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(n, d)-INJECTIVE COVERS, n-COHERENT RINGS, AND (n, d)-RINGS

Weiqing Li, Baiyu Ouyang, Changsha

(Received September 3, 2012)

Abstract. It is known that a ring R is left Noetherian if and only if every left R-module
has an injective (pre)cover. We show that (1) if R is a right n-coherent ring, then every
right R-module has an (n, d)-injective (pre)cover; (2) if R is a ring such that every (n, 0)-
injective right R-module is n-pure extending, and if every right R-module has an (n, 0)-
injective cover, then R is right n-coherent. As applications of these results, we give some
characterizations of (n, d)-rings, von Neumann regular rings and semisimple rings.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

are unitary right R-modules. Hom(M,N) and Extm(M,N) mean HomR(M,N) and

ExtmR (M,N), and rD(R) and wD(R) denote the usual right and weak, respectively,

global dimension of a ring R.

Let F be a class of right R-modules and M a right R-module. Following [7],

a homomorphism φ : F → M with F ∈ F is called an F -precover of M if for any

homomorphism f : F ′ → M with F ′ ∈ F , there is a homomorphism g : F ′ → F

such that φg = f . Moreover, if the only such g is an automorphism of F when

F ′ = F and f = φ, then the F -precover φ is called an F -cover. Dually, we

have the definitions of an F -preenvelope and an F -envelope. We say that F is

(pre)covering or (pre)enveloping provided every right R-module has anF -(pre)cover

or F -(pre)envelope, respectively.

Supported by the NSF of China (No. 11371131) and the Construct Program of the Key
Discipline in Hunan Province.
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Let n and d be non-negative integers. Following [4], we call a right R-module P

n-presented if it has an n-presentation, that is, there exists an exact sequence of right

R-modules

Fn → Fn−1 → . . .→ F1 → F0 → P → 0

where each Fi is finitely generated free (equivalently projective), i = 0, 1, . . . , n. It

is clear that every m-presented R-module is n-presented for m > n. A ring R is

called right n-coherent [4] provided every n-presented right R-module is (n + 1)-

presented. It is easy to see that R is right 0-coherent or 1-coherent if and only if

R is right Noetherian coherent, respectively. Following [4] and [16], R is said to

be a right (n, d)-ring if every n-presented right R-module has projective dimension

at most d. A right R-module M is called (n, d)-injective [16] if Extd+1(N,M) = 0

for any n-presented right R-module N . The (1, 0)-injective modules are also known

as absolutely pure modules [11] and FP -injective modules [13]. For unexplained

concepts and notation we refer the reader to [17], [3], [12], and [14].

It is known that a ring R is left Noetherian if and only if every left R-module has

an injective (pre)cover (see [8], Theorem 5.4.1). Recently, Katherine Pinzon proved

that if R is left coherent, then every left R-module has a (1, 0)-injective (pre)cover

(see [11], Theorem 2.6 and Corollary 2.7). On the other hand, Mao and Ding [10],

Theorem 3.9, proved that the class of (n, d)-injective R-modules is preenveloping for

any ring R. It is natural to ask what conditions on R imply that the class of (n, d)-

injective modules is precovering and what conditions on R imply that the class of

(n, d)-injective modules is covering?

In Section 3, we show that (1) if R is a right n-coherent ring, then every right

R-module has an (n, d)-injective (pre)cover; (2) if R is a ring such that every (n, 0)-

injective right R-module is n-pure extending, and if every right R-module has an

(n, 0)-injective cover, then R is right n-coherent (n > 1); (3) R is a right n-coherent

ring if and only if every n-pure submodule of an (n, 1)-injective right R-module is

(n, 1)-injective (n > 1).

In Section 4, as applications of the previous results, we give some characterizations

of (n, d)-rings. We show that R is a right (n, d)-ring if and only if R is a right

(n, d)-FC ring and the kernel of any (n, d)-injective cover of a right R-module is

(n, d)-injective if and only if R is a right (n, d)-FC ring and the cokernel of any

(n, d)-injective preenvelope of a right R- module is (n, d)-injective if and only if R is

a right (n, d)-FC ring and R is a right (n, d +m)-ring for some m > 0 if and only

if R is a right (n, d)-FC ring and every right R-module has an (n, d +m)-injective

cover with the unique mapping property for some m > 0. Some known results are

extended or obtained as corollaries. For example, we get that R is von Neumann

regular if and only if R is a right FC ring and the kernel of any (1, 0)-injective cover
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of a right R-module is (1, 0)-injective if and only if R is a right FC ring and every

right R-module has a (1,m)-injective cover with the unique mapping property for

some m > 0 if and only if R is a right FC ring and wD(R) < ∞; R is semisimple

if and only if R is a QF ring and every right R-module has a (0,m)-injective cover

with the unique mapping property for some m > 0 if and only if R is a QF ring and

rD(R) <∞.

