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Abstract. We give a heuristic proof of a conjecture of Hardy and Littlewood concerning
the density of prime pairs to which twin primes and Sophie Germain primes are special cases.
The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and
the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof
is due to the lack of justification of interchange of certain limits. Experimental evidence
using computer calculations is provided for the plausibility of the result. We have also shown
that our argument can be extended to the m-tuple conjecture of Hardy and Littlewood.
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1. Introduction

The twin prime problem asks the question: Are there infinitely many prime pairs of

the form (p, p+2)? Another outstanding problem in number theory is regarding the

Sophie Germain primes. A positive integer p is called a Sophie Germain prime if both

p and 2p + 1 are primes, (2, 5), (3, 7), (5, 11), (11, 23) for example. Again one asks

the question: Are there infinitely many Sophie Germain primes? In this paper we

offer a heuristic proof based on the Ramanujan-Fourier series and numerical evidence

to affirm the truth of the conjectures in a more general setting. In [12], Hardy and

Littlewood made several conjectures regarding the expression of a number as a sum

of primes. We state their Conjecture D (page 45 of [12]) below.

Conjecture D. Let a, b and l be positive integers, where (a, b) = 1. Let

π(a,b,l)(N) denote the number of prime pairs (p, p′) satisfying the condition ap′−bp =
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l such that p′ < N . Then

(1.1) π(a,b,l)(N) = o
( N

log2 N

)

unless (l, a) = 1, (l, b) = 1, and just one of a, b, l is even. But if these conditions are

satisfied then

(1.2) π(a,b,l)(N) ∼ 2C

a

N

log2 N

∏

p|abl
p>2

p− 1

p− 2
,

where

(1.3) C =
∏

p>2

(

1− 1

(p− 1)2

)

,

and p denotes a prime.

The twin prime problem corresponds to the case a = b = 1 and l = 2. The

Sophie Germain prime problem corresponds to the case a = 1, b = 2 and l = 1.

The recent work of Yitang Zhang [21] has led to the revival of interest in the twin

prime problem. Sophie Germain primes are currently of great interest after the

famous AKS algorithm for primality testing [1]. If the conjecture about the density

of Sophie Germain primes is true, then the complexity of the AKS algorithm can

be brought down to O(log6 n). Sophie Germain primes are the most sought after

primes for the RSA algorithm as they are robust against Pollard’s p− 1 method of

factoring [18].

Note that (1.1) can be easily proved. If (l, a) > 1 (similarly if (l, b) > 1), then

(l, a) | bp and since (a, b) = 1, (l, a) | p. If (l, a) is composite, then there are no
solutions and if (l, a) is prime, then there will be at most one solution. Hence (1.1)

holds trivially.

The present paper consists of the following sections. In Section 2, we give a brief

historical overview, in Section 3 we state the main result and give the heuristic proof,

in Section 4, we give numerical evidence of our main result for various choices of a

and b and in Section 5 we show that the same argument can be extended to prove

the m-tuple conjecture of Hardy and Littlewood.
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2. Historical overview

This section consists of three independent parts. Section 2.1 traces the conjectures

made in the additive number theory and the methods to prove them. Section 2.2

gives an introduction to the Ramanujan-Fourier series. In Section 2.3 we state the

Wiener-Khintchine theorem.

2.1. Main conjectures in additive number theory. It is well known that

the two main methods in the additive number theory are the circle method and the

sieve method. We will give a brief historical overview of the subject closely following

the references [2], [4], [5], [9], and [12]. The conjecture of the type given above

(Conjecture D) was first made by J. J. Sylvester regarding the Goldbach problem. It

is not known how he arrived at the conjecture. If ν(n) denotes the number of ways an

even integer n can be expressed as a sum of two primes, then Sylvester conjectured

that

(2.1) ν(n) ∼ 2π(n)
∏

36p6n
p∤n

p− 2

p− 1
,

where π(n) denotes the number of primes up to n. Using the prime number theorem

and Merten’s theorem

(2.2)
∏

p6x

(

1− 1

p

)

∼ e−γ

log x
,

where γ is Euler’s constant, it can be shown that

(2.3) ν(n) ∼ 4Ce−γ n

log2 n

∏

p|n
p>2

p− 1

p− 2
.

