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Abstract. An interesting topic in the ring theory is the classification of finite rings.
Although rings of certain orders have already been classified, a full description of all rings
of a given order remains unknown. The purpose of this paper is to classify all finite rings
(up to isomorphism) of a given order. In doing so, we introduce a new concept of quasi
basis for certain type of modules, which is a useful computational tool for dealing with
finite rings. Then, using this concept, we give structure and isomorphism theorems for
finite rings and state our main result to classify (up to isomorphism) the finite rings of
a given order. Finally, based on these results, we describe an algorithm to calculate the
structure of all such rings. We have implemented our new algorithm in Maple, and we apply
it to an example.
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1. Introduction

Classification of finite groups and finite rings are well-known problems which have

been studied by many researchers. The oldest result on finite abelian groups has its

origin in the works of German mathematician Gauss on quadratic forms. This result

was explicitly proved by Kronecker and Stickelberger which is nowadays known as

the fundamental theorem for finite abelian groups: A finite abelian group is a direct

sum of primary cyclic groups. This may be considered as the cornerstone of many

classification theorems in algebra and specially it may be used for the classification

of finite rings.

The research of the first and third authors was in part supported by a grant from IPM
(No. 91130413 and 92550420). The research of the first and third authors is partially
carried out in the IPM-Isfahan Branch.
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The problem of determining and classifying (up to isomorphism) the finite rings

has attracted the attention of many mathematicians. To explain the existing results

in this direction, let R be a finite ring of order m. It is well-known that every finite

ring can be decomposed into a direct sum of p-rings, see [12]. Recall that a p-ring is

a finite ring whose order is a power of a prime p, i.e., its additive structure is a p-

primary abelian group. So, the decomposition of the additive structure (R,+) of R

into p-primary subgroups leads to the ring decomposition R = R1 ⊕ . . .⊕Rn where

m = pk1

1 . . . pkn

n and Ri is a finite ring of order p
ki

i . Thus, in order to classify the finite

rings, it would suffice to deal only with p-rings. So, let p be a prime number. It is

easy to see that there are merely two rings of order p; Zp and the null ring of order p.

In 1969, Raghavendran [10] proved that there exist eleven rings of order p2 only four

of which have the identity element. Also, in 1973, Gilmer and Mott [8] showed that

there exist 4p + 48 rings of order p3 for p 6= 2 and only twelve of these rings have

the identity element. Moreover, for p = 2, they found 59 rings of order 23. Only

eleven of these have the identity. For p4, a comprehensive list of non-commutative

rings was first drawn up by Derr et al. in [5]. Commutative rings of order p4 were

characterized by Wilson [16]. In 2000, Corbas and Williams [3], [4] determined all

rings of order p5. The characterization of rings of higher orders remains still open.

For more details on finite rings, we refer to the papers [1], [2], [6], [7], [9], [11], [12],

[13], [14], [15] and also to the book [9], pages 133–141.

The aim of this paper is to classify all finite rings (up to isomorphism) of a given

order m. For this purpose, we first calculate all decompositions [pk1

1 , . . . , pkn

n ] where

m = pk1

1 . . . pkn

n , p
k1

1 6 . . . 6 pkn

n and the pi’s are (not necessarily distinct) prime

numbers. It is well-known that to find all finite rings (up to isomorphism) of orderm,

it suffices to calculate all finite rings of the form R1 ⊕ . . . ⊕ Rn (corresponding to

[m1, . . . ,mn]) such that the order of Ri is mi and [m1, . . . ,mn] is a decomposition

of m (note that such a ring has a ring structure over the abelian group Zm1
⊕ . . .⊕

Zmn
). In doing so, we introduce a new concept of quasi basis for certain type of

modules. Based on this concept, we give new structure and isomorphism theorems

for finite rings and state our main result to classify (up to isomorphism) the finite

rings corresponding to a decomposition [m1, . . . ,mn]. Finally, based on these results,

we describe an algorithm for calculating the structure of all finite rings of a given

order. We have implemented our new algorithm in Maple, and apply it to compute

all finite rings of order 12.

