
Applications of Mathematics

Xinlong Feng; Zhifeng Weng; Hehu Xie
Acceleration of two-grid stabilized mixed finite element method for the Stokes
eigenvalue problem

Applications of Mathematics, Vol. 59 (2014), No. 6, 615–630

Persistent URL: http://dml.cz/dmlcz/143991

Terms of use:
© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143991
http://dml.cz


59 (2014) APPLICATIONS OF MATHEMATICS No. 6, 615–630

ACCELERATION OF TWO-GRID STABILIZED MIXED FINITE

ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM

Xinlong Feng, Urumqi, Zhifeng Weng, Wuhan, Hehu Xie, Beijing

(Received May 27, 2013)

Abstract. This paper provides an accelerated two-grid stabilized mixed finite element
scheme for the Stokes eigenvalue problem based on the pressure projection. With the
scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution
of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear alge-
braic system on the fine grid. By solving a slightly different linear problem on the fine grid,
the new algorithm significantly improves the theoretical error estimate which allows a much
coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experi-
ments are shown to verify the high efficiency and the theoretical results of the new method.
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1. Introduction

Numerical methods of eigenvalue problems have received increasing attention in

physical and mathematical fields (see [2]). Thus, in practical applications, it is a

very important issue to adopt efficient methods to reduce the computational costs

for investigating these problems. At the present time, numerous works are devoted

to these problems (see [1], [6]–[8], and the references cited therein).

The two-grid discretization method is one of these efficient methods and has been

well developed in recent years. It was first introduced by Xu [25], [26] for the nonsym-

metric and nonlinear elliptic problems. To the best of our knowledge, the technique
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jiang Province (No. 2013711010), NCET-13-0988 and the NSF of China (No. 61163027).
The third author is partially supported by the NSF of China (No. 91330202, No.
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has been successfully applied and further investigated for Poisson eigenvalue equa-

tions and integral equations in [27], semilinear elliptic eigenvalue problems in [9] and

nonselfadjoint elliptic problems in [17] and [29]. The applications of the two-grid

method in Stokes eigenvalue problem can be found in [7], [16]. In particular, Hu and

Cheng [14] proposed an accelerated two-grid discretization scheme for solving ellip-

tic eigenvalue problems. Yang et al. [28] presented a two-grid discretization scheme

based on shifted-inverse power method for elliptic eigenvalue problems and then dis-

cussed the adaptive finite element method based on multi-scale discretization for the

eigenvalue problems in [19]. The two-grid method for the second order elliptic prob-

lems by mixed finite element method has been established in [8], [24]. Influenced by

the work mentioned above, we establish a new stabilized finite element two-grid dis-

cretization scheme for the Stokes eigenvalue problem in this paper. Compared with

the scheme in [16], our accelerated scheme is more efficient: the resulting solution

obtained by our scheme can maintain an asymptotically optimal accuracy by taking

h = H4 when solving the Stokes eigenvalue problem.

The mixed finite element method is frequently used to obtain approximate solu-

tions to more than one unknown. For example, the Stokes equations are often solved

to obtain both pressure and velocity simultaneously. Accordingly, we need a finite

element space for each unknown. These two spaces must be chosen carefully so that

they satisfy an inf-sup stability condition for the mixed method to be stable. This

condition does not allow the use of simple finite element pairs like equal-order ones,

which offer some computational advances, as they are simple and have practical uni-

form data structure and adequate accuracy. Thus, much attention has been paid to

the study of the stabilized methods for the Stokes problem.

Recent studies have focused on stabilization of the lower equal-order finite element

pair using the projection of the pressure onto the piecewise constant space or the

continuous space [4] and [23]. This stabilization technique does not require any

calculation of high-order derivatives or edge-based data structures and is free of

stabilization parameters and can be implemented at the element level. Therefore,

this stabilized method is gaining more and more attention in computational fluid

dynamics [18], [11], [15], [16], [3].