Stäckel made a similar conjecture (page 423, Chapter XVIII of [5]):

(2.4) ν(n) ∼ n

log2 n

∏

p|n

p

p− 1

which was proved to be incorrect by Landau. It was Merlin and Brun who used the

sieve method to attack the Goldbach problem and the twin prime problem. It was

shown by Hardy [9] that Brun’s argument will lead to

(2.5) ν(n) ∼ 8Ce−2γ n

log2 n

∏

p|n
p>2

p− 1

p− 2
.
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However, Hardy showed that both the formulae (2.3) and (2.5) contain an erroneous

factor involving e−γ and the correct formula should be

(2.6) ν(n) ∼ 2C
n

log2 n

∏

p|n
p>2

p− 1

p− 2
.

Using his sieve method, Brun [2] proved that every large integer n can be expressed

as m1+m2 where both m1 andm2 contain at most 9 prime factors, and also that the

number of such decompositions is of the order n/ log2 n at least. Also Brun proved

that

(2.7) π(1,1,2)(N) 6 100
N

log2 N

for the number of twin primes up to N for all N > N0 [2]. This result was the first

of the kind where an upper bound was obtained.

The circle method was first used by Hardy and Ramanujan to attack the partition

problem. This reduces to understanding the generating function of the partition

function p(n) given by

(2.8)

∞
∑

n=0

p(n)xn =
1

(1− x)(1 − x2)(1− x3) . . .
.

The key observation that led to the development of the circle method was that p(n)

could be written as

(2.9)
1

2πi

∫

C

1

(1− z)(1− z2)(1 − z3) . . .
z−n−1 dz,

where C is the circle |z| = r and r < 1. Hardy and Ramanujan observed that the

right hand side of (2.8) is (apart from an innocuous factor) the Dedekind eta function

which satisfies a modular transformation law. This transformation law allows one

to determine the residue at each of the singularities occurring in the integrand of

(2.9). Namely, the singularities are the roots of unity and one needs to take r close

to 1 near each of the singularities. Their epic paper gave rise to the celebrated circle

method.

We would like to remark that clues that the roots of unity play an important role

in additive number theoretic problems are available in the work of several authors,

see ([13], [11]), in which a simple minded partial fraction expansion yields

1

(1− x)(1 − x2)(1− x3)
(2.10)

=
1

6(1− x)3
+

1

4(1− x)2
+

17

72(1− x)
+

1

8(1 + x)
+

1

9(1− ωx)
+

1

9(1− ω2x)
,
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where ω and ω2 denote the two complex cube roots of unity. If

(2.11)
1

(1− x)(1 − x2)(1 − x3)
= 1 +

∞
∑

n=1

r(n)xn,

then

(2.12) r(n) =
(n+ 3)2

12
− 7

72
+

(−1)n

8
+

2

9
cos
(2nπ

3

)

.

Hardy and Ramanujan (page 275, [16]) obtained the asymptotic formula for the

partition function

(2.13) p(n) =
1

2π

√
2

α
√
n

∑

k=1

k1/2Ak(n)
d

dn

exp π

k

√

2
3λn

λn
+O(n−1/4),

and Rademacher (page 274, [16]) obtained an exact formula

(2.14) p(n) =
1

π

√
2

∞
∑

k=1

k1/2Ak(n)
d

dn

sinh π

k

√

2
3λn

λn
,

where λn =
√

n− 1
24 , Ak(n) =

∑

h mod k
(h,k)=1

ωhke
−2πihn/k, ωhk = eiπs(h,k) and s(h, k) =

∑

µ mod k

((µ/k))((hµ/k)), where

(2.15) ((x)) =

{

x− [x]− 1
2 , if x is not an integer,

0 if x is an integer.

In both the formulae, one can see that the roots of unity play an important role.