2. Preliminaries

The results listed in this section will be important ingredients in proving our main

results.

Proposition 2.1 ([10], Theorem 4.1). The following assertions are equivalent for

a ring R and n > 1:

(1) R is right n-coherent.

(2) For any short exact sequence 0 → A → B → C → 0 of right R-modules, if A

and B are (n, 0)-injective, then C is (n, 0)-injective.

Recall that a short exact sequence 0 → A → B → C → 0 is said to be n-pure

[10], Definition 3.5, if the sequence Hom(M,B) → Hom(M,C) → 0 is exact for any

n-presented R-module M . A submodule A ⊂ B is called n-pure if the sequence

0 → A→ B → B/A→ 0 is n-pure. It is clear that A is 1-pure in B if and only if it

is pure, and if A is n-pure in B, then A is m-pure for any m > n.

Proposition 2.2 ([10], Proposition 3.6). A module M is (n, 0)-injective if and

only if it is an n-pure submodule of an (n, 0)-injective module N .

In the following, we assume that n and d are non-negative integers.

Proposition 2.3 ([16], Proposition 3.1). Let R be a right n-coherent ring. Then

every direct limit of (n, d)-injective right R-modules is (n, d)-injective.

The next proposition says that the class of (n, d)-injective modules is closed under

extensions.

Proposition 2.4. For any short exact sequence 0 → A → B → C → 0 of right

R-modules, if A and C are (n, d)-injective, then B is (n, d)-injective.

P r o o f. It is straightforward. �
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Proposition 2.5 ([10], Lemma 3.4). Let R be a right n-coherent ring. Then the

class of (n, d)-injective right R-modules is closed under cokernel of monomorphisms.

Proposition 2.6. Let R be a ring. Let F be the class of right R-modules closed

under summands and isomorphisms. If F is precovering, then F is closed under

direct sums.

P r o o f. Let (Fi)i∈I be a family of right R-modules such that each Fi ∈ F .

Then we get an F -precover f : F →
⊕
Fi. For each j ∈ I, let lj : Fj →

⊕
Fi

be the canonical injection. Then there exists a homomorphism gj : Fj → F such

that lj = fgj. In addition, there is a homomorphism ϕ :
⊕
Fi → F such that

gj = ϕlj , and hence lj = fϕlj. So fϕ is an isomorphism. Thus,
⊕
Fi is isomorphic

to a summand of F by [1], Lemma 5.1, and so
⊕
Fi ∈ F . �

3. (n, d)-injective covers and n-coherent rings

To show that over a right n-coherent ring R the class of (n, d)-injective right

R-modules is covering, we need the following four lemmas.

Lemma 3.1. Let R be a right n-coherent ring. Then every m-pure submodule of

an (n, d)-injective right R-module is (n, d)-injective, for any non-negative integer m.

P r o o f. Let N be an m-pure submodule of an (n, d)-injective right R-module

M , and P an n-presented right R-module. Since R is right n-coherent, P has an

(m+ d)-presentation

Fm+d → Fm+d−1 → . . .→ F1 → F0 → P → 0.

Let K = ker(Fd−1 → Fd−2), then K is m-presented. Since M is (n, d)-injective,

Ext1(K,M) ∼= Extd+1(P,M) = 0. In addition, the short exact sequence 0 → N →

M →M/N → 0 induces a long exact sequence

0→Hom(K,N)→Hom(K,M)→Hom(K,M/N)→ Ext1(K,N)→ Ext1(K,M) = 0.