The paper focuses on the method which combines accelerated two-grid discretiza-

tion scheme with a stabilized finite element method based on the pressure projection

for the Stokes eigenvalue problem. The rest of this paper is organized as follows.

In the next section, we introduce the studied problem, the notation and some well-

known results used throughout this paper. We propose a stabilized finite element

strategy for solving the Stokes eigenvalue problem in Section 3. Then, in Section 4,

the accelerated two-grid algorithm and its error estimates are discussed. In Section 5,

numerical experiments are given to illustrate the theoretical results and the high ef-
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ficiency of the proposed method. Finally, we conclude our presentation in Section 6

with a few comments and also some possible future research topics.

2. Preliminaries

In this paper, we consider the following Stokes eigenvalue problem appearing in

many engineering applications:

−∆u+∇p = λu in Ω,(2.1)

div u = 0 in Ω,(2.2)

u = 0 on Γ,(2.3)

where Ω ⊂ R
2 is a bounded and convex domain with a Lipschitz-continuous boundary

Γ, p(x) represents the pressure, u(x) the velocity vector and λ ∈ R the eigenvalue.

We shall introduce the following Hilbert spaces

V = [H1
0 (Ω)]

2, Y = [L2(Ω)]2, W = L2
0(Ω) =

{

q ∈ L2(Ω):

∫

Ω

q dx = 0

}

.

The spaces [L2(Ω)]m, m = 1, 2, are equipped with the L2-scalar product (·, ·) and

L2-norm ‖ · ‖0. The norm and seminorm in [Hk(Ω)]2 are denoted by ‖ · ‖k and | · |k,

respectively. The space V is equipped with the norm ‖∇ · ‖0 or its equivalent norm

‖ · ‖1 due to the Poincaré inequality. Spaces consisting of vector-valued functions are

denoted in boldface. Furthermore, the norm in the space dual to V is given by

(2.4) ‖u‖−1 = sup
v∈V,‖v‖1=1

(u,v).

Therefore, we define the following bilinear forms a(·, ·), d(·, ·) and b(·, ·) on V ×V,

V ×W and V ×V, respectively, by

a(u,v) = (∇u,∇v) ∀u,v ∈ V,

d(v, q) = (div v, q) ∀v ∈ V, ∀ q ∈ W,

b(u,v) = (u,v) ∀u,v ∈ V,

and a generalized bilinear form B((·, ·), (·, ·)) on (V ×W )× (V ×W ) by

(2.5) B((u, p), (v, q)) = a(u,v)− d(v, p) + d(u, q) ∀(u, p), (v, q) ∈ V ×W.
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With the above notation, the variational formulation of problem (2.1)–(2.3) reads

as follows: Find (u, p;λ) ∈ (V ×W )× R with ‖u‖0 = 1 such that

(2.6) B((u, p), (v, q)) = λb(u,v) ∀(v, q) ∈ V ×W.

From [2] we know that the eigenvalue problem (2.5) has an eigenvalue sequence {λj}:

0 < λ1 6 λ2 6 λ3 6 . . . ,

and corresponding eigenvectors

u1, u2, u3, . . . ,

with the orthogonal property b(ui,uj) = δij .

Let

M(λi) = {u ∈ V : u is an eigenvector of (2.5) corresponding to λi}.

Moreover, the bilinear form d(·, ·) satisfies the inf-sup condition for all q ∈ W

(2.7) sup
v∈V

|d(v, q)|

‖v‖1
> β‖q‖0,

where β > 0 is a constant depending only on Ω. Therefore, the generalized bilinear

form B satisfies the continuity property and coercive condition

|B((u, p), (v, q))| 6 C(‖u‖1 + ‖p‖0)× (‖v‖1 + ‖q‖0),(2.8)

sup
(v,q)∈(V,W )

|B((u, p), (v, q))|

‖v‖1 + ‖q‖0
> β1(‖u‖1 + ‖p‖0),(2.9)

where C and β1 are positive constants depending only on Ω. Throughout the paper

we use c or C to denote a generic positive constant whose value may change from

place to place but remains independent of the mesh parameter.
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3. A stabilized mixed finite element method

