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Abstract

This paper treats about one of the most remarkable achievements by
Riemann, that is the symmetric form of the functional equation for ((s).
We present here, after showing the first proof of Riemann, a new, simple
and direct proof of the symmetric form of the functional equation for both
the Eulerian Zeta function and the alternating Zeta function, connected
with odd numbers. A proof that Euler himself could have arranged with
a little step at the end of his paper “Remarques sur un beau rapport
entre les séries des puissances tant direct que réciproches”. This more
general functional equation gives origin to a special function,here named
9(s) which we prove that it can be continued analytically to an entire
function over the whole complex plane using techniques similar to those
of the second proof of Riemann. Moreover we are able to obtain a con-
nection between Jacobi’s imaginary transformation and an infinite series
identity of Ramanujan. Finally, after studying the analytical properties
of the function D (s), we complete and extend the proof of a Fundamental
Theorem, both on the zeros of Riemann Zeta function and on the zeros of
Dirichlet Beta function, using also the Euler-Boole summation formula.

Key words: Riemann Zeta, Dirichlet Beta, generalized Riemann
hypothesis, series representations
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1 Introduction

In [14] we introduced a special function, named A(s), which is

Afs) = DEXELE)

ﬂ-S

with s € C. (1.1)

where I'(s) denotes Euler’s Gamma function, ((s) denotes the Riemann Zeta
function and L(s) denotes Dirichlet’s (or Catalan’s) Beta function.
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116 Andrea Ossicini

Let us remember that the Gamma function can be defined by the Euler’s
integral of the second kind [22, p. 241]:

I'(s) = /000 et dt = /0 (log1/t)° " dt (R(s) > 0)

and also by the following Euler’s definition [22, p. 237]:

s 123 (n—1) .
M) =l 652 e e

The Riemann Zeta function is defined by ([17, pp. 96-97], see Section 2.3):

il = 1o il (2n£1)5 (R(s) > 1)
C(s) =9 " "

(1-2-5)7" i G e (R(s) >0, s #1)

which can be indeed analytically continued to the whole complex s-plane except
for a simple pole at s = 1 with residue 1.

The Riemann Zeta function ((s) plays a central role in the applications of
complex analysis to number theory.

The number-theoretic properties of ((s) are exhibited by the following result
as Fuler’s product formula, which gives a relationship between the set of primes
and the set of positive integers:

s =JJa-»>)"  ®RGs)>1),

P

where the product is taken over all primes.

It is an analytic version of the fundamental theorem of arithmetic, which
states that every integer can be factored into primes in an essentially unique
way.

Euler used this product to prove that the sum of the reciprocals of the primes
diverges.

The Dirichlet Beta function, also known as Dirichlet’s L function for the
nontrivial character modulo 4, is defined, practically for ®(s) > 0, by:

L(s) = L(s,xa) = Z %
n=0

and it does not possess any singular point.
The L(s) function is also connected to the theory of primes which may
perhaps be best summarized by

to= I a-»" T1 G- = I (1-0e)

p=1 mod 4 p=3 mod 4 p odd
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where the products are taken over primes and the rearrangement of factors is
permitted because of an absolute convergence.
In [14] we have also proved the following identity:

A(s) = A(1—s) (1.2)

and we have used the functional equation of L(s) to rewrite the functional
equation (1.2) in Riemann’s well known functional equation for Zeta:

¢(s) = 2°7°71T(1 — s) sin (%) C(1—s) (1.3)

or equivalently to
s

¢(1—s) =2(2m)"° T'(s) cos (7) ¢(s).

This approach is the motivation for saying that the following symmetrical
formulation:

77°(s) C(s) L(s) = 7~ =)D (1 — 5) (1 — s) L(1 — s).

is an alternative form of the functional equation for Riemann’s Zeta Function.

2 The origin of the symmetric form of the functional
equation for the Eulerian Zeta and for the alternating
Zeta, connected with odd numbers

Riemann gives two proofs of the functional equation (1.3) in his paper [15], and
subsequently he obtains the symmetric form by using two basic identities of
the factorial function, that are Legendre’s duplication formula [13], which was
discovered in 1809 and was surely unknown to Euler:

I(s)D (5+ 1) VT pog)

2 = 225—1

and Euler’s complement formula:

s

L(s)T(1—s)= Sin(ms)

Riemann rewrites the functional equation (1.3) in the form [6, pp. 12-15]:

C(s) = %Q*SF (1 ; S> r (1 — %) Wg(l —5)

2

o= (1=s)/2
=TV

r (%) 752 ((s) = T (1 - 5) 9021 _ )

and using the simplification 7~ 1/7 = , he obtains the desired formula:
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Now this property induced Riemann to introduce, in place of I'(s), the inte-
gral T’ (%) and at the end, for convenience, to define the £ function as:

&) =5 (s= )71 (3) ¢(). (2.1)

S
2
In this way £(s) is an entire function and satisfies the simple functional equation:

§(s) =¢(1—s). (2.2)

This shows that £(s) is symmetric around the vertical line R(s) =

In Remark 2 of [14] we stated that Euler himself could have proved the
identity (1.2) using three reflection formulae of the ((s), L(s) and I'(s), all
well-known to him.

Here we present the simplest and direct proof based on the astonishing con-
jectures, that are Euler’s main results in his work “Remarques sur un beau
rapport entre les séries des puissances tant direct que réciproches” [8].