Note that N is an m-pure submodule of M . So Hom(K,M) → Hom(K,M/N) → 0

is exact and hence Extd+1(P,N) ∼= Ext1(K,N) = 0, that is, N is (n, d)-injective. �

A deep result of Robort El Bashir [2], Theorem 5, is that given a ring R and given

a cardinal λ, there is a cardinal κ such that if CardM > κ and CardM/L 6 λ then

L contains a nonzero pure submodule of M .
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Lemma 3.2. Let R be a right n-coherent ring, and M an (n, d)-injective right

R-module. Given a cardinal λ, there is a cardinal κ such that if CardM > κ and

CardM/L 6 λ then L contains a nonzero (n, d)-injective submodule of M .

P r o o f. This follows from Lemma 3.1 and [2], Theorem 5. �

The proof of the following lemma is similar to that of [11], Lemma 2.5.

Lemma 3.3. Let R be right n-coherent and let CardM = λ for a right R-mod-

ule M . There is a cardinal κ such that any homomorphism E → M with E (n, d)-

injective has a factorization E → E′ →M with E′(n, d)-injective and CardE′ < κ.

P r o o f. For any homomorphism E →M with E (n, d)-injective, by Lemma 3.2,

we get a cardinal κ such that if CardE > κ and CardE/L 6 λ then L contains

a nonzero (n, d)-injective submodule of E. If CardE < κ, let E′ = E and we are

done. So assume CardE > κ. We can choose a submodule A ⊂ E maximal with

respect to the two properties thatA is (n, d)-injective and thatA ⊂ ker(E →M). Let

E′ = E/A. Then it is easy to see that the homomorphism E →M has a factorization

E → E′ →M . Note that R is right n-coherent. So by Proposition 2.5, the exactness

of the sequence 0 → A → E → E′ → 0 implies that E′ is (n, d)-injective. Next we

argue that CardE′ < κ. Suppose CardE′ > κ. Let K = ker(E′ → M). Clearly,

CardE′/K 6 CardM = λ. Again by Lemma 3.2, there is a nonzero (n, d)-injective

submodule B/A of E/A contained in K, and so B ⊂ ker(E → M). Considering the

exact sequence 0 → A → B → B/A → 0, we see that B is also (n, d)-injective by

Proposition 2.4. This contradicts the choice of A. Hence, E →M has a factorization

E → E′ →M with E′ (n, d)-injective and CardE′ < κ. �

Lemma 3.4 ([11], Lemma 2.4). Let F be a class of R-modules that is closed

under direct sums. If X ⊂ F , for some set X , is such that any homomorphism

F → M with F ∈ F can be factored F → X → M for some X ∈ X , then M has

an F -precover.

Theorem 3.5. Let R be a right n-coherent ring. Then every right R-module has

an (n, d)-injective precover.

P r o o f. Let M be any right R-module with CardM = λ. Then by Lemma 3.3,

there is a cardinal κ such that any homomorphism E → M with E (n, d)-injective

has a factorization E → E′ → M with E′ (n, d)-injective and CardE′ < κ. Let X

be any set with CardX = κ. Let A be all (n, d)-injective right R-modules such that

A ⊂ X (as sets). Hence, replacing E′ by an isomorphic copy we may assume E′ ⊂

X (as a set), and so we can apply Lemma 3.4. Thus, the conclusion follows. �
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Theorem 3.6. Let R be a right n-coherent ring, then every right R-module has

an (n, d)-injective cover.

P r o o f. By Theorem 3.5, we get that every right R-module has an (n, d)-

injective precover. But for a right n-coherent ring R, the class of (n, d)-injective

right R-modules is closed under well ordered inductive limits by Proposition 2.3.

Hence, the result follows from [8], Corollary 5.2.7. �

Corollary 3.7 ([8], Theorem 5.4.1). R is right Noetherian if and only if every

right R-module has an injective precover if and only if every right R-module has an

injective cover.

P r o o f. This follows from Theorem 3.5, Theorem 3.6, Proposition 2.6, and the

fact that R is right Noetherian if and only if the class of injective right R-modules

is closed under direct sums. �

By Theorem 3.5, Theorem 3.6, and Corollary 3.7, we have

Corollary 3.8. R is right Noetherian if and only if every right R-module has

a (0, d)-injective precover if and only if every right R-module has a (0, d)-injective

cover for any non-negative integer d.

Corollary 3.9 ([11], Theorem 2.6). If R is a right coherent ring, then every right

R-module has an absolutely pure precover.