After Ramanujan’s untimely death, Hardy along with Littlewood went on attack-

ing the other problems in the additive number theory like Waring’s problem and the

Goldbach problem using the circle method. In the circle method, the unit circle is

divided into major arcs and minor arcs. The major arcs are the union of segments of

the unit circle centering around the points e2πik/q , where 1 6 k 6 q, (k, q) = 1 and

q’s are small and the remaining parts form the minor arcs. The circle method was

successful in solving the ternary Goldbach problem and Waring’s problem for large

integers, where the major arc contribution could be shown to dominate the minor

arc contribution. However, the circle method is not successful in giving a proof of

the binary Goldbach conjecture and the twin prime conjecture (even assuming the
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Riemann hypothesis). Hardy and Littlewood made their conjectures (like Conjec-

ture D) from the major arc contribution which can be expressed in terms of what is

called singular series.

While Hardy and Littlewood shifted their focus to the complex analytic aspects

of the circle method, Ramanujan wrote a paper in which he introduced the concept

of what is now called the Ramanujan-Fourier expansion for arithmetical functions

which we will describe below.

2.2. Ramanujan-Fourier series. In [17], Ramanujan showed that many impor-

tant arithmetical functions a(n) have an expansion of the form

(2.16) a(n) =

∞
∑

q=1

aqcq(n),

where

(2.17) cq(n) =

q
∑

k=1
(k,q)=1

e2πink/q

is called the Ramanujan sum and the aq’s are known as the Ramanujan-Fourier

coefficients. He obtained such expansions for d(n), σ(n), ϕ(n) and so on where d(n)

denotes the number of divisors of n, σ(n) denotes the sum of divisors of n and ϕ(n)

denotes the number of positive integers less than n and coprime to n. For example,

he showed that

d(n) = −
∞
∑

q=1

log q

q
cq(n),(2.18)

σ(n) =
π
2n

6

∞
∑

q=1

cq(n)

q2
.(2.19)

Ramanujan proved these formulae by elementary methods. He used finite algebra

and simple general theorems concerning infinite series.

In [10], Hardy proved that the Ramanujan sum is a multiplicative function of q,

that is

(2.20) cqq′(n) = cq(n)cq′ (n) if (q, q′) = 1.

Also, if p is prime, then

(2.21) cp(n) =

{

−1, if p ∤ n,

p− 1, if p | n.
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Using the properties of cq(n) and the theory of analytic functions Hardy rederived

many of Ramanujan’s formulae like (2.19). He also obtained the Ramanujan-Fourier

expansion for (ϕ(n)/n)Λ(n), where Λ(n) is the von Mangoldt function

(2.22) Λ(n) =

{

log p, if n = pk, p is prime and k any positive integer,

0, otherwise.

That is,

(2.23)
ϕ(n)

n
Λ(n) =

∞
∑

q=1

µ(q)

ϕ(q)
cq(n),

where µ(q) is the Möbius function defined as follows:

(2.24) µ(q) =

{

(−1)k, if q = p1p2 . . . pk, pi’s are distinct primes,

0 , otherwise.

We would like to make a remark here as to why rational points dominate in the circle

method. It is simply because of the fact that the a(n)’s have Ramanujan-Fourier

expansions which give rise to simple poles at all rational points on the unit circle.

For,

∞
∑

n=1

a(n)xn =

∞
∑

n=1

∞
∑

q=1

q
∑

k=1
(k,q)=1

aqe
2πink/qxn(2.25)

=

∞
∑

q=1

q
∑

k=1
(k,q)=1

aq

∞
∑

n=1

(e2πik/qx)n(2.26)

=

∞
∑

q=1

q
∑

k=1
(k,q)=1

aq
e2πik/qx

1− e2πik/qx
.(2.27)

The Goldbach problem and the twin prime problem correspond to a(n) = (ϕ(n)/n)×
Λ(n) and aq = µ(q)/ϕ(q), see (2.23).

However, neither Ramanujan nor Hardy gave a formula for finding the Ramanujan-

Fourier coefficients which are the backbone of Fourier analytic approach to such

questions. This was done later by Carmichael [3]. He proved orthogonality relations

for cq(n) and this led to a method of evaluating the Ramanujan-Fourier coefficients.

