε.

Thus we proved that {xn} is a Cauchy sequence in the metric space (V, d). Since

(V, d) is complete, there exists x∗ ∈ V such that

(3.5) lim
n→∞

d(xn, x
∗) = 0.

Clearly the sequence {xn} satisfies conditions (2.1) and (2.2) with x = x∗. Since

(G, d) is regular, there exist a subsequence {xnk
} of {xn} and a j ∈ {1, 2, . . . , p}

such that (xnk
, x∗) ∈ Ej , for all k. Applying (3.1) with x = xnk

and y = x∗, we

obtain

(3.6) d(xnk+1, T x
∗) = d(Txnk

, T x∗) 6 ϕ(d(xnk
, x∗)), for all k.

Denote ̺ = d(x∗, T x∗). Suppose that ̺ > 0. By (3.5), there exists p = p(̺) such

that

d(xnk
, x∗) 6

1

2
̺, for all k > p.

Substituting into (3.6) yields (as ϕ is nondecreasing)

d(xnk+1, T x
∗) 6 ϕ

(1

2
̺
)

, for all k > p.
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So, passing to limit as k tends to infinity, one derives from Lemma 2.1

̺ 6 ϕ
(1

2
̺
)

<
1

2
̺ < ̺,

which is a contradiction. Then, ̺ = 0, i.e., d(x∗, T x∗) = 0, hence x∗ ∈ V is a fixed

point of T .

Now, suppose that there exists i ∈ {1, 2, . . . , p} such that Fix(T ) is Gi-directed.

We shall prove that x∗ is the unique fixed point of T . Suppose that y∗ ∈ V is

another fixed point of T . Then there is z ∈ V such that (x∗, z) and (y∗, z) are edges

of Gi. Define the sequence {zn} in V by z0 = z and zn+1 = Tzn for all n > 0.

Since T is G-monotone, for all n > 0, there exists i = i(n) ∈ {1, 2, . . . , p} such that

(x∗, zn) ∈ Ei. Applying (3.1), for all n > 0, we have

(3.7) d(zn+1, x
∗) = d(Tzn, T x

∗) 6 ϕ(d(zn, x
∗)).

Now, we shall prove that

(3.8) lim
n→∞

d(zn, x
∗) = 0.

From (3.7), by induction, we get

d(zn, x
∗) 6 ϕn(d(z0, x

∗)), for all n.

Letting n → ∞ in the above inequality yields (3.8). Similarly, we can prove that

(3.9) lim
n→∞

d(zn, y
∗) = 0.

It follows from (3.8) and (3.9) that x∗ = y∗. This concludes the proof. �

Remark 3.1. It is easy to observe that condition (c) of Theorem 3.1 can be

replaced by: there exists x0 ∈ V such that (x0, T x0) ∈ Ei for some i ∈ {1, 2, . . . , p}.

Taking ϕ(t) = kt with k ∈ (0, 1) in Theorem 3.1, we obtain

Corollary 3.1. Suppose that the following conditions hold:

(a) (V, d) is complete;

(b) T is G-monotone;

(c) there exists x0 ∈ V such that (x0, T x0) ∈ E1;

(d) (G, d) is regular;

(e) there exists k ∈ (0, 1) such that

d(Tx, T y) 6 kd(x, y), for all (x, y) ∈ Ei, i = 1, 2, . . . , p.
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Then T has a fixed point. Moreover, if there exists i ∈ {1, 2, . . . , p} such that Fix(T )

is Gi-directed, we obtain uniqueness of the fixed point.

Remark 3.2. Taking V = X , p = 1 and E1 = X×X in Corollary 3.1, we recover

the Banach contraction principle.

4. Applications

We now derive further consequences of our main result.

4.1. Fixed point theorems on a metric space with a partial order.

Recently, there have been many exciting developments in the field of existence of

fixed points in partially ordered metric spaces. For more details, we refer the reader

to the papers by Turinici [23], Ran and Reurings [19], Nieto and López [16], [17],

Agarwal et al. [1], Ćirić et al. [9], Harjani and Sadarangani [12], Altun and Simsek [3],

Jachymski [13], Bhaskar and Lakshmikantham [5], Petruşel and Rus [18], Samet et

al. [20], [21], and the references therein.

Let (X,�) be a partially ordered metric space. We say that that the pair (X,�)

satisfies the property (H) if

(H) ∀ (x, y) ∈ X ×X, ∃ z ∈ X such that x � z and y � z.

Definition 4.1. We say that (X,�, d) is regular if the following condition holds:

if {xn} is a sequence in X whose consecutive terms are comparable and d(xn, x) → 0

as n → ∞ for some x ∈ X , then there exists a subsequence {xnk
} of {xn} such that

every term is comparable to the limit x.

Definition 4.2. Let T : X → X be a given mapping. We say that T is a com-

parative mapping if T maps comparable elements into comparable elements, that

is,

x, y ∈ X, x � y =⇒ Tx � Ty or Ty � Tx.

