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Abstract. Two inequalities for the Laplacian spread of graphs are proved in this note.
These inequalities are reverse to those obtained by Z.You, B. Liu: The Laplacian spread of
graphs, Czech. Math. J. 62 (2012), 155–168.
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1. Introduction

Let G = (V,E) be an undirected connected graph with m edges and n, n > 3

vertices, V = {x1, x2, . . . , xn}. Denote by di = d(xi), i = 1, 2, . . . , n the degree of

each vertex, and by M1 =
n
∑

i=1

d2i the first Zafreb index (see [1]). The Laplacian

spectrum of G are the eigenvalues µ1 > µ2 > . . . > µn−1 > µn = 0, whereas

P (µ) = µ(µn−1 + c1µ
n−2 + . . . + cn−1) is the Laplacian characteristic polynomial.

The Laplacian spread of a graph is defined as

LS(G) = µ1 − µn−1.

In [4] Z.You and B. Liu proved several inequalities for LS(G). Here, we are inter-

ested in the following two of them:

(1.1) LS(G) >
2

n− 1

√

(n− 1)(M1 + 2m)− 4m2
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and

(1.2) LS(G) > µ1 −

√

M1 + 2m− µ2

1

n− 2
.

In this paper we are going to prove two inequalities which are reverse to (1.1) and

(1.2).

2. Main result

Theorem 2.1. For LS(G) of a connected undirected graph G with n, n > 3,

vertices and m edges, the inequality

(2.1) LS(G) 6

√

2

n− 1

√

(n− 1)(M1 + 2m)− 4m2

is valid. Equality in (2.1) holds if and only if G ∼= Kn.

P r o o f. Since the Laplacian eigenvalues of G, µ1, µ2, . . . , µn−1 are positive and

form a decreasing sequence, according to the identity

T = (n− 1)(M1 + 2m)− 4m2 = (n− 1)

n−1
∑

i=1

µ2

i −

(n−1
∑

i=1

µi

)2

=
∑

16i<j6n−1

(µi − µj)
2

we have that

(2.2) T >

n−2
∑

k=2

((µ1 − µk)
2 + (µk − µn−1)

2) + (µ1 − µn−1)
2.

Now, if in (2.2) we apply Jensen’s discrete inequality for convex functions (see for

example [2], [3]), we obtain

T >
n− 3

2
(µ1 − µn−1)

2 + (µ1 − µn−1)
2 =

n− 1

2
(µ1 − µn−1)

2.

Since T > 0 and µ1 − µn−1 > 0, the above inequality directly yields the inequal-

ity (2.1).

Equality in (2.2) and in Jensen’s inequality holds if an only if µ1 = µ2 = . . . =

µn−1. Accordingly, we conclude that equality in (2.1) holds if and only if G ∼= Kn.

�
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Corollary 2.1. If the observed graph G = (V,E) is k-regular, then the inequality

LS(G) 6

√

2nk(n− k − 1)

n− 1

holds.

Remark 2.1. Since

(n− 1)
n−1
∑

i=1

µ2

i −

(n−1
∑

i=1

µi

)2

= (n− 2)C2

1
− 2(n− 1)C2,

where C1 and C2 are the coefficients of the Laplacian characteristic polynomial, the

inequalities (1.1) and (2.1) can be represented as

2

n− 1

√

(n− 2)C2

1
− 2(n− 1)C2 6 LS(G) 6

√

2

n− 1

√

(n− 2)C2

1
− 2(n− 1)C2.

Theorem 2.2. For LS(G) of a connected undirected graph G with n vertices and

m edges, the inequality

(2.3) LS(G) 6
√

M1 + 2m− (n− 2)µ2

n−1
− µn−1

is valid. Equality in (2.3) holds if and only if G ∼= Kn, or G ∼= K1,n, or G ∼= Kn/2,n/2.

P r o o f. Inequality (2.3) can be easily obtained by using the inequality

M1 + 2m = µ2

1
+ . . .+ µ2

n−1
> µ2

1
+ (n− 2)µ2

n−1
.

�
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[2] D.S.Mitrinović: Analytic Inequalities. In Cooperation with P.M.Vasić. Die Grundleh-
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