The paper is organized as follows. In Section 2, we introduce the concept of

quasi basis for modules, and use it to define a multiplication on a class of modules.

Then, we provide sufficient conditions for such a multiplication to yield an algebra.

Furthermore, we obtain criteria to decide whether or not two such algebras over

a given finite module are isomorphic (Theorem 2.1). Section 3 aims to describe
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the structure of all finite rings over a given (finite) abelian group (Theorem 3.1).

Moreover, we present a number of necessary and sufficient conditions to check if two

finite rings (given by their structures) over an abelian group are isomorphic or not

(Theorem 3.2). This concludes a classification (up to isomorphism) of all finite rings

corresponding to a given decomposition. In Section 4, we propose an algorithm for

the computation of the structures of all finite rings (up to isomorphism) of a given

order.

2. Quasi bases and their applications

In this section, we first introduce the new concept of the quasi basis for modules

in order to define a multiplication on a class of modules. We present then suffi-

cient conditions for such a multiplication to provide an algebra. Finally, we give

criteria to decide whether or not two such algebras over a given finite module are

isomorphic (Theorem 2.1).

Let us start with some notation that we use throughout the paper. We denote

by S an associative commutative ring with identity. All S-modules are considered

to be unitary left S-modules.

Definition 2.1. Let M be a left S-module. A subset A ⊆ M is called quasi

S-linear independent if for any distinct elements a1, a2, . . . , an ∈ A and s1, s2, . . . ,

sn ∈ S,
n
∑

i=1

siai = 0 implies that siai = 0 for all i. A generating set A of M is called

a quasi S-basis for M if A is quasi S-linear independent.

Clearly every free S-module F possesses a quasi S-basis. Furthermore, every

semi-simple left S-module has a quasi S-basis. The following result (which follows

immediately from Definition 2.1) characterizes the modules having quasi S-bases.

Proposition 2.1. An S-module has a quasi S-basis if and only if it is the internal

direct sum of a family of cyclic S-modules.

Corollary 2.1. IfM is a finitely generated Z-module, then it has a quasi Z-basis.

P r o o f. Since every finitely generated Z-module is a finite direct product of

cyclic groups, M has a quasi Z-basis (Proposition 2.1). �

Let M be an associative S-algebra with a finite quasi basis {a1, a2, . . . , an}. Then

the algebraic structure of (M,+, ·) can be displayed by n2 products

aiaj =
n
∑

k=1

wijkak
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with wijk ∈ S and thus by n3 constants wijk for 1 6 i, j, k 6 n. Using this notation,

the multiplication on M is performed by

( n
∑

i=1

siai

)( n
∑

j=1

tjaj

)

=

n
∑

k=1

( n
∑

i,j=1

sitjwijk

)

ak.

For the sake of simplification, we introduce a convenient notion of presentation to

describe the structure of an associative S-algebra with a finite quasi basis.

Definition 2.2 (Presentation). Let M be an S-algebra with a quasi basis

{a1, a2, . . . , an} so that aiaj =
n
∑

k=1

wijkak for all i, j. Then we write

M =

〈

a1, . . . , an ; aiaj =

n
∑

k=1

wijkak, i, j = 1, . . . , n

〉

and we call it a presentation for M .

Below, we will provide some necessary and sufficient conditions for the above

multiplication on an S-module (with a finite quasi S-basis) to yield an S-algebra.

Recall that the left annihilator of an element a ∈ S is the ideal annℓ(a) = {s ∈

S ; sa = 0}.

Lemma 2.1. Let S be a commutative ring with identity, M an S-module and

M =
〈

a1, . . . , an ; aiaj =
n
∑

k=1

wijkak

〉

. Consider the following multiplication on M :

· : M ×M → M
( n
∑

i=1

siai,

n
∑

j=1

tjaj

)

7→

n
∑

k=1

( n
∑

i,j=1

sitjwijk

)

ak.

Then, the following assertions hold.