We have the following result.

Corollary 4.1. Let (X,�, d) be a partially ordered metric space satisfying (H),

such that (X, d) is complete. Let T : X → X be a given mapping. Suppose that the

following conditions hold:

(i) T is a comparative mapping;

(ii) there exists x0 ∈ X such that x0 � Tx0 or Tx0 � x0;

(iii) (X,�, d) is regular;
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(iv) there exists ϕ ∈ Φ such that

d(Tx, T y) 6 ϕ(d(x, y)), for all x, y ∈ X, x � y.

Then T has a unique fixed point.

P r o o f. It follows from Theorem 3.1 by taking V = X , p = 1 and G = {G1},

where G1 = (V,E1) with

E1 = {(x, y) ∈ X ×X ; x � y or y � x}.

�

Remark 4.1. Taking ϕ(t) = kt with k ∈ (0, 1) in Corollary 4.1, we obtain a fixed

point result of Nieto and Lopez [17] (see also [16]).

4.2. Fixed point theorems for cyclic contractive mappings. The following

notion was introduced in [15].

Definition 4.3. Let X be a nonempty set, p a positive integer and T : X → X

an operator. By definition, X =
p
⋃

i=1

Ai is a cyclic representation of X with respect

to T if

(c1) Ai, i = 1, 2, . . . , p are nonempty sets;

(c2) T (A1) ⊆ A2, . . . , T (Ap−1) ⊆ Ap, T (Ap) ⊆ A1.

Let (X, d) be a metric space. We denote by Pcl(X) the collection of nonempty

closed subsets of X .

Definition 4.4. Let (X, d) be a metric space, p a positive integer, A1, A2, . . . ,

Ap ∈ Pcl(X), Y :=
p
⋃

i=1

Ai and T : Y → Y an operator. If

(I)
p
⋃

i=1

Ai is a cyclic representation of Y with respect to T ;

(II) there exists ϕ ∈ Φ such that

d(Tx, T y) 6 ϕ(d(x, y)), for all x ∈ Ai, y ∈ Ai+1, where Ap+1 = A1,

then T is a cyclic ϕ-contraction.

We have the following result.
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Corollary 4.2. Let (X, d) be a complete metric space, p a positive integer,

A1, . . . , Ap ∈ Pcl(X), Y :=
p
⋃

i=1

Ai, ϕ ∈ Φ and T : Y → Y an operator. Assume that

(i)
p
⋃

i=1

Ai is a cyclic representation of Y with respect to T ;

(ii) T is a cyclic ϕ-contraction.

Then T has a unique fixed point in
p
⋂

i=1

Ai.

P r o o f. Let V = Y and consider the family of graphs G = {Gi}
p
i=1, where

Gi = (V,Ei), Ei = Ai ×Ai+1, Ap+1 = A1, i = 1, 2, . . . , p.

Since A1, A2, . . . , Ap ∈ Pcl(X) and (X, d) is complete, (V, d) is a complete metric

space. Let (x, y) ∈ Ei for some i ∈ {1, 2, . . . , p}. From condition (i), we have

T (Ai) ⊆ Ai+1 and T (Ai+1) ⊆ Ai+2. This yields (Tx, T y) ∈ Ai+1 × Ai+2, i.e.,

(Tx, T y) ∈ Ei+1. Then T is G-monotone. Let x0 ∈ A1 (such a point exists since

A1 6= ∅). Since T (A1) ⊆ A2, we have Tx0 ∈ A2, which implies that (x0, T x0) ∈ E1.

Now, we shall prove that (G, d) is regular. Let {xn} be a sequence in V and x be

a point in V satisfying (2.1) and (2.2). For i ∈ {1, ..., p}, there exists a subsequence

{xmi,k
} of {xn} such that (xmi,k

, xmi,k+1) ∈ Ei, for all k, which yields xmi,k
∈ Ai,

for all k. Since Ai is closed and d(xn, x) → 0 as n → ∞, we obtain x ∈ Ai; so, as

i ∈ {1, . . . , p} was arbitrarily chosen, we get that x ∈
p
⋂

i=1

Ai. This yields, by the

choice of our subsequences, (xmi.k
, x) ∈ Ei, for all i ∈ {1, . . . , p} and all k. Thus we

proved that (G, d) is regular. Finally, we shall prove that Fix(T ) is G1-directed. Let

x, y ∈ Fix(T ). From (i), we have x, y ∈
p
⋂

i=1

Ai, which implies that (x, y) ∈ E1 and

(y, y) ∈ E1, and our claim is proved. Now, all the hypotheses of Theorem 3.1 being

satisfied, we deduce that T has a unique fixed point in V . Moreover, from (i), this

fixed point belongs to
p
⋂

i=1

Ai �

Remark 4.2. Taking in Corollary 4.2 ϕ(t) = kt with k ∈ (0, 1) in Corollary 4.2,

we obtain Theorem 1.3 in [15].
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