Euler writes the following functional equations:

N[

1_2n—1 +3n—1_4n—1_~_5n—1_6n—1_~_“.
1—2 " 4345167+,

. 1-2.3-...-(n—1)(2"—1) T
= — (2,"471 71)71_77, cos (7)
and
1—gn—tqsn-loqn-ly | 1.2.3.. .. (n—1)(2") sin(ﬂ)
1-3 45074 ™

and concludes his work by proving that those conjectures are valid for positive
and negative integral values as well as for fractional values of n.
In modern notation we have, with s € C:

n(l—s) (2° - 1) (5T
) == - 1)F(s) cos (7> (2.3)
and
L(l-s) 2° ST

T = ()i (7) . (2.4)

(2.3) represents the functional equation of Dirichlet’s Eta function, which is
defined for R(s) > 0 through the following alternating series:

ns) =

This function 7)(s) is one simple step removed form ((s) as shown by the
relation:

n(s) = (1 — 21_8) ¢(s).
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Thus (2.3) is easily manipulated into relation (1.3).
The (2.4) is the functional equation of Dirichlet’s L function.
That being stated, multiplying (2.3) by (2.4) we obtain:

pl=s) L(l—s) (1-2)27[[(s) 2sin () cos ()

n(s) . L(s)  ms(25=1 —1)ms—1 0

Considering the duplication formula of sin(s7) and Euler’s complement for-
mula we have:

n(l—s) L(1—s) (1-2%7t"% T(s)

) L(s) (-2 m T(-s)

Shortly and ordering we obtain the following remarkable identity:

(1-2-9)

1-s

(1-2)

7TS

Tl=s)n(l—s)L(1—s) = -T'(s) n(s) L(s). (2.5)

™

This is unaltered by replacing (1 — s) by s.

3 The special function 9(s) and its integral representation

At this stage, let us introduce the following special function®):

3(s) = (1 =2%)T(s)n(s)L(s) _ (1—2%)(1—2'%) F(S)C(S)L(S)' (3.1)

7-[-8 77-8

It is evident that from (1.1) one has:
9(s) = (1—-2%) (1 —2"7%) A(s).

This choice is based upon the fact that 9(s) is an entire function of s, hence it
has no poles and satisfies the simple functional equation:

S(s) = D(1 — s). (3.2)

The poles at s = 0, 1, respectively determined by the Gamma function I'(s) and
by the Zeta function ((s) are cancelled by the term (1 —2%) - (1 —2!7*).
Now by using the identities [5, chap. X, p. 355, 10.15]:

I'(s)a=™® = / e dy = M, {e”*"} (3.3)
0
where M, denotes the Mellin transform and

e = % 105 (0 fiz/7) — 1] (3.4)

m

DThe letter D, called E reversed, is a letter of the Cyrillic alphabet and is the third last
letter of the Russian alphabet.
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where 05 (z|7) is one of the four theta functions, introduced by of Jacobi [22,
chap. XXI] and the summation variable m is to run over all positive integers,
we derive the following integral representation of 9(s) function:

o) = 1201 =27) /OOo 63 (0 iz/m) — 1] (£)” df (3.5)

2 2 T

Indeed combining the following two Mellin transforms:

T(5)¢(25) = M, {% [03 (0 |iz/m) — 1]} (WS) = %)

and
1 ) 2
09 [£(6)¢(s) — 629 = M {1 0 O liafm) 11} (R(s) > 1),

the former is immediately obtained from Egs. (3.3) and (3.4) and the latter is
obtained integrating term by term the following remarkable identity, obtained
from an identity by Jacobi [11] and the result?) 62 (0|7) = 2K /7 [22, p. 479):

i (03 (0fiz/m) — 1] = > (=1)ED/2 [efr — 1]
14

(here the sum is to expanded as a geometric series in e~¢*:

e 1]—1

and the summation variable ¢ runs over all positive odd integers), thus we are in
the position to determine the integral representation (3.5) for the 9(s) function,
by the linearity property of Mellin transformation, from the following identity:

(1—2%) (1 — 21*5) I'(s)¢(s) L(s)

_ (1—2%)(1—2'7%) |:Ms {i [05(0 [iz /) — 1}2}

S(s) =

7TS

m {3 a0/ - 1}

_ (1—2‘“)(1—21‘8)]\48{3l [agmm/w)—l]} (R(s) > 1). (36)

']TS

Now we start from (3.5) to give an independent proof of (3.2) that does not
use (2.3) and (2.4), adopting techniques similar to Riemann’s ones we use the
following fundamental transformation formula for 65 (z |7):

1) (3.7)

T

z

03(z|7) = (—iT) "2 exp (2%/miT) - 03 <

T

2) K denotes the complete elliptic integral of the first kind of modulus k.
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/2 is to be interpreted by the convention |arg(—it)| < im [22,

where (—i7)~ 5

p. 475].
In particular we obtain that:

02 (0 %) - —92< Z;T) (3.8)

We then rewrite the integral that appears in (3.5) as:

™

/[9§(O|ix/7r) —1]- (;) df +/:o [03(0 fiz/m) —1] - (E) &

, w) oz
A R ey A B Y
and use the change of variable £ — T and the (3.8) to find:
[ onern)- ()" = [ ol ()
- /:O Bof/m)-(2) T = —1—fs+/ﬂ 8300 iz/m) — 1] (£) T,
Therefore:
ST )

Loty [ Bolm -1 | (2) ()7 dioga} - 9)

which is manifestly symmetrical under s — 1 — s, and analytic since 63 (0 |%)

decreases exponentially as z — oo.
This concludes the proof of the functional equation and the analytic contin-
uation of 9(s), assuming the identity (3.7), due to Jacobi.