(1) “·” is well-defined iff [annℓ(ai) + annℓ(aj)]wijk ⊆ annℓ(ak) for all i, j, k.

(2) “·” is distributive, if “·” is well-defined.

(3) “·” is associative iff
n
∑

α=1
(wijαwαlk − wjlαwiαk) ∈ annℓ(ak) for all i, j, k.

Moreover, (M,+, ·) is an S-algebra if and only if (1) and (3) are satisfied.

P r o o f. (1) Assume that “·” is well-defined and fix i, j where 1 6 i, j 6 n. Let

x ∈ annℓ(ai). Then, by definition of “·”, we have

n
∑

k=1

xwijkak = (xai) · (aj) = (0) · (aj) = 0.
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Since {a1, a2, . . . , an} is a quasi S-basis for M , xwijkak = 0 for each k and therefore

annℓ(ai)wijk ⊆ annℓ(ak) for all k. Similarly annℓ(aj)wijk ⊆ annℓ(ak) for any k.

Thus, [annℓ(ai) + annℓ(aj)]wijk ⊆ annℓ(ak) for all i, j, k. Conversely, assume that

n
∑

i=1

siai =

n
∑

i=1

uiai and

n
∑

j=1

tjaj =

n
∑

j=1

vjaj

where si, ui, tj , vj ∈ S. Hence it follows that siai = uiai and tjaj = vjaj for all i, j.

Set xi = ui − si and yj = vj − tj . Then ui = xi + si, vj = yj + tj , xi ∈ annℓ(ai) and

yj ∈ annℓ(aj). Hence, we can write

uivj − sitj = siyj + xitj + xiyj = xitj + (si + xi)yj ∈ [annℓ(ai) + annℓ(aj)]

and so (uivj − sitj)wijk ∈ [annℓ(ai) + annℓ(aj)]wijk for all k. From the hypothesis,

one obtains (uivj − sitj)wijkak = 0 for all k. It follows that

n
∑

k=1

( n
∑

i,j=1

sitjwijk

)

ak =

n
∑

k=1

( n
∑

i,j=1

uivjwijk

)

ak,

and therefore
n
∑

i=1

siai ·

n
∑

j=1

tjaj =

n
∑

i=1

uiai ·

n
∑

j=1

vjaj .

(2) Suppose that “·” is well-defined. We prove the right distributivity of “·”; the

other side is proved similarly. We have

( n
∑

i=1

siai +

n
∑

i=1

uiai

)

·

( n
∑

j=1

tjaj

)

=

( n
∑

i=1

(si + ui)ai

)

·

n
∑

j=1

tjaj

=

n
∑

k=1

( n
∑

i,j=1

(si + ui)tjwijk

)

ak

=

n
∑

k=1

( n
∑

i,j=1

sitjwijk

)

ak +

n
∑

k=1

( n
∑

i,j=1

uitjwijk

)

ak

=

( n
∑

i=1

siai

)

·

( n
∑

j=1

tjaj

)

+

( n
∑

i=1

uiai

)

·

( n
∑

j=1

tjaj

)

.

(3) For all i, j, l, let us consider the multiplications:

(ai · aj) · al =

( n
∑

α=1

wijαaα

)

· al =

n
∑

k=1

( n
∑

α=1

wijαwαlk

)

ak,

ai · (aj · al) = ai ·

( n
∑

α=1

wjlαaα

)

=
n
∑

k=1

( n
∑

α=1

wjlαwiαk

)

ak.
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Thus, we have (ai · aj) · al = ai · (aj · al) if and only if
n
∑

α=1
(wijαwαlk − wjlαwiαk) ∈

annℓ(ak) for all i, j, k, which ends the proof. �

Corollary 2.2. With notation as in Lemma 2.1, let M be a finitely generated

free S-module with the basis A = {a1, a2, . . . , an}. Then (M,+, ·) is an associative

S-algebra if and only if for each i, j, k we have

n
∑

α=1

(wijαwαlk − wjlαwiαk) = 0.