Let M(f) denote the mean value of an arithmetical function f , that is

(2.28) M(f) = lim
N→∞

1

N

∑

n6N

f(n).
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For 1 6 k 6 q, (k, q) = 1, let ek/q(n) = e2πink/q (n ∈ N). If a(n) is an arithmetical

function with expansion (2.16) then

(2.29) aq =
1

ϕ(q)
M(acq) =

1

ϕ(q)
lim

N→∞

1

N

∑

n6N

a(n)cq(n).

Also,

(2.30) M(ek/qek′/q′) =















1, if
k

q
=

k′

q′
,

0, if
k

q
6= k′

q′
.

Now we state a theorem which is used in electrical engineering and the theory of

probability.

2.3. The Wiener-Khintchine theorem. The Wiener-Khintchine theorem ([6],

[19], [14]) basically says that if

(2.31) f(t) =
∑

n

fne
iλnt,

then

(2.32) lim
T→∞

1

2T

∫ T

−T

f(t+ τ)f(t) dt =
∑

n

|fn|2eiλnτ .

The left hand side of (2.32) is called an autocorrelation function. The right hand

side is nothing but the power spectrum. It is used practically to extract hidden

periodicities in seemingly random phenomena [15]. For recent historical comments

on this topic, see [20].

3. Main result

In this section we give our main result and its proof.

3.1. Statement of main result. Let Λ1(n) = ϕ(n)n−1Λ(n). Also let

Ψ(a,b,l)(N) =
∑

n6N

Λ1(n)Λ1

(bn+ l

a

)

.
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Then, up to interchange of certain limits (which we cannot at present justify),

(3.1) lim
N→∞

1

N
Ψ(a,b,l)(N) =











2C

a

∏

p|abl
p>2

p− 1

p− 2
, if (a, l) = (b, l) = 1

and exactly one of a, b, l is even,

0, otherwise.

Note that (1.2) (that is, Conjecture D) follows immediately from (3.1). See for

example [7]. We hope our approach can be developed along more rigorous lines into

a viable theory.

In [7], we showed that the twin prime problem is related to autocorrelation and

hence to the Wiener-Khintchine theorem. The key idea in this paper can be extended

to prove (3.1).

3.2. Outline of the proof. Our approach uses the following tools.

1. The Ramanujan-Fourier series for Λ1(n).

2. Carmichael’s formula for getting the Ramanujan-Fourier coefficients for arith-

metical functions.

3. The Wiener-Khintchine theorem for arithmetical functions which we state be-

low.

For an arithmetical function a(n) having the Ramanujan-Fourier series

a(n) =

∞
∑

q=1

aqcq(n),

the Wiener-Khintchine formula can be stated as

(3.2) lim
N→∞

1

N

∑

n6N

a(n)a(n+ h) =

∞
∑

q=1

a2qcq(h)

up to a certain convergence criterion.

4. Multiplicative property of cq(n). If aq’s are also multiplicative, then the singular

series
∞
∑

q=1

a2qcq(h), if it converges, can be expressed as an Euler product. That is,

(3.3)

∞
∑

q=1

a2qcq(h) =
∏

p

(1 + a2pcp(h) + . . .).

Unfortunately, we are not able to prove the Wiener-Khintchine theorem for Λ1(n)

as its Ramanujan-Fourier series is not uniformly and absolutely convergent. Hence

our proof remains heuristic as an interchange of certain limits has to be justified.
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However, numerical evidence is given for various choices of a and b which shows

remarkable accuracy of the conjecture.

In [8], Solomon Golomb introduced the Lambda method to study the twin prime

problem. As in our argument below, Golomb runs into the same problem of an

unjustified interchange of summation.

3.3. “Proof” of main result. Using the results in Section 2.2, we prove (3.1).