4 Jacobi’s imaginary transformation and an infinite series
identity of Ramanujan

The fundamental transformation formula of Jacobi for 63(z|7):

z| 1
T| T
where the squares root is to be interpreted as the principal value; that is, if

w = re? where 0 < # < 27, then wl/2 = y1/2¢19/2 and the infinite series
identity of Ramanujan [3, Entry 11, p. 258]:

03(z|7) = (—it) "/ exp (z%/miT) - 05 (

I = cos (ank) | 1 1 X cosh(28nk)
a{zbec(om)-l- X(k)ieagk_l }—5{14—5;7%5}1(5%)}

k=1
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with o, 8 = 0, af =7, n € R, |n| < /2 and with
0 for k even

x(k) = 1 for k=1mod4

—1 for k=3 mod4

can be derived from the following Poisson summation formula (see [2, pp. 7-11]
and [14, Appendix]):

1 o0 [e'e) oo o0
—f(0)+ Z f(k)= / f(z)dx +2 Z/ f(x) cos(2kmx) dx.
2 k=1 0 k=10

From Jacobi’s Lambert series formula for 63(0 |7):

02(0|7) 71742 1)ED2g0 (1 ")

where £ is to run over all positive odd integers, we have again with ¢ = exp(im 7),
and 7 = iz /7

i [03(0i/m) — 1] = 3 (—1) V72 [efe — 1]

L

Now

Do (=nne] = x(m)

4 m=1

where still
0 for m even

x(m) = 1 for m =1mod 4
—1 form=3mod4

and therefore

LB/ 1) = 3 xm) (4.1)
m=1

For n = 0 the infinite series identity of Ramanujan reads

11 1
{ +ZX e“2k }:6{1+§kz_1005h(ﬁ2k)}'

Replacing cosh(z) by the exponential functions, expanding the geometric
series and rearranging the sums we have

1 o] o0
2 kX:: 5216 Z x(m 652 -1

=1
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Now we substitute a = v/z, 8 = 7/4/r and we obtain:
1| 1 Tl 1
— k _— = — — B T —— .

Finally, with the relation (4.1) we establish the following transformation of

B 0]2):
507) =28 00%)

This last transformation is also an immediate consequence of the fundamen-
tal transformation formula of Jacobi for 03(z |7).

In this way we have obtained an amazing connection between the Jacobi
imaginary transformation and the infinite series identity of Ramanujan.

5 The properties of the function 5(s)
In this section we remark the following fundamental properties of the special
function D(s) with s = o +it:
(a) O(s) =9(1 - s)
(b) D(s) is an entire function and D(s) =9 (5)
(c)D(3+it) eR
(d) B(0) =D(1) = —%2
(e)if 9(s) =0,then0 <o <1
(f) 9(s) < 0 for all s € R.

Outline of proof:

Using the topics developed at the end of Sections 2 and 3, the functional
equation (a) follows.

Regarding (b), the second expression in the definition (3.1) shows at once
that ©(s) is holomorphic for ¢ > 0, since the simple pole of I'(s) at s = 0 and the
simple pole of ((s) at s = 1 are removed by the factors (1 — 2°) and (1 — 21_5),
and there are no poles for o > 0, but the (a) implies 9(s) holomorphic on all C.

The second part of (b) follows from the fact that D(s) is real on the real line,
thus D(s) — 9 (3), is an analytic function vanishing on the real line, hence zero
since the zeros of an analytic function which is not identically zero can have no
accumulation point.

We note that s = % + it where t is real, then 5 and 1 — s coincide, so this
implies (c).

The known values L(1) = 7§, n(1) = log2 and lim,_,; (-2 )F( )= -1
imply (d) for © (1) and the functional equation (a) then glves the result for
9(0).

Since the Gamma function has no zeros and since the Dirichlet Beta function
and the Riemann Zeta function have respectively an Euler product (see §1.
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Introduction or [9, p. 53 and p. 40]):

o= T (-0 ) s @)=t

p
primeodd

which shows that they are non-vanishing in the right half plane R(s) > 1, the
function 9(s) has no zeros in R(s) > 1, and by functional equation (a), it also
has non zeros in R(s) < 0.

Thus all the zeros have their real parts between 0 and 1 (including the
extremes) and this proves (e).

Finally, to prove (f) first we note from the following integral representations
[7, p. 1, p. 32 and p. 35]:

[es} w.s—l 1 0 xs—l
I'(s) = /0 - dx; L(s) = T(s) /0 e dx;
00 = [ ol R6)>0)

that I'(s), L(s), n(s) are positives for all s € R, s > 0.
Then combining this with the negative factor 1;2 for s > 0 the definition
(3.1) proves (f) for s > 0, s # 0 and combining this with (d) then it proves (f)

for s > 0, whence the functional equation (a) shows that (f) holds for all s € R.