P r o o f. Since M is a free S-module and A is its basis, hence annℓ(ak) = 0 for

all k and thus “·” is well-defined by the first item of Lemma 2.1. Thereby, (M,+, ·)

is an S-algebra if and only if
n
∑

α=1
(wijαwαlk − wjlαwiαk) = 0. �

So far, we have provided sufficient conditions to define the structure of an asso-

ciative algebra over a given module with a presentation. Below, we want to give

criteria to decide whether or not two algebras (defined as above) are isomorphic (see

Theorem 2.1).

Lemma 2.2. Let S be a commutative ring with identity andM , N two S-modules

with quasi bases A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, respectively. Assume

that pij ∈ S for all 1 6 i, j 6 n and f : M → N is the map defined by

f

( n
∑

i=1

siai

)

=

n
∑

j=1

( n
∑

i=1

sipij

)

bj.

Then the following statements hold:

(1) f is well-defined iff annℓ(ai)pij ⊆ annℓ(bj) for all i, j = 1, . . . , n.

(2) If f is well-defined, then

(a) f is an S-module homomorphism.

(b) f is one-to-one iff for each s1, s2, . . . , sn ∈ S such that
n
∑

i=1

sipij ∈ annℓ(bj)

for all j, we have si ∈ annℓ(ai) for all i.

(c) if

M =

〈

a1, . . . , an ; aiaj =

n
∑

k=1

wijkak, i, j = 1, . . . , n

〉

,

N =

〈

b1, . . . , bn ; bibj =
n
∑

k=1

zijkbk, i, j = 1, . . . , n

〉

646



are two S-algebras, then f is an S-algebra homomorphism iff for all i, j, k

we have
n
∑

s,t=1

pispjtwstk −

n
∑

l=1

zijlplk ∈ annℓ(bk).

P r o o f. (1) Suppose that f is well-defined. We consider s ∈ annℓ(ai) for an

integer 1 6 i 6 n. Then by definition of f we have

n
∑

j=1

spijbj = f(sai) = f(0) = 0.

Since B is a quasi basis for N , spijbj = 0 for all 1 6 j 6 n. Therefore, annℓ(ai)pij ⊆

annℓ(bj) for all j. Conversely, suppose that
n
∑

i=1

siai =
n
∑

i=1

tiai where si, ti ∈ S.

Since A is a quasi basis for M , si − ti ∈ annℓ(ai) for all i. From the hypothesis,

(si − ti)pij ∈ annℓ(bj) for all i, j. It follows that sipijbj = tipijbj for all i, j and

n
∑

j=1

( n
∑

i=1

sipij

)

bj =

n
∑

j=1

( n
∑

i=1

tipij

)

bj .

Therefore f
( n
∑

i=1

siai

)

= f
( n
∑

i=1

tiai

)

and hence f is well-defined.

(2) (a) Assume that r, si, ti ∈ S for i = 1, . . . , n. So, we can write

f

(

r

n
∑

i=1

siai +

n
∑

i=1

tiai

)

= f

( n
∑

i=1

(rsi + ti)ai

)

=
n
∑

j=1

( n
∑

i=1

(rsi + ti)pij

)

bj

=

n
∑

j=1

( n
∑

i=1

rsipij

)

bj +

n
∑

j=1

( n
∑

i=1

tipij

)

bj

= rf

( n
∑

i=1

siai

)

+ f

( n
∑

i=1

tiai

)

.

Thus f is an S-module homomorphism.

(b) The assertion follows immediately from the fact that A and B are quasi S-bases

for M and N , respectively.

(c) By (2) (a), f is always a group homomorphism. Thus, it suffices to show

that f(aiaj) = f(ai)f(aj) for each i, j. However, by multiplications defined in
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S-algebras M , N and also by the definition of f we have

f(aiaj) = f

( n
∑

l=1

wijlal

)

=

n
∑

k=1

( n
∑

l=1

wijlplk

)

bk.

On the other hand,

f(ai)f(aj) =

( n
∑

s=1

pisbs

)( n
∑

t=1

pjtbt

)

=

n
∑

k=1

( n
∑

s,t=1

pispjtzstk

)

bk.