Since

(3.4)
1

a

a−1
∑

j=0

e2πimj/a =

{

1, if a | m,

0, if a ∤ m,

and noting that

(3.5) cq(n) =

q
∑

k=1
(k,q)=1

e2πink/q =

q
∑

k=1
(k,q)=1

e2πink/q,

we write

lim
N→∞

1

N
Ψ(a,b,l)(N) = lim

N→∞

1

N

∑

n6N

Λ1(n)Λ1

(bn+ l

a

)1

a

a−1
∑

j=0

e−2πi(j/a)(bn+l)

?
=

(

1

a

a−1
∑

j=0

∞
∑

q=1

q
∑

k=1
(k,q)=1

∞
∑

q′=1

q′
∑

k′=1
(k′,q′)=1

µ(q)

ϕ(q)

µ(q′)

ϕ(q′)
e−2πi(k′/q′+j)l/a

)

×
(

lim
N→∞

1

N

∑

n6N

e2πi(k/q−(k′/q′)(b/a)−j(b/a))n

)

(3.6)

=
1

a

a−1
∑

j=0

∞
∑

q=1

q
∑

k=1
(k,q)=1

∞
∑

q′=1

q′
∑

k′=1
(k′,q′)=1

k/q=(k′/q′+j)b/a

µ(q)

ϕ(q)

µ(q′)

ϕ(q′)
e−2πi(k′/q′+j)l/a(3.7)

= S (say),

where we have used (2.23), freely interchanged the sums and limits to obtain (3.6),

and then used (2.30) to get (3.7). We prove that S is equal to the right-hand side of

(3.1) as a lemma.
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Lemma 1. If (a, b) = 1, then

(3.8) S =











2C

a

∏

p|abl
p>2

p− 1

p− 2
, if (a, l) = (b, l) = 1

and exactly one of a, b, l is even,

0, otherwise.

P r o o f. Since (k′, q′) = 1 and 0 6 j 6 a− 1, we have

(3.9)
k

q
=
(k′

q′
+ j
) b

a
=

k′ + jq′

q′a
b =

k1
q′a

b, where 1 6 k1 6 q′a and (k1, q
′) = 1.

Now, (3.9) can happen if and only if

(3.10) qd2 = q′d1

for some divisors d1 and d2 of a and b, respectively, and

(3.11) k =
k1
q′a

bq =
k1(b/d2)qd2
q′d1(a/d1)

= k1
b/d2
a/d1

is an integer. Since (a, b) = 1, this can happen if and only if a/d1 divides k1. Also,

from (3.10), d1 | qd2 and since (a, b) = 1, d1 | q. So we write q = d1q1 where q1 > 1

is an integer. Similarly q′ = d2q2 where q2 > 1 is an integer. Thus from (3.10),

q1 = q2. Also µ(q) = µ(d1q1) 6= 0 if and only if (d1, q1) = 1. Similarly we have

(d2, q2) = 1. �

Let us write k1 = (a/d1)k2. Since (k, q) = 1 and d1 | q, we have (d1, k) = 1 and

from (3.11), k = k2(b/d2) and thus (k2, d1) = 1. So we can write

(3.12) S =
1

a

∑

d1|a

∑

d2|b

∞
∑

q2=1
(d1,q2)=1
(d2,q2)=1

µ(d1)

ϕ(d1)

µ(d2)

ϕ(d2)

µ2(q2)

ϕ2(q2)

q2d1d2
∑

k2=1
(k2,q2d1d2)=1

e−2πi(k2/q2d1d2)l.

That is,

(3.13) S =
1

a

∑

d1|a

∑

d2|b

∞
∑

q2=1
(d1,q2)=1
(d2,q2)=1

µ(d1)

ϕ(d1)

µ(d2)

ϕ(d2)

µ2(q2)

ϕ2(q2)
c(q2d1d2)(l),
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by the definition of the Ramanujan sum (2.17). Now by the multiplicative property

(2.20) of the Ramanujan sum and as q2, d1, d2 are pairwise relatively prime we obtain

S =
1

a

∑

d1|a

∑

d2|b

∞
∑

q2=1
(d1,q2)=1
(d2,q2)=1

µ(d1)

ϕ(d1)

µ(d2)

ϕ(d2)

µ2(q2)

ϕ2(q2)
cq2(l)cd1

(l)cd2
(l)(3.14)

=
1

a

∞
∑

q2=1
(a,q2)=1
(b,q2)=1

µ2(q2)

ϕ2(q2)
cq2(l)

∑

d1|a

µ(d1)

ϕ(d1)
cd1

(l)
∑

d2|b

µ(d2)

ϕ(d2)
cd2

(l)

=
1

a

∞
∑

q2=1
(ab,q2)=1

µ2(q2)

ϕ2(q2)
cq2(l)

∑

d1|a

µ(d1)

ϕ(d1)
cd1

(l)
∑

d2|b

µ(d2)

ϕ(d2)
cd2

(l),

as (a, b) = 1. Writing the series and sums in (3.14) as Euler products, we get

(3.15) S =
1

a

∏

p∤ab

(

1 +
cp(l)

(p− 1)2

)

∏

p|a

(

1− cp(l)

p− 1

)

∏

p|b

(

1− cp(l)

p− 1

)

.