6 The zeros of the entire function 5(s) and an estimate
for the number of these in the critical strip 0 <o <1

We summarized and extended the results of the previous section in the following
theorem:

Fundamental Theorem (i) The zeros of 9(s) (if any exits) are all situated
in the strip 0 < o < 1 and lie symmetrically about the linest =0 and 0 = %
(ii) The zeros of D(s) are identical to the imaginary zeros of the factor
(1 —2%)- (1 —2'7%) and to the non-trivial zeros of the functions L(s) and ((s);
O(s) has no zeros on the real azis.
(iii) The number N(T) of zeros of D(s) in the rectangle with 0 < o < 1,
0<t<T, when T — oo satisfies:

T 2T
N(T) = —log— +O(logT)
T e
where the notation f(T) = O(g(T)) means D) s bounded by a constant inde-

9(T)
pendent of T.

Proof To prove (i) the properties (a) and (e) are sufficient.
These properties together with (b) and (c) show that we may detect zeros of
D(s) on the line o = % by detecting sign changes, for example, in 9 (% + it), SO
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it is not necessary to compute exactly the location of a zero in order to confirm
that it is on this line.
Thus we compute

1 1
9(5 n 5i) — _2.519281933...107%; 8(5 + 72') — 48.959203701...-107°

we know that there is a zero of D (3 + it) with ¢ between 5 and 7.

Indeed for ¢ = 6.0209489 ..., we have D (3 + 6.0209489...4) = 0 and this is
the smallest zero of 9(s): a much smaller value than the one corresponding to
((s), that is ¢ (§ + 14.13472514 .. .4) = 0.

To prove (ii) we have:

where the imaginary zeros of the factor h(s) = (1 —2%) - (1 —2'7*) lie on the
vertical lines R(s) = 0 and R(s) = 1.

We recall the following identity of the general exponential function w = a*
(@ # 0 is any complex number): a* = €*1°8%; now, the function e¢* assumes all
values except zero, i.e. the equation e* = A is solvable for any nonzero complex
number A.

If a = arg A, all solutions of the equation e* = A are given by the formula:
z=log|A|+i(a+2kr), k=0,£1,£2,...

In particular, if e* = 1, we have z = 2kmi, k =0,+1,£2,...

Consequently, the imaginary roots of h(s) are s = :t%gg’g and s = 1=+ %ggzg
with k € N, k > 0.

In addition from each of functional equations (2.3) and (2.4), exploiting the
zeros of the trigonometric function cosine and sine, it is immediate to verify
that:

C(s)=0 fors=-2,—4,-6,-8,...

and
L(s)=0 fors=-1,-3,-5,-7,....

These are the trivial zeros of the two Euler’s Zeta functions ((s) and L(s), that
are cancelled by the singularities of the I'(s) function in the negative horizontal
axis .

We remember that the two last singularities at s = 0, 1, respectively deter-
mined by the I'(s) function and by ((s) function, are cancelled by real roots of
factor h(s).

We’ve still got the non-trivial zeros of the functions ((s) and L(s), see Section
5 and at the end let’s see also the property (f).

For the proof of (iii) we consider the fact that 9(s) is an entire function of
s, hence it has no poles and the result (ii).

These properties can be then used to estimate N(7') by calling upon the
Argument Principle [10, pp. 68-70].
The Argument Principle is the following theorem of Cauchy:
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Theorem 6.1 Suppose the function F(s) is analytic, apart from a finite num-
ber of poles, in the closure of a domain D bounded by a simple closed positively
oriented Jordan curve C. Suppose further that F(s) has no zeros or poles on C.
Then the total number of zeros of F(s) in D, minus the total number of poles
of F(s) in D, counted with multiplicities, is given by

1P
210 Jo F(s)

1
ds = %AC arg F'(s).

Here Ac arg F(s) denotes the change of argument of F(s) along C.

In addition we consider the following results obtained from the Stirling’s
formula [16] and Jensen’s formula [10, pp. 49-50]:

Proposition 6.1 (Stirling’s formula) We have

1 1 1
logI'(s) = (s— 5) logs — s+ 510g277+0(|s|_1) ~ (s— 5) logs —s+0O(1)

valid as |s| = oo, in the angle —m 4+ 6 < args < 7 — 0, for any fixred § > 0.

Proposition 6.2 Let f be a function which is analytic in a neighborhood of
the disk |z — a| < R. Suppose 0 < r < R and that f has n zeros in the disk
|z —al <r. Let M = max|f (a+ Re')| and suppose that |f(0)| # 0. Then

(%) = o

We begin considering the Theorem 6.1 for the function 9(s) in the region R,
whose R is a rectangle in the complex plane with vertices at 2, 2 +¢7', —1 4T
and —1 (see Fig. 1 and Appendix).

Let D be the rectangular path passing through these vertices in the anti-
clockwise direction.

It was noted earlier that 9(s) is analytic everywhere, and has as its only
zeros the imaginary zeros in the critical strip.

Hence the number of zeros in the region R, which is given by the equation

N(T) = ! /DS/(S) / D(s)ds = %AD arg 9(s)

"~ 2mi

and so
2rN(T) = Ap arg D(s).

Our study of N(T) will therefore focus on the change of the argument of
9(s) as we move around the rectangle D. As we move along the base of this
rectangle, there is no change in arg 9(s), since 9(s) is real along this path and
is never equal to zero.