Since B is a quasi basis for N , we conclude that f is an S-algebras homomorphism

if and only if
n
∑

s,t=1
pispjtzstk −

n
∑

l=1

wijlplk ∈ annℓ(bk) for all i, j, k. �

Corollary 2.3. Let the notation and hypotheses be as in Lemma 2.2, and suppose

that M and N are two free S-modules and pij ∈ S for all 1 6 i, j 6 n. Then

(1) f is well-defined.

(2) f is an S-module homomorphism.

(3) f is one-to-one iff for each s1, s2, . . . , sn ∈ S s.t.
n
∑

i=1

sipij = 0 for all j, we have

si = 0 for all i.

(4) If

M =

〈

a1, . . . , an ; aiaj =

n
∑

k=1

wijkak, i, j = 1, . . . , n

〉

,

N =

〈

b1, . . . , bn ; bibj =

n
∑

k=1

zijkbk, i, j = 1, . . . , n

〉

are S-algebras, then f is an S-algebra homomorphism iff for all i, j, k

n
∑

s,t=1

pispjtwstk −

n
∑

l=1

zijlplk = 0.

P r o o f. Since A and B are bases for the free modules M and N , respectively,

hence annℓ(ai) = annℓ(bi) = 0 for all ai ∈ A and bi ∈ B. Thus, by Lemma 2.2 all

the above assertions are correct. �

For a finite set X , we denote by |X | the size of X .
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Theorem 2.1. Let S be a commutative ring with identity and let

M =

〈

a1, . . . , an ; aiaj =

n
∑

k=1

wijkak, i, j = 1, . . . , n

〉

,

N =

〈

b1, . . . , bn ; bibj =
n
∑

k=1

zijkbk, i, j = 1, . . . , n

〉

be two finite S-algebras with |M | = |N |. Then M ∼= N as S-algebras iff there exist

pij ∈ S (1 6 i, j 6 n) such that

⊲ annℓ(ai)pij ⊆ annℓ(bj) for all i, j = 1, . . . , n,

⊲ for each s1, s2, . . . , sn ∈ S such that
n
∑

i=1

sipij ∈ annℓ(bj) for all j, we have

si ∈ annℓ(ai) for all i,

⊲
n
∑

s,t=1
pispjtwstk −

n
∑

l=1

zijlplk ∈ annℓ(bk) for all i, j, k.

P r o o f. SinceM and N are finite S-algebras and |M | = |N |, a map f : M → N

is one-to-one if and only it f is surjective. So, the assertions follow from Lemma 2.2.

�

3. Structure and isomorphism theorems

In this section, we use the results of the previous section to state a structure

theorem describing the structure of all finite rings over the same additive structure

(Theorem 3.1). Moreover, we give an isomorphism theorem to test whether or not

two such structures are isomorphic (Theorem 3.2).

Let us denote by R an associative ring (not necessarily commutative or with iden-

tity). It is clear that R is a Z-algebra. Also, by Corollary 2.1, every finitely generated

Z-module has a quasi Z-basis. So, if R is a finite ring then its additive group is a finite

abelian group and is thus a direct sum of cyclic groups. Suppose that a1, a2, . . . , an

of orders m1,m2, . . . ,mn, respectively, form a set of generators for the abelian group

of R. This implies that A = {a1, a2, . . . , an} is a quasi Z-basis for R and hence, its

ring structure can be determined by n2 products aiaj =
n
∑

k=1

wijkak with wijk ∈ Zmk

and thus by n3 constants wijk . Analogously to [7], we introduce a convenient no-

tation, motivated by group theory, to state our structure theorem for finite rings.

A presentation for a finite ring R consists of a set of generators a1, a2, . . . , an for the

additive group of R together with relations : The relations are of two types:

⊲ miai = 0 for i = 1, . . . , n,

⊲ aiaj =
n
∑

k=1

wijkak with wijk ∈ Z for i, j = 1, . . . , n.
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Therefore, if R is a finite ring with the above properties, to simplify the notation,

we write

R =

〈

a1, . . . , an ; miai = 0, aiaj =

n
∑

k=1

wijkak, i, j = 1, . . . , n

〉

.