By the property (2.21) of the Ramanujan sum, if u > 1 is an integer, then

(3.16)
∏

p|u

(

1− cp(l)

p− 1

)

=







∏

p|u

p

p− 1
, if p ∤ l,

0, if p | l.
Hence we will assume that (a, l) = 1 and (b, l) = 1 so that

(3.17) S =
1

a

∏

p∤abl

(

1− 1

(p− 1)2

)

∏

p∤ab
p|l

p

p− 1

∏

p|a
p∤l

p

p− 1

∏

p|b
p∤l

p

p− 1
.

If none of a, b, or l is even, then the product vanishes:

(3.18)
∏

p∤abl

(

1− 1

(p− 1)2

)

= 0.

So we will assume that one of a, b or l is even. But (a, b) = 1, (a, l) = 1 and (b, l) = 1

and therefore exactly one of a, b or l is even. We can therefore write the infinite

product

(3.19)
∏

p∤abl

(

1− 1

(p− 1)2

)

=
∏

p>2

(

1− 1

(p− 1)2

)

∏

p|abl
p>2

(p− 1)2

p(p− 2)
.

Thus S = 0 unless (a, l) = 1, (b, l) = 1 and exactly one of a, b or l is even, but if

these conditions are satisfied, then the value of S as given in (3.8) is obtained by

simplifying (3.17) using (3.19). �
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4. Experimental evidence

We give now the compelling numerical evidence of the main result (3.1) by varying

a and b. We have taken the value of C ∼ 0.660161816 and the ratio is defined by

right-hand side of (3.1) divided by Ψ(a,b,l)(N)/N .

Example 1. We take a = 1, b = 2, l = 1 which corresponds to Sophie Germain

primes. In this case, the right-hand side of (3.1) is 2C = 1.320323632.

N Ψ(1,2,1)(N)
Ψ(1,2,1)(N)

N
Ratio

50000 66130.966133 1.322619 0.998264
100000 132886.401744 1.328864 0.993573
150000 200755.416380 1.338369 0.986517
200000 265612.706085 1.328064 0.994172
250000 331585.551940 1.326342 0.995462
300000 394316.641234 1.314389 1.004515
350000 459668.599011 1.313339 1.00531
400000 521496.993567 1.303742 1.012718
450000 588393.432192 1.307541 1.009776
500000 652614.182933 1.305228 1.011565

Table 1.

Example 2. We take a = 1, b = 10, l = 1. In this case, the right-hand side of

(3.1) is 8C/3 = 1.760431509.

N Ψ(1,10,1)(N)
Ψ(1,10,1)(N)

N
Ratio

10000 17107.791529 1.710779 1.029023
20000 34210.057148 1.710503 1.029189
30000 51939.100560 1.731303 1.016824
40000 70219.348038 1.755484 1.002818
50000 89934.594398 1.798692 0.978729
60000 106902.836342 1.781714 0.988055
70000 123796.944818 1.768528 0.995422
80000 141470.265879 1.768378 0.995506
90000 159287.348829 1.769859 0.994673
100000 177824.093558 1.778241 0.989985

Table 2.

Example 3. We take a = 3, b = 5, l = 2. In this case, the right-hand side of

(3.1) is 16C/9 = 1.173621006.
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N Ψ(3,5,2)(N)
Ψ(3,5,2)(N)

N
Ratio

60000 69649.061665 1.160837 1.011013
120000 140371.214304 1.169770 1.003292
180000 211924.646933 1.177366 0.996819
240000 282504.323361 1.177106 0.997039
300000 355072.360724 1.183578 0.991587
360000 423152.712312 1.175427 0.998463
420000 496296.973007 1.181662 0.993195
480000 568659.361599 1.184709 0.990640
540000 642488.622118 1.189796 0.986405
600000 712048.221861 1.186749 0.988938

Table 3.