An (n, d)-injective (pre)cover is not necessarily an epimorphism. It is known that

if R is right coherent or Noetherian and RR (as a right R-module) is FP -injective

or injective, respectively, then every right R-module has an epimorphic FP -injective

or injective cover. In general, we have

Corollary 3.10. The following are equivalent for a right n-coherent ring R:

(1) Every right R-module has an (n, d)-injective (pre)cover which is an epimor-

phism;

(2) RR has an (n, d)-injective (pre)cover which is an epimorphism;

(3) RR is (n, d)-injective;

(4) every (n, d)-injective (pre)cover of a right R-module is an epimorphism.

P r o o f. Obvious. �

Definition 3.11. Let n > 1. An n-pure monomorphism is a monomorphism

A → B whose image is an n-pure submodule of B. A module B is called n-pure

extending if for any n-pure submodule A ⊂ B, any n-pure monomorphism A → B

can be extended to B → B.
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We note that the class of n-pure extending modules contains all quasi-injective

modules [15], pure injective modules [9] and simple modules, and a homomorphism

is an 1-pure monomorphism if and only if it is a pure monomorphism [9].

Lemma 3.12. Let n > 1. Let B be an n-pure extending right R-module and

A ⊂ B an n-pure submodule. Let f : A → B be an n-pure monomorphism. Then

there is a homomorphism h : B → B such that hf = 1A where 1A is the identity

homomorphism of A.

P r o o f. Since f is a monomorphism, we get a homomorphism f−1 : Im(f) → A.

By hypothesis, there exists a homomorphism h : B → B such that the restriction

h|Im(f) = f−1. So hf = 1A. �

Let F be a class of R-modules. We will denote by F⊥ = {C : Ext1(F,C) = 0 for

all F ∈ F} the right orthogonal class of F .

A question posed by Pinzon [11], Remark 2.8, is whether R must necessarily be

right coherent in order that every right R-module have a (1, 0)-injective cover. The

following theorem gives a partial answer to this question.

Theorem 3.13. Let n > 1. Let R be a ring such that every (n, 0)-injective right

R-module is n-pure extending. If every right R-module has an (n, 0)-injective cover,

then R is right n-coherent.

P r o o f. For convenience, we let F denote the class of (n, 0)-injective right R-

modules. Let 0 → A→ B → C → 0 be any exact sequence of right R-modules where

A and B ∈ F . We want to show that C ∈ F . By hypothesis, C has an F -cover

F → C. Then it is easy to see that F → C is an epimorphism. Using a pullback

construction for

F

��
B // C

we get a commutative diagram

0

��

0

��

0

��
0 // 0 //

��

K //

��

K //

��

0

0 // A //

��

M //

��

F //

��

0

0 // A //

��

B //

��

C //

��

0

0 0 0
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with exact rows and columns. Since both A ∈ F and F ∈ F , we have M ∈ F

by Proposition 2.4. Since F → C is an F -cover, K = ker(F → C) ∈ F⊥ by [8],

Corollary 7.2.3, page 156. Note that B ∈ F . So Ext1(B,K) = 0. Thus, the middle

column of the diagram above is split exact, and hence K ∈ F . We claim: K = 0.

Let

0 −→ K
ι

−→ E
π

−→ L −→ 0

be exact with E injective. By hypothesis, L has an F -cover γ : D → L. Then

γ is an epimorphism. We construct the pullback diagram of (L, γ, π) and get the

commutative diagram

0

��

0

��

0

��
0 // 0 //

��

K1
//

��

K1
//

��

0

0 // K
i // N

��

f2 // D

��

// 0

0 // K

��

ι // E

��

π // L //

��

0

0 0 0

with exact rows and columns. Similarly to the proof above, we have N ∈ F and the

middle column of the diagram above is split exact. Hence N ∼= K1 ⊕ E. That is,

E ∼= G for an injective submodule G ⊂ N . Since Im(i) ∼= K ∼= Im(ι) ⊂ E ∼= G ⊂ N ,

we have a monomorphism h1 : Im(i) → G which induces an exact sequence 0 −→

Im(i)
h1−→ N

h2−→ P −→ 0, where P = N/ Im(h1). Note that Im(i) is (n, 0)-injective.