Let F = {Th} be a regular family of partitions of Ω into triangles in the sense

of Ciarlet [10]. For h > 0, we introduce finite-dimensional subspaces (Vh,Wh) ⊂

(V,W ), which are associated with Th ∈ F . Now we choose the unstable velocity-

pressure pair of finite element spaces with the same order as follows:

Vh = {vh = (v1, v2) ∈ [C0(Ω)]2 ∩V : vi ∈ P1(T ) ∀ T ∈ Th, i = 1, 2},(3.1)

Wh = {w ∈ C0 ∩W : w ∈ P1(T ) ∀ T ∈ Th},(3.2)

where P1(T ) represents the space of linear functions on the element T .

As noted earlier, this choice of the approximate spacesVh andWh does not satisfy

the inf-sup condition:

(3.3) sup
vh∈Vh

|d(vh, wh)|

‖vh‖1
> β2‖wh‖0 ∀wh ∈ Wh,

where the constant β2 > 0 is independent of h.

Now, we give a stabilized finite-element approximation based on the pressure pro-

jection stabilization method which was based on the idea of [4] and used a similar

technique as in [18], [11], [16], [15].

Let Π: L2(Ω) → R0 be the standard L2-projection with the following properties:

(p, q) = (Πp, q) ∀ p ∈ W, q ∈ R0,(3.4)

‖Πp‖0 6 c‖p‖0 ∀ p ∈ W,(3.5)

‖p−Πp‖0 6 ch‖p‖1 ∀ p ∈ H1(Ω),(3.6)

where R0 = {q ∈ W : q|T ∈ P0(T ) ∀T ∈ Th}. We introduce the pressure projection

stabilization term

(3.7) G(p, q) = ν(p−Πp, q) = ν(p−Πp, q −Πq) ∀ p, q ∈ Wh,

where ν > 0 is a relaxation parameter independent of h and adjusts the stabiliza-

tion term to relax the continuity equation so as to allow the application of inf-sup

incompatible spaces. For more information on the particular choice of a relaxation

parameter we refer to [11]. It is clear that the stabilized form G(p, q) in (3.7) is

symmetric and semi-definite. In numerical experiments, we will present the choice

of the stabilized operator Π and the specific definition of G(·, ·).

The stabilized mixed finite element method is based on the following bilinear form:

(3.8) Bh((uh, ph), (v, q)) = B((uh, ph), (v, q)) +G(ph, q), (v, q) ∈ Vh ×Wh.
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Now, the corresponding discrete variational formulation of (2.6) for the discrete

Stokes eigenvalue problem is recast: Find (ūh, p̄h; λ̄h) ∈ (Vh \ {0} ×Wh) × R with

‖ūh‖0 = 1, such that

(3.9) Bh((ūh, p̄h), (v, q)) = λ̄hb(ūh,v) ∀ (v, q) ∈ Vh ×Wh.

We know from [2] that the discrete Stokes eigenvalue problem (3.9) has eigenvalues

0 < λ̄1,h 6 λ̄2,h 6 λ̄3,h 6 . . . 6 λ̄Nh,h

and the corresponding eigenvectors

ū1,h, ū2,h, ū3,h, . . . , ūNh,h,

with the property b(ūi,h, ūj,h) = δij , 1 6 i, j 6 Nh (Nh is the dimension of Vh).

Let

Mh(λi) = {uh ∈ Vh : uh is an eigenvector of (3.9) corresponding to λih}.

The next theorem, which can be found in [4], [18], [11], shows the continuity

property and the weak coercivity property of the bilinear form Bh((uh, ph), (v, q))

for the finite element pair Vh ×Wh.