5. m-tuple conjecture

Let a1, a2, . . . , am−1 be distinct integers and let us now count the number of groups

n, n+ a1, n+ a2, . . . , n+ am−1 between 1 and x and consisting of primes.

Consider

lim
N→∞

1

N

∑

n6N

Λ1(n)Λ1(n+ a1) . . .Λ1(n+ am−1)

= lim
N→∞

1

N

∑

n6N

∑

q

∑

q1

. . .
∑

qk

µ(q)

ϕ(q)

q
∑

k=1
(k,q)=1

e−2πi(k/q)n

× µ(q1)

ϕ(q1)

q1
∑

k1=1
(k1,q1)=1

e2πi(k1/q1)(n+a1) . . .
µ(qm−1)

ϕ(qm−1)

qm−1
∑

km−1=1
(km−1,qm−1)=1

e2πi(km−1/qm−1)(n+am−1)

?
=
∑

q

∑

q1

. . .
∑

qm−1

µ(q)

ϕ(q)

m−1
∏

i=1

µ(qi)

ϕ(qi)

∑

k1

. . .
∑

km−1

e2πi((k1/q1)a1+...+(km−1/qm−1)am−1)(5.1)

× lim
N→∞

1

N

∑

n6N

e2πin(−k/q+k1/q1+...+km−1/qm−1)

=
∑

q1

. . .
∑

qm−1

µ(q)

ϕ(q)

m−1
∏

i=1

µ(qi)

ϕ(qi)

∑

k1

. . .
∑

km−1

e2πi((k1/q1)a1+...+(km−1/qm−1)am−1),(5.2)

where k/q = k1/q1 + . . .+ km−1/qm−1. Also we have used (3.5). Here again we have

freely interchanged the limits and applied (2.30). The right hand side of (5.2) is the

sum

(5.3) Sm−1 =
∑

q1,q2,...,qm−1

A(q1, q2, . . . , qm−1)
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in the notation of Hardy and Littlewood, see ((5.625I), page 55 of [12]). Using the

multiplicative property of A(q1, q2, . . . , qm) and mathematical induction, they showed

that

(5.4) Sm−1 = A(q1, q2, . . . , qm−1) =
∏

p>2

( p

p− 1

)m−1 p− ν

p− 1
,

where ν = νm = ν (p; 0, a1, a2, . . . , am−1) is the number of distinct residues of

0, a1, a2, . . . , am−1 to modulus p.

Thus

(5.5)
∑

n6N

Λ1(n)Λ1(n+ a1) . . .Λ1(n+ am−1) ∼ Sm−1N

and hence

(5.6)
∑

n6N

Λ(n)Λ(n+ a1) . . .Λ(n+ am−1) ∼ Sm−1N,

from which the m-tuple conjecture of Hardy and Littlewood follows which we state

below.

Conjecture. Let a1, a2, . . . , am−1 be m − 1 distinct integers and P (x; a1, . . . ,

am−1) the number of groups n, n+ a1, . . . , n+ am−1 between 1 and x and consisting

wholly of primes. Then

(5.7) P (x; a1, . . . am−1) ∼ Sm−1Lim(x),

where Lim(x) =
∫ x

2
du/(logu)m. Note that Hardy and Littlewood state this conjec-

ture in a more symmetrical form at page 61 of [12].

6. Conclusion

If the step (3.6) could be proved rigorously, which involves justification of inter-

change of certain limits, then a whole class of outstanding problems including the

twin prime problem and the Sophie Germain prime problem could be solved com-

pletely. Similarly, if the step (5.1) is proved rigorously, then the m-tuple conjecture

will be solved completely. We may say that in a precise sense the Ramanujan-Fourier

series for the (refined) von Mangoldt function traps the fluctuations in the distribu-

tion of primes. It is hoped that the theory of Ramanujan-Fourier series could be

developed to study various properties of arithmetical functions. Numerical agree-

ment between conjecture and experiment means that this technique could become

a common tool and lead to further developments in number theory.
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