We wish to show that the change in arg D(s) as s goes from %—H’T to —144T
and then to —1 is equal to the change as s moves from 2 to 2 + i7" to % +T.
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H
Yy z 1
PG
. 1
=1 id D Vioyir! 2 4 fr
& 1 }
21,02 * ) ! L
|
fog2 % , 182 * Ls ‘IF
h3 I 1 h4_
1634 § Ly i
14,13 * €l i
1298 § Ls .
D 10.24 * L, E D
2T[/logz b | hy | ? h,
R L i
6,02 > L : A
v ' i
1 i
Cs 1 E L € x
I 'l L.
1 > [ *
-1 0 D 12 11 2
I i
1
* i
1
! ¥
)
b ¢ i
I i
¥ i
¥ !
1 1
 { i 4
» |
s 1
1 C4_ =
b 4 i
> 1 —3 2—1iT
—-1-—1iT

Figure 1 The complex zeros of the special function D (s)

Legend: zeros = %, i = 1,2,3,..., ¢; = zeros of ((s), L; = zeros of L(s),
h; = zeros of h(s).

To see this we observe that
O(o+it)=9(1—0c—it) =9(1 — o +it).

Hence the change in argument over the two paths will be the same.
If we define L to be the path from 2 to 2 + i7" then % + 4T, we have that

2rN(T) =2Apargd(s) or wN(T)= Ararg9I(s).
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We now recall the definition of 9(s) given by
(1-2°) (1= 2-9) I(s)¢(5) L (s)

ﬂ—S

9(s) =

and consider the argument of each section of the right-hand-size in turn.
We have:

Aparg [(1-2%) (1—2'7)]
=Aparg(1-2%) +Aparg (1-2""%) =2A arg (1 —2'7%) = T'log2 + O(1)
and

S

Apargm = Apargexp(—slogm) = Ap(—tlogn) = —T log .

The proof of this first result is provided in Appendix.
To consider I'(s) we call on Stirling’s formula and also arg z = S'log z, thus
we have:

ApargT'(s) = SlogD <; +iT> =9 {iTlog (; +iT> - % iT+O(1)]

1 ™ 1 s 1 ™
r . T 1 2 T 1 T
2+1T’+12 log\/4+T +22 logT+O<T)+22

ApargT(s) =TlogT — T+ O(1).

or since

1
log (5 + iT) = log

The above arguments can then be combined giving
7N (T) = Apargd (s)
=Aparg[(1-2°) (1—2'79)]
+Apargm *+ Apargl'(s) + Aparg ((s) + A arg L(s)
=T (log2 —logm+1logT — 1)+ O(1) + A arg((s) + Ay arg L(s)

2T
=Tlog — + Aparg((s) + Aparg L(s) + O(1).

Hence T o
N(T) = - log — +R(T)+ S(T)+ O(1)

where
m[R(T) 4+ S(T)] = Ap arg((s) + Ar arg L(s).

From this point, in order to prove the approximation for N(T') initially
claimed in (iii) it will be sufficient to show

R(T)=S8(T)=0(logT) asT — oc. (6.1)

First we need to know a bound for {(s) and L(s) on vertical strips.
Let s = 0 4 it where o and ¢ are real.
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Proposition 6.3 Let 0 < § < 1. In the region o >, t > 1 we have
(A) ¢(e+it)=0("°); (B) L(o+it)=0 (7).

Proof Firstly we will deduce before the estimate (B). To achieve this goal
we use the following formula of Euler-Boole summation® , because it is used to
explain the properties of alternating series and it is better suited than Euler—
Maclaurin summation [4].

Let 0 < h <1 and a, m and n integers such n > a, m > 0 and f(™ (x) is
absolutely integrable over [a, n].

Then we have:

n—1

S (1Y f(G+h) =

j=a

3

( )P )+ (1) P ()

l\’)l»—\

k=0
/ fm) E,_1(h—x)dz.

E, (x) are Euler polynomials given by the generating function:

o0

2e:vt n
= En(x)—.
e+l = () n!

and the periodic Euler polynomials E,, (z) are defined by setting E, (z) = E,(z)
for 0 <2 <1and E,(z + 1) = —E,(z) for all other z.

Let N be a larger integer to be determined later.

If f is any smooth function, for M > N, in the formula of Euler-Boole
summation above, with a = N, m = 1 and by taking the limit as h — 0 we
obtain:

M-1 /
1 M

S (1" ) = 5 (DY FO) + (DM FON] 4 5 [ B f () d

n=N N

where Ey(x) = sgn [sin(rz)], that is a pieciewise constant periodic function.
Take f(z) = (2o + 1)~*, where initially (s) > 1, and let M — oo.
We obtain:

L(S)inz 2n—|—1 g 2n+1

:%[( HN@N +1)” —s/ Eo(—z) (22 + 1) da.

The integral
/ Eo(—z)(2z+1)""tdz

3)NIST, Digital Library of Mathematical Functions, (forthcoming) http://dlmf.nist.
gov/24.17
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is absolutely convergent if o = R(s) > 0, and since ‘Eo(—x)’ = 1, we note that

s/ (224 1)"*"lda

N
5]

g

< |s|/ 2z +1)"7'da
N

2N +1)77 < <1 + 2) (2N +1)~°

where we have used the triangle inequality |s| < o + t.