So both Im(i) and Im(h1) are n-pure in N by Proposition 2.2. Thus, by Lemma 3.12,

there is a homomorphism θ : N → N such that θh1 = f1 where f1 is the identity

homomorphism of Im(i). On the other hand, the sequence 0 −→ Im(i)
f1
−→ N

f2
−→

D −→ 0 is exact. Thus, we obtain the rows exact commutative diagram

0 // Im(i)
h1 // N

θ
��

h2 // P

ψ
��

// 0

0 // Im(i)
f1 // K1

f2 // D // 0

Next we construct an exact sequence 0 −→ N
α

−→ P ⊕N
β

−→ D −→ 0. Define

α : N → P ⊕N such that α(x) = (h2(x), θ(x)) for any x ∈ N ;

β : P ⊕N → D such that β(p, x) = f2(x)− ψ(p) for any (p, x) ∈ P ⊕N .
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If α(x) = 0 = (h2(x), θ(x)), then h2(x) = 0. So there is y ∈ Im(i) such that

h1(y) = x. Hence 0 = θ(x) = θh1(y) = f1(y). Noting that f1 is monomorphic, we

have y = 0. Thus, x = h1(y) = 0, and we see that α is monomorphic. Clearly, β is

epimorphic and βα = 0.

Let (p, x) ∈ ker(β). Then β(p, x) = f2(x) − ψ(p) = 0. Since h2 is epimorphic,

there is x′ ∈ N such that h2(x
′) = p. So f2θ(x

′) = ψh2(x
′) = ψ(p) = f2(x), and

f2(θ(x
′) − x) = 0. Thus, there is y ∈ Im(i) such that θh1(y) = f1(y) = θ(x′) − x.

This means that x = θ(x′) − θh1(y) = θ(x′ − h1(y)). In addition, h2(x
′ − h1(y)) =

h2(x
′) − h2h1(y) = h2(x

′) = p. So (p, x) = (h2(x
′ − h1(y)), θ(x

′ − h1(y))) ∈ Im(α).

Now we get an exact sequence

0 −→ N
α

−→ P ⊕N
β

−→ D −→ 0

with N , D ∈ F . Hence P ⊕ N ∈ F and so P ∈ F . Since G is injective, we get

a commutative diagram

G

0 // K

h1i

OO

ι
// E

φ
bb❊❊❊❊❊❊

and hence the diagram

N

0 // K

h1i

OO

ι
// E

φ
bb❊❊❊❊❊❊

is also commutative. So the rows exact diagram

0 // K
ι // E

φ
��

π // L //

��

0

0 // K
h1i // N

h2 // P // 0

can be completed to a commutative diagram. Similarly to the proof above, we obtain

an exact sequence

0 −→ E −→ L⊕N −→ P −→ 0.

Note that E, P ∈ F . Hence L⊕N ∈ F and so L ∈ F . But then Ext1(L,K) = 0

again by [8], Corollary 7.2.3, page 156. Thus, the sequence 0 → K → E → L→ 0 is

split exact, and hence K is injective. Since K is the kernel of theF -cover F → C, by

[14], Corollary 1.2.8, page 13, K is zero. Hence C ∼= F , and so C is (n, 0)-injective.

It follows that R is right n-coherent by Proposition 2.1. The proof is complete. �

When n = 1 in Theorem 3.13, we have
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Corollary 3.14. Let R be a ring such that every absolutely pure right R-module

is pure extending. If every right R-module has an absolutely pure cover, then R is

right coherent.

Proposition 3.15. The following assertions are equivalent for a ring R and n > 1:

(1) R is right n-coherent.

(2) Every n-pure submodule of an (n, 1)-injective right R-module is (n, 1)-injective.

P r o o f. (1) ⇒ (2) holds by Lemma 3.1.

(2) ⇒ (1). Let 0 → A → B → C → 0 be any exact sequence of right R-modules

where A and B are (n, 0)-injective. Then we get a long exact sequence

0 = Ext1(P,B) → Ext1(P,C) → Ext2(P,A)

for any n-presented right R-module P . Let 0 → A → E be exact with E injective.

Then A is (n, 1)-injective by (2). So Ext2(P,A) = 0 and hence Ext1(P,C) = 0.

Thus, (1) follows. �

4. Applications to (n, d)-rings

In this section, we will say that R is a right (n, d)-FC ring provided it is right

n-coherent and RR is (n, d)-injective. We note that right (1, 0)-FC rings are also

called right FC rings [5], and (0, 0)-FC rings coincide with QF rings.

Recall that an (n, d)-injective envelope φ : M → E of M has the unique mapping

property [6] if for any homomorphism f : M → A with A (n, d)-injective, there is

a unique homomorphism g : E → A such that gφ = f . The concept of an (n, d)-

injective cover with the unique mapping property can be defined similarly.