Theorem 3.1. For all (uh, ph), (v, q) ∈ Vh ×Wh there exist positive constants

C and β, independent of h, such that

|Bh((uh, ph), (v, q))| 6 C(‖uh‖1 + ‖ph‖0)× (‖v‖1 + ‖q‖0),(3.10)

sup
(v,q)∈(Vh,Wh)

|Bh((uh, ph), (v, q))|

‖v‖1 + ‖q‖0
> β(‖uh‖1 + ‖ph‖0).(3.11)

By well-established techniques for the eigenvalue approximation [2], [5], [21], [30],

[20] and for the stabilized mixed finite element method [4], [18], one has the following

results.

Theorem 3.2. Let (ūh, p̄h; λ̄h) be an eigenpair solution of (3.9). Then there

exists an exact eigenpair (u, p;λ) of (2.6) satisfying the following error estimates:

(3.12) ‖u− ūh‖0 + h(‖u− ūh‖1 + ‖p− p̄h‖0) 6 ch2

and

(3.13) |λ− λ̄h| 6 ch2.
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4. An accelerated two-grid stabilized scheme and error estimates

In this section, we shall present the main algorithm of the paper and derive some

optimal bounds of the errors.

First, we define a new bilinear form as follows: Gµ((u, p), (v, q)) : (V × W ) ×

(V ×W ) → R,

(4.1) Gµ((u, p), (v, q)) = B((u, p), (v, q)) − µb(u,v)

and a discrete bilinear form as follows: Gµh
((uh, ph), (v, q)) : (Vh × Wh) × (Vh ×

Wh) → R,

(4.2) Gµh
((uh, ph), (v, q)) = Bh((uh, ph), (v, q)) − µhb(uh,v).

For simplicity, we only consider the first eigenvalue. Using a similar technique as

in [26], [27], [13], [6], we have the following lemma for the newly introduced bilinear

form:

Lemma 4.1. For all (u, p) ∈ (V∩M(λ)⊥)×W and (uh, ph) ∈ (Vh ∩Mh(λ)
⊥)×

Wh, if µ and µh are not eigenvalues of (2.6) and (3.9), respectively, there exists two

positive constants C(µ) and C(µh) independent of the mesh size h such that

(4.3) sup
(v,q)∈(V,W )

|Gµ((u, p), (v, q))|

‖v‖1 + ‖q‖0
> C(µ)(‖u‖1 + ‖p‖0)

and

(4.4) sup
(v,q)∈(Vh,Wh)

|Gµh
((uh, ph), (v, q))|

‖v‖1 + ‖q‖0
> C(µh)(‖uh‖1 + ‖ph‖0).

For simplicity, we omit the proof. According to (4.3) and (4.4), if µ is not an

eigenvalue, thenGµ((u, p), (v, q)) = (f ,v) is uniquely solvable for all (v, q) ∈ (V×W )

or (v, q) ∈ (Vh × Wh). If µ is an eigenvalue, then Gµ((u, p), (v, q)) = (f ,v) may

have no solution (In fact, it has at least one solution if and only if f ∈ M(µ)⊥, see

[14]).

Now, letH and h ≪ H < 1 be two real positive parameters tending to zero. Also, a

coarse triangulation of TH of Ω is constructed as in Section 3. A fine triangulation Th

is generated by a mesh refinement process to TH , such that Th is nested to TH .

The conforming finite element space pairs (Vh,Wh) and (VH ,WH) ⊂ (Vh,Wh)

based on the triangulations Th and TH , respectively, are constructed as in Section 3.
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Accelerated two-grid stabilized finite element approximations are defined as follows.

The algorithm has three steps:

Step 1. On the coarse grid TH , solve the following Stokes eigenvalue problem for

(pH ,uH ;λH) ∈ (WH ×VH)×R with ‖uH‖0 = 1:

(4.5) BH((uH , pH), (v, q)) = λHb(uH ,v) ∀v ∈ VH , q ∈ WH .