Also

Thus
|L(s)| = TZ;V%—’_%[( DN@N +1)” s/: 20+ 1) "L da
*(2N1+_131_0_1ia+%[(_) N +1)7 +< > BNy

NI (3 ) oy 02

Assuming that t > 1, we may estimate this by taking N to be greatest

integer less than (151).

To see that this is the optimal choice of ¢, consider the two potentially largest
terms in (6.2):
(2N +1)1=°

l —o

f(x(lfv)

=) and

(o)=L tl=a0,

As « varies, one increases, the other decreases. Thus, we want to equate the
exponents, so a(l - J) =1l—-ao,ora=1.

Taking N ~ 51, we see that L(s) is of the order O (t!77).

Ifo>dandt > 1, we see that L(o +it) = O (t'~°) and thus (B) is proved.

To achieve the estimate (A) it is sufficient to use the same procedure, but in
this case we recall the formula of Euler-Maclaurin, that is

n;v /f )da + - f( )+ f /le— V() dae

where B (z) = z— l is the first Bernouilli polynomial, [z] is the greatest integer
and take f(z) = = , where initially R(s) > 1, and let M — oc.
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In this case, at the end, we obtain

(N7 () t o
) < T+ +(2+%)(N) .

Taking N =~ t, we see that, if c > § and t > 1, ((o + it) = O (t1*5).
Consequently (A) is proved. O

Finally we will prove (6.1), that is the integrals

of (7T LS 0 one
J(/z 05 ds+/2 () ds) = O(logT).

Firstly we note that ((s) and L(s) are holomorphic and non-vanishing in the
half plane R(s) > 1
If T is real, we have

T
/2+ G log C(2 +iT) — log ¢(2)
2

¢(s)
and 24-4T L/( )
S .
/2 (s) ds =log L(2+ ¢T) — log L(2).
Here
(2 +4T) — 1] = T2 <N In T =¢(2) - 1= 0.644934
and
[L(2+iT) — 1| = Z Ten+ 1) < Z(2n — 1)
n=1 n=2
<la-2) o] = 2@ - 1) = a7

Since these are less than 1, ((2 4 ¢T) and L(2 +4T) are constrained to a circle
which excludes the origin, and

IC(2+4T)| >1—0.644934 and |L(2+4T)|>1-04837  (6.3)

Finally, we have that

241T C/(S) B . 241T L/(S) Y
/2 5 =00 and /2 I =0 (6.4)

To complete the proof of (6.1) we show that

of [FF7CE 4 [P ) o
J</2+iT ¢(s) I +/2+iT L(s) I > = OllogT).
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We assume that the path from 2 + T to % + ¢T" does not pass through any
zero of ((s) and any zero of L(s), by moving the path up slightly if necessary.

By the Argument Principle the two integrals represent respectively the change
in the argument of {(s) and the change in the argument of L(s) as s moves from
2 44T to 5 + iT.

These are approximately 7 (¢; + ¢2), where ¢; is the number of sign changes
in R¢(s + it) and ¢y is the number of sign changes in RL(s + it), as s moves
from 2 to %, since the sign must change every time the argument changes by 7.

We note that if s is real:

RC(s +it) = = [C(s +it) + ¢(s —it)]

1
2
and 1

RL(s +it) = 3 [L(s+1it) + L(s —it)].

Therefore, it is sufficient to show that the number of zeros of 1[((s + it)+
(s — it)] and the number of zeros of %[L(s + it) + L(s — it)] on the segment
[%, 2] of real axis are O(logT). In fact, we will use Proposition 6.2 to estimate
the number of zeros of f(s) = 3 [((s + it) 4+ ((s — it)] and the number of zeros
of g(s) = & [L(s + it) + L(s — it)] inside the circle |s — 2| < 3.

We take a =2, R = % and r = % in the Proposition 6.2.

First, we note that |f(2)| and |g(2)| are bounded by (6.3).

On the other hand,

Isglax |f(s)] =0 (T3/4) and max |g(s)|=0 (T3/4)

|=7/4 |s—2|=7/4

by Proposition 6.3. Therefore if n is the number of zeros of f(s) inside [s—2| < 2
and if m is the number of zeros of g(s) inside |s — 2| < 3, we have

(;%) ~0(7%1) and (%)’” o).

or taking logarithms in the first case we have that nlog(7/6) is bounded by
3 log(T') plus a constant and the latter case we have that mlog(7/6) is bounded
by 2log(T) plus a constant.

This completes the proof of (iii). O

7 Conclusion

The symmetric form of the functional equation for ((s) represents one of the
most remarkable achievements by B. Riemann.

This fundamental result was discovered and proved in his paper [15] in two
different ways: the first was described in Section 2, the latter is similar to the one
that we have illustrated in Section 3: it is conceptually more difficult because
required taking the Mellin transform to boot and use an integral involving the
theta function.
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All modern proofs of the functional equation involve mathematical tools that
were unavailable to L. Euler and it is remarkable that he was nevertheless able
to predict the asymmetric form of the functional equation for the Zeta function.

In his paper [8] Euler used the differentiation of divergent series and a version
of his of the Euler—-Maclaurin summation formula.