Theorem 3.1 (Structure theorem). Let n be a positive integer, and for each

i = 1, . . . , n, let Ai = 〈ai〉 be the cyclic subgroup of order mi. Then there exists

a ring R with additive group
n
⊕

i=1

Ai and multiplication relations aiaj =
n
∑

k=1

wijkak

for each i, j and wijk ∈ Z if and only if (wijk) satisfies the following conditions:

(1) mk | λijwijk where λij = gcd(mi,mj) for all 1 6 i, j, k 6 n,

(2)
n
∑

α=1
wijαwαlk ≡

n
∑

α=1
wjlαwiαk modmk for all 1 6 i, j, k, l 6 n.

P r o o f. Suppose that there exists a ringR such that aiaj =
n
∑

k=1

wijkak. We show

that the conditions (1) and (2) hold for (wijk). By Corollary 2.1, {a1, a2, . . . , an} is

a quasi Z-basis for (R,+). Since for each i, annℓ(ai) = miZ, by Lemma 2.1 we have

[miZ+mjZ]wijk ⊆ mkZ for all i, j, k, and
n
∑

α=1
(wijαwαlk −wjlαwiαk) ∈ mkZ. Hence

it follows that

(1) mk | λijwijk , for all 1 6 i, j, k 6 n,

(2)
n
∑

α=1
wijαwαlk ≡

n
∑

α=1
wjlαwiαk modmk for all 1 6 i, j, k, l 6 n.

The converse is obvious. �

Theorem 3.2 (Isomorphism theorem). Let

R1 =

〈

a1, . . . , an ; miai = 0, aiaj =

n
∑

k=1

wijkak, i, j = 1, . . . , n

〉

,

R2 =

〈

a1, . . . , an ; miai = 0, aiaj =

n
∑

k=1

zijkak, i, j = 1, . . . , n

〉

be two presentations. Then R1
∼= R2 iff there exist pjk ∈ {0, . . . ,mk − 1} for

1 6 j, k 6 n such that the following conditions hold:

(1) mk | mjpjk for 1 6 j, k 6 n,

(2) for each s1, . . . , sn ∈ Z, if mk |
m
∑

j=1

sjpjk for all 1 6 k 6 n, then mi | si for all i,

(3)
n
∑

α,β=1

piαpjβwαβk ≡
n
∑

l=1

zijlplk modmk for 1 6 k 6 n.
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P r o o f. By Corollary 2.1, {a1, a2, . . . , an} is a quasi Z-basis for both R1 and R2.

On the other hand, for each i, annℓ(ai) = miZ. Thus by Lemma 2.2, R1
∼= R2 if and

only if there exist pjk ∈ Z such that

(1) annℓ(aj)pjk ⊆ annℓ(ak) for 1 6 j, k 6 n,

(2) for each s1, . . . , sn ∈ Z,
m
∑

j=1

sjpjk ∈ annℓ(ak) for each k implies that si ∈

annℓ(ai) for all i,

(3)
n
∑

α,β=1

piαpjβwαβk −
m
∑

l=1

zijlplk ∈ annℓ(ak) for 1 6 k 6 n.

These conditions are trivially equivalent to those given in the theorem. �

Now, we will present an application of these theorems to prove a classical result

in the ring theory. It is well-known that every finite ring R can be uniquely (up to

isomorphism) decomposed into a direct sum of rings of prime power order (see [12]

for example). Below, we give a simple proof for this result (Proposition 3.1).

Lemma 3.1. Let R be a finite ring with the additive group
n
⊕

i=1

Ai where Ai = 〈ai〉

for each i is a cyclic additive subgroup of R of order mi. With no loss of generality,

we can arrange the Ai’s so that there exists ̺ ∈ {1, 2, . . . , n} with gcd(mi,mj) = 1

for all 1 6 i 6 ̺ and ̺ < j 6 n. Then I =
⊕̺

i=1

Ai and J =
n
⊕

i=̺+1

Ai are ideals of R.