Step 2. On the fine grid Th, compute (ph,uh) ∈ Wh ×Vh to satisfy the following

Stokes problem:

(4.6) GλH
((uh, ph), (v, q)) = b(uH ,v) ∀v ∈ Vh, q ∈ Wh.

Step 3. Compute the Rayleigh quotient for (uh, ph),

(4.7) λh =
Bh((uh, ph), (uh, ph))

b(uh,uh)
.

R em a r k 4.1. Our algorithm is different from [16] in Step 2. In [16], Step 2 reads

as follows:

(4.8) Bh((uh, ph), (v, q)) = λHb(uH ,v) ∀v ∈ Vh, q ∈ Wh.

It can be found that the linear system (4.6) is nearly singular, which has been

much discussed in the literature [13], [12], [22]. The improved two-grid method is

a technique of accelerating convergence based on shifted inverse power method [13].

Moreover, it implies that λH is already a good approximation of λh when this system

actually becomes singular or very close to being singular.

As in [27], we give an important but straightforward identity that relates the errors

in the eigenvalue and eigenvector approximation.

Lemma 4.2. Let (u, p;λ) be an eigenvalue pair of (2.6) for any s ∈ V \ {0} and

w ∈ W ,

(4.9)
B((s, w), (s, w))

b(s, s)
− λ =

B((s − u, w − p), (s− u, w − p))

b(s, s)
− λ

b(s− u, s− u)

b(s, s)
.

The following theorem gives the error estimates for our accelerated two-grid

scheme.
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Theorem 4.1. Let (uh, ph;λh) be an eigenpair solution of (4.5)–(4.7). Then there

exists an exact eigenpair (u, p;λ) of (2.6) satisfying the following error estimates:

(4.10) ‖u− uh‖1 + ‖p− ph‖0 6 c(h+H4)

and

(4.11) |λ− λh| 6 c(h2 +H8).

P r o o f. The proof follows the ideas from [6]. Consider an equivalent linear

system on the fine grid as follows:

(4.12) GλH
((ũh, p̃h), (v, q)) = (λ̄− λH)b(uH ,v) ∀v ∈ Vh, q ∈ Wh.

Note that

(4.13) λh =
Bh((uh, ph), (uh, ph))

b(uh,uh)
=

Bh((ũh, p̃h), (ũh, p̃h))

b(ũh, ũh)
.

Setting (e, η) = (u− ūh, p− p̄h) and (eh, ηh) = (ū− ũh, p̄h − p̃h), from (2.6), (3.9)

and (4.12) for any v ∈ Vh, q ∈ Wh we have

(4.14) GλH
((eh, ηh), (v, q)) = (λ̄h − λH)b(ūh − uH ,v).

By (2.4), (3.10), and (4.14), we can find

(4.15) |GλH
((eh, ηh), (v, q))| 6 C(|λ̄h − λH | ‖ū− uH‖−1).

It is reasonable to assume that eh ⊥ Mh(λ1). Using Sobolev embedding theorem,

Theorem 3.2, and (4.4), we obtain

(4.16) ‖eh‖1 + ‖ηh‖0 6 CH4.

From Theorem 3.2 and the triangle inequality, we get

(4.17) ‖u− ũh‖1 + ‖p− p̃h‖0 6 ‖eh‖1 + ‖ηh‖0 + ‖u− ū‖1 + ‖p− p̄h‖0

6 CH4 + Ch.

Note that min
α∈R

(‖u − αuh‖1 + ‖p− αph‖0) 6 ‖u − ũh‖1 + ‖p − p̃h‖0, we find the

desired result (4.10).

623



Next, using (4.15) and Lemma 4.3, we have

(4.18)
Bh((uh, ph), (uh, ph))

b(uh,uh)
− λ

=
B((uh − u, ph − p), (uh − u, ph − p)) +G(ph, ph)

b(uh,uh)
− λ

(uh − u,uh − u)

b(uh,uh)
.