Theorem 4.1. Let R be a ring. Then the following assertions are equivalent:

(1) R is a right (n, d)-ring;

(2) R is a right (n, d)-FC ring, and the kernel of any (n, d)-injective cover of a right

R-module is (n, d)-injective;

(3) R is a right (n, d)-FC ring, and the cokernel of any (n, d)-injective preenvelope

of a right R-module is (n, d)-injective;

(4) R is a right (n, d)-FC ring, and every factor module of a right (n, d)-injective

R-module is (n, d)-injective;

(5) RR is (n, d)-injective, and every right R-module has a monomorphic (n, d)-

injective cover;

(6) every right R-module has an epimorphic (n, d)-injective cover with the unique

mapping property;

298



(7) every right R-module has an (n, d)-injective envelope with the unique mapping

property;

(8) R is a right (n, d)-FC ring, and R is a right (n, d+m)-ring for some m > 0;

(9) R is a right (n, d)-FC ring, and every right R-module has an (n, d+m)-injective

cover with the unique mapping property for some m > 0;

(10) R is a right (n, d)-FC ring, and every right R-module has an (n, d+m)-injective

envelope with the unique mapping property for some m > 0.

P r o o f. (1) ⇒ (3), (1) ⇒ (4) and (1) ⇒ (8) are clear.

(3) ⇒ (2). Let M be any right R-module. Then, by Corollary 3.10, M has

an epimorphic (n, d)-injective cover E → M with E (n, d)-injective. On the other

hand, by [10], Theorem 3.9, K = ker(E → M) has a monomorphic (n, d)-injective

preenvelope g : K → E1. So we get the commutative diagram

0

��

0

��

0

��
0 // K //

��

E //

��

M //

��

0

0 // E1 //

��

N //

��

M //

��

0

0 // L //

��

L //

��

0 //

��

0

0 0 0

with exact rows and columns. Since K → E1 is an (n, d)-injective preenvelope, the

homomorphism K → E can be extended to a homomorphism E1 → E and so the

diagram

0 // K

��

// E

E1

<<①①①①①①

is commutative. It induces a homomorphism L→ N so that the diagram

N

��
0 // L

<<②②②②②② // L // 0

is also commutative. This implies that the sequence 0 → E → N → L → 0 is split

exact. Now applying Hom(A,−) to the first commutative diagram with A (n, d)-
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injective, we obtain the commutative diagram

0

��

0

��

0

��
0 // Hom(A,K) //

��

Hom(A,E) //

��

Hom(A,M) //

��

0

0 // Hom(A,E1) //

��

Hom(A,N) //

��

Hom(A,M) //

��

0

0 // Hom(A,L) //

��

Hom(A,L) //

��

0 //

��

0

0 0 0

Clearly, the bottom row and the right two columns are exact. Since E → M is an

(n, d)-injective cover, the top row is also exact. So the middle row is exact. It follows

that the left column is also exact by [12], Lemma 6.31, page 354. Note that L is

(n, d)-injective by (3). So by setting E = L, we see that 0 → K → E1 → L → 0 is

split exact, and hence K is (n, d)-injective, as desired.

(2) ⇒ (1). Let M be any right R-module. Then, by Corollary 3.10, M has an

epimorphic (n, d)-injective cover E →M with E (n, d)-injective. So we get an exact

sequence 0 → K → E → M → 0. By (2), K is (n, d)-injective. It follows that M is

also (n, d)-injective by Proposition 2.5, as desired.

(5) ⇒ (1). Let M be any right R-module. By hypothesis, M has a monomorphic

(n, d)-injective cover F → M . Since RR is (n, d)-injective, it is easy to see that

F →M is an epimorphism. So M is (n, d)-injective and (1) follows.

(4) ⇒ (1). Let M be any right R-module. Then by Corollary 3.10, M has

an epimorphic (n, d)-injective cover g : E → M with E (n, d)-injective. So M ∼=

coker(g), and (4) implies that M is (n, d)-injective, as desired.