P r o o f. Let R =
〈

a1, . . . , an ; miai = 0, aiaj =
n
∑

k=1

wijkak, i, j = 1, . . . , n
〉

be

a presentation of R and λij = gcd(mi,mj) for all i, j. Let i and j be two integers

with 1 6 i 6 ̺ and ̺ < j 6 n. By Theorem 3.1, we can conclude that mk | λijwijk

for all 1 6 k 6 n. Thus, for any k, we have mk | wijk and hence wijkak = 0.

This implies that aiaj = 0 and so IJ = 0. Now, assume that 1 6 i, j 6 ̺. From

the hypothesis, for any ̺ < k 6 n, gcd(mk, λij) = 1 and hence mk | wijk . Thus

wijkak = 0 and aiaj ∈ I. Therefore I2 ⊆ I. Similarly, one can show that J2 = J

and JI = 0. �

As a corollary of this lemma, the classification of finite rings quickly reduces to

the study of rings whose additive groups are p-primary.

Proposition 3.1. Every finite ring R can be uniquely (up to isomorphism) de-

composed into a direct sum of rings of prime power order. Consequently, the order

of any indecomposable finite ring is a power of a prime number.
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4. Description of the new algorithm

In this section, we show how to design an algorithm (based on Theorems 3.1

and 3.2) for computing the presentations of all finite rings (up to isomorphism)

of a given order. At the end of this section, we present an example to show the

performance of the algorithm for computing the presentations of all finite rings (up

to isomorphism) of order 12.

Let R be a finite ring (not necessarily commutative or with identity) of order

m. As we proved in the previous section, every finite ring can be decomposed into

a direct sum of indecomposable rings (p-rings). Recall that a p-ring is a finite ring

whose order is a power of a prime p, i.e., its additive structure is a p-primary abelian

group. So, the decomposition of the additive structure (R,+) of R into p-primary

subgroups leads to the ring decomposition

R = R1 ⊕ . . .⊕Rn

where Ri is a finite ring of order p
ki

i , m = pk1

1 . . . pkn

n and the pi’s are not necessarily

distinct. On the other hand, using Theorem 3.1, one can find the structure of all finite

rings with the additive group Z
p
k1

1

⊕ . . . ⊕ Z
p
kn
n

. In order to establish a connection

between this result and finding the presentation of all finite rings of a given order, it

is helpful to introduce the following definition.

Definition 4.1. We call [pk1

1 , . . . , pkn

n ] a prime decomposition (p-decomposition)

of a positive integer m if m = pk1

1 . . . pkn

n , p
k1

1 6 . . . 6 pkn

n and the pi’s are (not

necessarily distinct) prime numbers.

For example, [3, 4] and [2, 2, 3] are all p-decompositions of 12. Thus, to find

all the presentations of all finite rings of order m, we must first find all the p-

decompositions of m. Then for each p-decomposition [m1, . . . ,mn] we calculate all

finite rings R1 ⊕ . . . ⊕ Rn such that the order of Ri is mi. Thus, it is enough to

design an algorithm for computing all the presentations of all finite rings (up to

isomorphism) corresponding to a given p-decomposition [m1, . . . ,mn]. It is worth

noting that the additive group of all these rings is Zm1
⊕ . . . ⊕ Zmn

. In this direc-

tion, based on Theorem 3.1, we describe first Structure algorithm to compute the

set of all presentations of all finite rings corresponding to a given p-decompositions

[m1, . . . ,mn].

Proposition 4.1. The Structure algorithm terminates and outputs the set of

all presentations of all finite rings corresponding to M .