Here we presented a proof of symmetric form of the functional equation for
the Zeta function that Euler himself could have proved with a little step at end
of his paper.

The result of this simple proof, based upon the three reflection formulae of
n(s), L(s) and I'(s) with the duplication formula of sine, is a most general form
of the functional equation for Riemann Zeta function.

It is easy to see that if f(s) and g(s) are two Dirichlet series, each satisfying
a functional equation, then the product f(s)-g(s) defines a third Dirichlet series
also satisfying a given functional equation, but, in our specific case, with the
product of two functional equation in the asymmetric form we have obtained a
functional equation in the unexpected symmetric form.

In the first part of this paper we obtained also an amazing connection be-
tween the Jacobi’s imaginary transformation and an infinite series identity of
Ramanujan.

In the second part using techniques similar to those of Riemann, it is shown
how to locate and count the imaginary zeros of the entire function 9 (s), which
is an extension of the special function A(s), that we have previously introduced
[14].

Here we apply also the Euler-Boole summation formula and we obtain an
estimate of the distribution of the zeros of the function D(s) to follow a method,
which Ingham [10, pp. 68-71] attributes to Backlund [1].

Basically we use the fact that we have a bound on the growth of ((s) and
the growth of L(s) in the critical strip.

More precisely with the Fundamental Theorem we also established that the
number of the zeros of the function 9(s) in the critical strip is:

T 2T
N5 (T) = —log— + O(logT 7.1
5(T) = —log — + O(logT) (7.1)
Now, from Appendix, we have that the number of zeros of the factor
h(s) = (1—2%) (1-2""%)
is: T
Na(T) = _log2+O(1). (7.2)
Subtracting (7.2) from (7.1) we have the number of zeros of the special function
A(s), that is:
Na(T) = Llog = 4 O(log T) (7.3)
A =08 gL). .
and from [18, p. 214, 9.4.3] we have that the distribution function for the zeros

of the Riemann Zeta function is:

T T T T T
log — — — +O(logT) = o log ome T O(logT). (7.4)

Ne(T) = —
C() 2 2T 27



134 Andrea Ossicini

Now subtracting (7.4) from(7.3) we have the number of zeros of the Dirichlet L
function:
T 2T
Np(T) = —log — 4+ O(logT). 7.5
L(T) = 5 log =+ O(logT) (75)

The previous results describe, in detail, the structure of the complex roots of
the entire function 9(s).

Table 1 shows the frequency distribution for the actual zeros in successive
intervals of ¢.

t N, [ Ne | Ny [ Na | Ny
0-10 2 o1 |1]3
10-20 2 | 1| a5 |7
20-30 2 | 2|5 9
30-40 2 [ 3] a7 ]9
40-50 2 | 4|6 |10] 12
50-60 2 [ 35| 8|10
60-70 2 | 4|6 |10] 12
70-80 2 | 4|6 |10] 12
80-90 2 [ 4| 7 |11] 13
90-100 4 | 4] 6 |10 14
0-100 22 29 | 50 | 79 | 101
Eq. (7.2), (7.4), (7.5) | 22 | 28 | 50
Eq. (7.3), (7.1) 78 | 100

Table 1 Number of zeros of h(s), ¢(s), L(s), A(s) and D(s) in successive intervals
of t

The author used M. Rubinstein’s L-function calculator® to compute, with
approximation, the complex zeros in the critical line o = 1/2 and in the interval
0 <t <100 (see Fig. 2).

This makes the strong difference in the distributions of the gaps, all very
interesting.

In this case, having also N4 > N4 (T = 100), it follows that there are exactly
N zeros in this portion of the critical strip, all lying on the critical line.

To be complete, we give also, for large T, the following result:

NL(T):Nc(T)+Nh(T) and N@(T):QNL(T)

In addition we observe that the complex roots of the factor h(s) lie on the
21

vertical lines R(s) = 0 and R(s) = 1 and they are separated by Z75.

Dhttp://oto.math.uwaterloo.ca/~mrubinst/L_function_public/L.html.
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c(1f2+ir)

L(1/2+it)