(8) ⇒ (1). If m = 0 then we are done. So assume m > 1. Let M be any right

R-module. Since R is right n-coherent and RR is (n, d)-injective, by Corollary 3.10,

M has an epimorphic (n, d)-injective cover f : E →M with E (n, d)-injective, which

yields the exactness of the sequence 0 → K → E → M → 0. So we get a long exact

sequence

Extd+m(P,E) −→ Extd+m(P,M) −→ Extd+m+1(P,K)

for any n-presented right R-module P . By (8), K is (n, d + m)-injective, and so

Extd+m+1(P,K) = 0. But Extd+m(P,E) = 0 since R is right n-coherent and E

is (n, d)-injective. Hence Extd+m(P,M) = 0, and so M is (n, d +m − 1)-injective.

Thus R is a right (n, d +m − 1)-ring. Repeat this procedure to obtain R is a right

(n, d)-ring.
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(6) ⇒ (1). For any right R-module M , let g : E → M be an epimorphic (n, d)-

injective cover of M with the unique mapping property, where E is (n, d)-injective.

By (6), K = ker(g) has an epimorphic (n, d)-injective cover f : E′ → K. So, we

obtain the following row exact commutative diagram:

E′

f

||②②
②②
②②
②

if
��

0

""❋
❋❋

❋❋
❋❋

0 // K
i // E

g // M // 0.

Since g(if) = 0, we have if = 0 by uniqueness. Note that f is an epimorphism.

Hence K = Im(f) ⊆ ker(i) = 0. Hence, M is (n, d)-injective. So (1) follows.

(1) ⇒ (5), (1) ⇒ (6) and (1) ⇒ (7). Let M be any right R-module. Then M

is (n, d)-injective by (1). Now it is easy to verify that the identity homomorphism

on M is an (n, d)-injective cover with the unique mapping property. It is also an

(n, d)-injective envelope ofM which has the unique mapping property. Thus (5), (6)

and (7) hold.

(7) ⇒ (1). For any right R-module M , let f : M → E be an (n, d)-injective

envelope of M with the unique mapping property, where E is (n, d)-injective. By

(7), L = coker(f) has an (n, d)-injective envelope g : L → E′. Therefore we get the

commutative diagram

0 // M
f //

0

""❋
❋❋

❋❋
❋❋

E
π //

gπ

��

L //
g

||③③
③③
③③
③

0

E′

with exact row. Since (gπ)f = 0, we have gπ = 0 by uniqueness. Note that g is

a monomorphism. Hence, L = Im(π) ⊆ ker(g) = 0. So M is (n, d)-injective, and (1)

follows.

(8) ⇔ (9) ⇔ (10). The proofs are analogous to those of (1) ⇔ (6) ⇔ (7). �

It is well-known that a ring R is a right (0, 0)-ring (or (0, 1)-ring, (1, 0)-ring,

(1, 1)-ring) if and only if R is semisimple (or right hereditary, von Neumann regular,

right semihereditary, respectively) (see [4], Theorem 1.3; or [16], Corollary 2.7).

Specializing Theorem 4.1, we have

Corollary 4.2. Let R be a ring. Then the following assertions are equivalent:

(1) R is von Neumann regular;

(2) R is a right FC ring, and the kernel of any FP -injective cover of a right R-

module is FP -injective;
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(3) R is a right FC ring, and the cokernel of any FP -injective preenvelope of a right

R-module is FP -injective;

(4) RR is right FP -injective, and every factor module of a right FP -injective R-

module is FP -injective;

(5) RR is FP -injective, and R is right semihereditary;

(6) RR is FP -injective, and every right R-module has a monomorphic FP -injective

cover;

(7) every right R-module has an epimorphic FP -injective cover with the unique

mapping property;

(8) every right R-module has an FP -injective envelope with the unique mapping

property;

(9) R is a right FC ring, and R is a right (1,m)-ring for some m > 0;

(10) R is a right FC ring, and every right R-module has a (1,m)-injective cover with

the unique mapping property for some m > 0;

(11) R is a right FC ring, and every right R-module has a (1,m)-injective envelope

with the unique mapping property for some m > 0;

(12) R is a right FC ring and wD(R) <∞.

P r o o f. Due to Theorem 4.1, we need only to show that (4) ⇒ (5) and (9) ⇔

(12).

(4) ⇒ (5). Let M be any right R-module. There is an exact sequence 0 →

M → E → L → 0 with E injective. So for any finitely presented right R-module P

we have Ext2(P,M) ∼= Ext1(P,L) = 0 since L is FP -injective by(4). Hence M is

(1, 1)-injective, and (5) follows.