Taking norm and applying (2.8) and (3.5), we come to

(4.19) |λ− λh| 6 C
(

‖u− uh‖
2
1 + ‖ph − Πph‖

2
0 + ‖p− ph‖

2
0

)

.

Next, using (3.6) and (4.10) and the triangle inequality, we obtain (4.11). The proof

is completed. �

R em a r k 4.2. In [16], the error estimates of the eigenvector and eigenvalue are

as follows:

(4.20) ‖u− uh‖1 + ‖p− ph‖0 6 C(h+H2)

and

(4.21) |λ− λh| 6 C(h2 +H4).

This means that the asymptotically optimal accuracy is obtained by taking h = H2,

but with our accelerated two-grid scheme, the asymptotically optimal accuracy is

obtained by taking h = H4. Obviously, the scheme here accelerates the convergence.

5. Numerical experiments

In this section we present numerical experiments to check the numerical theory

developed in the previous sections and illustrate the efficiency of the accelerated

two-grid method based on local polynomial pressure projection. Our method is

characterized by using linear polynomial functions for both the velocity and pressure

fields. An attractive feature of the stabilization approach is the flexibility in the

choice of the stabilized operator Π. Now, the stabilized term is defined by local

Gauss integration. In detail, the stabilized term can be rewritten as

G(p, q) = ν
∑

T∈Th

(
∫

T,2

p · q dxdy −

∫

T,1

p · q dxdy

)

∀ p, q ∈ Wh,
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where
∫

T,i
g(x, y) dxdy denotes an appropriate Gauss integral over T which is exact

for polynomials of degree i = 1, 2. In particular, the trial function p ∈ Wh must

be projected to the piecewise constant space R0 defined below when i = 1 for any

q ∈ Wh. Indeed, Becker et al. have found that the stabilized methods of [18] are

identical from a numerical point of view for the low-order approximations in [4], [3].

In this section we report test problems for the Stokes eigenvalue problem with

the stabilized mixed finite element method to demonstrate the efficiency of our al-

gorithm. The finite element discretization uses the P1-P1 pair for the velocity and

pressure based on the pressure projection stabilization. The accuracy and the nu-

merical stability of our method is checked, then we compare the results obtained by

our method with those obtained by the two-grid method of [16]. Our algorithms

are implemented using the public domain finite element software FreeFem++: Ver-

sion 2.19.1, http://www.freefem.org/.

In our numerical experiments, Ω is the unit square domain [0, 1] × [0, 1] in R
2.

The domain Ω is uniformly divided by the triangulations of mesh size H and h in

Figure 1, respectively. We denote by U the array of the velocity and by P the array

(a) (b)

Figure 1. (a) Coarse grid division at H = 1
2
, (b) Fine grid division at h = 1

16
.

of the pressure. It is easy to see that (4.7) can be written in matrix form

(5.1)

[

A −B

BT G

] [

U

P

]

= λh

[

E O

O O

] [

U

P

]

,

where the matrices A, B, and E are deduced in the usual manner, using the bases for

Vh and Wh, from the bilinear forms a(·, ·), d(·, ·) and b(·, ·), respectively, and BT is

the transpose of matrix B. Then the matrix G is deduced in the usual manner, using
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the bases for Wh, from the term G(ph, q). The coefficient matrix on the left-hand

side of (5.1) is solved by LU decomposition, because all its leading principal minors

are non-zero. The coefficient matrix on the right-hand side of (5.1) is solved by the

conjugate gradient method with a fixed tolerance 10−6, because its block matrix E

is symmetric positive definite. The inverse power method is used for solving the

generalized eigenvalue problem. This procedure is implemented on the coarse mesh

for two-grid methods.

Here, we just consider the first eigenvalue of the Stokes eigenvalue problem for the

sake of simplicity. The exact solution of this problem is unknown. Thus, we take

the numerical solution by the standard Galerkin method (P2-P1 element) computed

on a very fine mesh grid points (h = 1/128) as the exact solution for the purpose of

comparison. This yields λ = 52.3447 as an accurate approximation of the first exact

eigenvalue. Note that in these computations we set ν = 1.