14.13472514173409379046

6.02094890469759665490

67.63692080354600839805

21.02203963877155499263

10.24377030416655455214

68.36588450383442296123

25.01085758014568876321

12.98809801231242250745

70.18587990880211206137

30.42487612585951321031

16.34260710458722219498

72.15548497438188121469

32.93506158773918969066

18.29199319612353483853

73.76763552148589333615

37.58617815882567125722

21.45061134398346049720

75.14312164743311140580

40.91871901214749518740

23.27837652045953153182

76.69630320343019906457

43.32707328091499951950

25.72875642508872756727

78.80999831432091300369

48.00515088116715972794

28.35963434302532778565

80.21013123836663891515

49.77383247767230218192

29.65638401459315272181

81.21395162688315115773

52.97032147771446064415

32.59218652711715513082

83.66665601447057165128

56.44624769706339480437

34.19995750921314691304

84.73174036378162860822

59.34704400260235307965

36.14288045830313783057

86.57766016839026441021

60.83177852460980984426

38.51192314171869129378

87.62971811958789968904

65.11254404808160666088

40.32267406669054418034

89.80113161669581132597

67.07081052049417371448

41.80708462000456233716

01.34070381469757347393

69.54640171117397925293

44.61789105866230339348

92.23749991045425804600

72.06715767448190758252

45.59958430679156674594

04.16661958596002130705

75.70469069908393316833

47.74156228093914125078

96.13601116178055818527

77.14484006887480537268

49.72312932378258606657

06.96174157941748357761

79.33737502024936792276

51.68609345287052843953

98.75530041575452766860

82.01038085408603018316

52.76882076780472926504

84.73549298051705010574

55.26754358469922484672

87.42527461312522940653

56.93437405520229688680

88.80011120763446542368

58.11670711067391 797726

92.49189927055848429626

60.42171394900783467302

04.65134404051988696660

62.00863228576776945193

95.87063422824530975874

63.71464111878543312352

08.83119421819369223332

64.97617057309599934861

Figure 2 Tables with approximate values of ¢ € [0,100] of the zeros of Riemann’s
Zeta function and of Dirichlet’s Beta function on the critical line

While if we assume the Generalized Riemann Hypothesis (GRH)®, this im-
plies that all complex zeros of the special function A(s) lie on the vertical line
R(s) = % and thus, at a height 7" the average spacing between zeros is asymp-

s

totic to oaT"

8 Appendix

We study the solution in s of the following Dirichlet polynomial:

, 1\°
fls)=1-2"=1-2 5) =0 (8.1)
This is the simplest example of a Dirichlet polynomial equation.

In this case, the complex roots are
2mik

=1+
s log 2

with k € Z.

Hence the complex roots lie on the vertical line R(s) = 1 and are separated by
27
log2*

5)GRH: Riemann Hypothesis is true and in addition the nontrivial zeros of all Dirichlet
L-functions lie on the critical line R(s) = 1/2.
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In order to establish the density estimate of the roots of (8.1), we will esti-
mate the winding number of the function f(s) =1—2 (%)S when s runs around
the contour C; + C5 + C3 + C4, where C7 and C5 are the vertical line segments
2—iT —2+4T and —1+1T — —1 — 4T and C5 and C} are the horizontal line
segments 2 + i7" — —1+4T and —1 —iT — 2 — T, with T > 0 (see Fig. 1).

For R(s) = 2 we have |1 — f(s)| = |2 (%)S| = 1 <1, so the winding number
along C is at most 3. Likewise, for R(s) = —1, we have

1 —144¢T 1 -1

so the winding number along C'5 is that of term 2 (%)S, up to at most %

1<|f(s) =1 =

Hence, the winding number along the contour C; + Cj is equal to (%) log 2,
up to at most 1.

We will now show that the winding number along Cs + C4 is bounded, using
a classical argument [10, p. 69].

Let n the number of distinct points on Co at which Rf(s) = 0.

For real value of z,

Rf(z +iT) = % /(2 +iT) + f(z — iT)].

Hence, putting g(z) = 2Rf(z +iT) we see that n is bounded by the number
of zeros of g in a disk containing the interval (0,1).
We take the disk centred at 2, with radius 3. We have

1 2
|g(2)|22—2~2<§) =1>0.

Furthermore, let G the maximum of g on disk with the same centre and

radius e- (3), so
1 2—e-3
G<242- <§> .

By Proposition 6.2, it follows that n < log|G/g(2)|.

This gives a uniform bound on the winding number over Cs. The winding
number over Cy is estimated in the same manner.

We conclude from the above discussion that the winding number of f(s) =
1 — 217 over the closed contour Cy + Cs + C5 + Cy equals (L) log2, up to a
constant (dependent on f), from which follows the asymptotic density estimate:

Dy = (g) log2 4+ O(1).

If we count the zeros in the upper half of a vertical strip {s: 0 < $(s) < T} we
have:

T
Nf = <%> 10g2 + O(l)

A lot of details in relation to what we have just shown were published in [12,
chap. 3, pp. 63-77].
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9 Additional Remark

The author is aware that some of the results presented in [14] and in this paper
are not new.
In particular, the main subject of this paper, the function 9(s) is, apart
from a factor
(1—2%(1-2"%)I(s)/m*,

equal to the product of the Riemann Zeta function and a certain L-function.
That product is equal to the Dedekind Zeta function associated to the al-
gebraic number field obtained from the field of rational number by adjoining a
square root of —1.
Let r2(n) denote the number of ways to write n as sum of two squares, then
the generating series for ro(n):

Covmn)®) = 3 2 ratm) (0™

is precisely the Dedekind Zeta function of the number field Q(+/—1), because it
counts the number of ideals of norm n.
It factors as the product of two Dirichlet series:

Co(v=r)(8) = C(s) L(s, xa)-

The factorization is a result from class field theory, which reflects the fact that
an odd prime can be expressed as the sum of two squares if and only if it is
congruent to 1 modulo 4.

Dedekind Zeta functions were invented in the 19th century, and in the course
of time many of their properties have been established. Some of the present
results are therefore special cases of well-known properties of the Dedekind
Zeta.

Nevertheless, the goal of this manuscript is to highlight some demonstration,
direct and by increments, for treating certain functional equations and special
functions involved, as inspired by methods similar to the ones used by Euler in
his paper [8] and in many other occasions (see [20], [19], and [21, chap. 3]).

In order not to leave unsatisfied the reader’s curiosity, we recall that the
choice of the letter © for the special function D(s) is in honour of Ditmep
(Euler).
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