(9) ⇔ (12). This follows from [16], Proposition 2.6; and [16], Corollary 2.7. �

Corollary 4.3. Let R be a ring. Then the following assertions are equivalent:

(1) R is semisimple;

(2) R is a QF ring, and the kernel of any injective cover of a right R-module is

injective;

(3) R is a QF ring, and the cokernel of any injective envelope of a right R-module

is injective;

(4) R is a QF ring, and R is right hereditary;

(5) RR is injective, and every right R-module has a monomorphic injective cover;

(6) every rightR-module has an epimorphic injective cover with the unique mapping

property;

(7) every right R-module has an injective envelope with the unique mapping prop-

erty;

(8) R is a QF ring, and rD(R) <∞;
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(9) R is a QF ring, and R is a (0,m)-ring for some m > 0;

(10) R is a QF ring, and every right R-module has a (0,m)-injective cover with the

unique mapping property for some m > 0;

(11) R is a QF ring, and every right R-module has a (0,m)-injective envelope with

the unique mapping property for some m > 0.

By Corollary 3.8, we see that R is right Noetherian if and only if every right R-

module has a (0, d)-injective cover, for any non-negative integer d. We end the paper

with

Remark 4.4. Let n > 1. The question whether R must necessarily be right

n-coherent in order that every right R-module have an (n, d)-injective cover for any

non-negative integer d, is open.

Acknowledgement. The authors would like to thank the referees for the very

kind and helpful comments and suggestions.

References

[1] F.W.Anderson, K.R. Fuller: Rings and Categories of Modules. (2nd ed.). Graduate
Texts in Mathematics 13, Springer, New York, 1992.

[2] L.Bican, R. El Bashir, E.Enochs: All modules have flat covers. Bull. Lond. Math. Soc.
33 (2001), 385–390.

[3] J.Chen, N.Ding: On n-coherent rings. Commun. Algebra 24 (1996), 3211–3216.
[4] D.L. Costa: Parameterizing families of non-Noetherian rings. Commun. Algebra 22
(1994), 3997–4011.

[5] R.F.Damiano: Coflat rings and modules. Pac. J. Math. 81 (1979), 349–369.
[6] N.Ding: On envelopes with the unique mapping property. Commun. Algebra 24 (1996),
1459–1470.

[7] E.E. Enochs: Injective and flat covers, envelopes and resolvents. Isr. J. Math. 39 (1981),
189–209.

[8] E.E. Enochs, O.M.G. Jenda: Relative Homological Algebra. De Gruyter Expositions in
Mathematics 30, Walter de Gruyter, Berlin, 2000.

[9] A.Facchini: Module Theory: Endomorphism Rings and Direct Sum Decompositions in
Some Classes of Modules. Progress in Mathematics 167, Birkhäuser, Basel, 1998.

[10] L.Mao, N.Ding: Relative projective modules and relative injective modules. Commun.
Algebra 34 (2006), 2403–2418.

[11] K.Pinzon: Absolutely pure covers. Commun. Algebra 36 (2008), 2186–2194.
[12] J. J. Rotman: An Introduction to Homological Algebra. (2nd ed.). Universitext, Springer,

New York, 2009.
[13] B. Stenström: Coherent rings and FP -injective modules. J. Lond. Math. Soc., II. Ser.

2 (1970), 323–329.
[14] J.Xu: Flat Covers of Modules. Lecture Notes in Mathematics 1634, Springer, Berlin,

1996.
[15] R.Yue Chi Ming: On quasi-injectivity and von Neumann regularity. Monatsh. Math.

95 (1983), 25–32.
[16] D.Zhou: On n-coherent rings and (n, d)-rings. Commun. Algebra 32 (2004), 2425–2441.

303



[17] D.X. Zhou: Cotorsion pair extensions. Acta Math. Sin., Engl. Ser. 25 (2009), 1567–1582.

Authors’ address: We i q i n g L i, B a i y u O u y a n g (corresponding author), College of
Mathematics and Computer Science, Key Laboratory of High, Performance Computing and
Stochastic Information Processing, (Ministry of Education of China), Hunan Normal Uni-
versity, Changsha, Hunan 410 081, P.R. China, e-mail: sdwg001@163.com, oy@hunnu.edu.cn.

304


		webmaster@dml.cz
	2020-07-03T21:01:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