When solving the linear problem with a mesh size h, we need the solution λH

and uH generated on a coarse mesh. To do this we interpolate the solution λH and

uH onto the grid with mesh size h. Finally, the solution of accelerated two-grid

method is obtained by one simple eigenvalue problem on the coarse mesh and one

time interpolation on the fine one.

Our goal in this test is to validate the merit of the accelerated two-grid method

as compared with the two-grid method [16]. We first show the convergence rate of

our accelerated two-grid scheme. According to Theorem 4.1, the results shown in

Table 1 consist of eigenvalue error estimates. Then, we apply both schemes on the

same uniform coarse and fine grid satisfying H2 = h. (By taking H2 = h, the scheme

from [16] can obtain asymptotically optimal accuracy.) Also, in order to show that

our accelerated scheme can improve the results on a large class of coarse and fine

grids, we choose mesh sizes satisfying h = H/2, a common occurrence in the mesh

refinement process. Here, λh denotes the approximate eigenvalues obtained by the

one grid scheme on the fine grid, λt and λat are the approximate eigenvalues obtained

by the two-grid scheme from [16] and our accelerated scheme, respectively.

1/H 1/h |λat − λ|/λ Rate

2 16 8.489× 10−1

3 81 4.081× 10−2 7.49

4 256 3.982× 10−3 8.09

Table 1. Convergence rate test on uniform grid for the P1-P1 pair at h = H4.

From Table 2, we can see that the accelerated two-grid scheme outperforms in

all cases. Although the accelerated scheme cannot obtain asymptotically optimal
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accuracy when H = h1/2, we can still get a better approximate eigenvalue. For grids

obtained by the mesh refinement procedure (H = 2h), our accelerated scheme still

works better. Moreover, we give the plots of numerical solutions of the two schemes

at the mesh 1/h = 64 and 1/H = 8 in Figure 2 in detail. Figure 2 shows the stability

of the two schemes regardless of different isovalue of the graphics.

Coarse Fine λh λt λat |λt − λ|/λ |λat − λ|/λ

1/H 1/h

4 16 52.3055 53.9969 53.7477 3.156× 10−2 2.680× 10−2

8 64 52.4244 52.4574 52.4253 2.153× 10−3 1.540× 10−3

16 256 52.3497 52.3521 52.3497 1.411× 10−4 9.505× 10−5

1/H 1/h

4 8 57.395 57.695 57.4303 1.022× 10−1 9.715× 10−2

8 16 53.6201 53.6393 53.6204 2.473× 10−2 2.437× 10−2

16 32 52.6638 52.6651 52.6638 6.121× 10−3 6.095× 10−3

32 64 52.4244 52.4245 52.4244 1.525× 10−3 1.523× 10−3

64 128 52.3646 52.3646 52.3646 3.806× 10−4 3.805× 10−4

Table 2. Results on Ω for the first eigenvalue λ = 52.3447 for the P1-P1 pair.

6. Conclusions

In this paper, we present an accelerated two-grid algorithm for the Stokes eigen-

value problem discretized by mixed finite element scheme based on the pressure

projection stabilization. We show that when the coarse grid and the fine grid satisfy

H = O(h1/4), the accelerated two-grid algorithm can achieve the same accuracy of

the mixed finite element solution. Finally, numerical tests show that the accelerated

two-grid stabilized mixed finite element method is numerically efficient for solving

the Stokes eigenvalue problem. Obviously, this method can be extended to the case

of three dimensions easily. And there are some open questions including the possible

extension of the method to other linear and nonlinear eigenvalue problems.
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Figure 2. Plot of the pressure and velocity at h = 1/64: numerical solution of two-grid
method (left) and numerical solution of accelerated two-grid method (right) with
ph, u1h, u2h
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