P r o o f. The termination of the algorithm is guaranteed by the termination of

the for-loops. To prove its correctness, we observe that A contains all the presen-
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Algorithm Structure

Input: M = [m1, . . . ,mn] a p-decomposition

Output: W , the set of all presentations of all finite rings corresponding to M

1: N := {1, . . . , n};

2: for (i, j) ∈ N2 do

3: λij := gcd(mi,mj);

4: end for

5: let A be the set of all W = (wijk)i,j,k∈N with the following property:

6: for (i, j, k) ∈ N3 do

7: wijk ∈ {(mk/ gcd(mk, λij))l modmk ; l = 0, . . . ,mk − 1}

8: end for

9: W := {};

10: for W = (wijk)i,j,k∈N ∈ A do

11: if ∀(i, j, k, l) ∈ N4 we have
n
∑

α=1
wijαwαlk ≡

n
∑

α=1
wjlαwiαk modmk then

12: W := W ∪ {W};

13: end if

14: end for

15: Return (W)

tations satisfying only the first condition of Theorem 3.1. Indeed, by this condition,

we must have mk | λijwijk . This implies that gcd(mk, λij) must divide wijk. On the

other hand, wijk is multiplied by ak for all i, j. Thus, 0 6 wijk 6 mk − 1, and it

should belong to

{ mk

gcd(mk, λij)
l modmk ; l = 0, . . . ,mk − 1

}

.

It follows that for each (wijk) ∈ A we have mk | λijwijk . Furthermore, by the last

for-loop, we check if each element of A satisfies the second item of Theorem 3.1,

then we add it to W . Therefore, W contains all presentations of all finite rings of

order M . �

Once the set of all finite rings corresponding to a given p-decomposition is com-

puted (by Structure algorithm), then from this set we must remove any ring which

is isomorphic to another one. For this purpose, based on Theorem 3.2, we propose

Isomorphic algorithm to test whether or not two given finite rings are isomorphic.

The input of this algorithm are a p-decompositionM , two presentationsW,Z and P

where P is a set of the elements of the form P = (pij) where the pij ’s satisfy the first

and second conditions of Theorem 3.2 for a given p-decomposition M . It is worth
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noting that P depends only on the given p-decomposition, and thus it is enough to

compute it once in the main algorithm for a given p-decomposition.

Algorithm Isomorphic

Input:











M = [m1, . . . ,mn] : a p-decomposition

W = (wijk), Z = (zijk) : two presentations of two finite rings

P : a finite set of the elements P = (pij)

Output: true if two presentations W and Z are isomorphic, and false otherwise

1: N := {1, . . . , n};

2: for P ∈ P do

3: if ∀(i, j, k) ∈ N3 we have
n
∑

α,β=1

piαpjβwαβk ≡
n
∑

l=1

zijlplk modmk then

4: Return (true)

5: else

6: Return (false)

7: end if

8: end for

Proposition 4.2. The Isomorphic algorithm terminates and returns true if two

presentations W and Z are isomorphic, and false otherwise.

P r o o f. The termination of the algorithm follows immediately from the termi-

nation of the for-loops. We prove now its correctness. We note that each P ∈ P

satisfies the first and second conditions of Theorem 3.2 for M . Therefore, it suffices

to look for a P ∈ P such that the third condition of Theorem 3.2 is satisfied. On the

other hand, by the structure of the algorithm, if it finds such a P , it returns true,

and false otherwise. �

Finally, we present the main algorithm for computing all the presentations of all

finite rings (up to isomorphism) corresponding to a given p-decomposition. Thus,

one can use this algorithm to compute the presentations of all finite rings of a given

order m. In doing so, we first compute the set of all p-decompositions of m. Then,

for each p-decomposition M , we compute the set of all non-isomorphic finite rings

corresponding toM , and the union of all these sets forms the set of the presentations

of all finite rings (up to isomorphism) of order m.

Theorem 4.1. The Classification algorithm terminates and computes the

presentations of all finite rings (up to isomorphism) corresponding to M .

P r o o f. The termination of the algorithm is trivial as all the for-loops in the

algorithm terminate in finitely many steps. We deal now with its correctness. In
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Algorithm Classification

Input: M = [m1, . . . ,mn], a p-decomposition

Output: R, the presentations of all non-isomorphic finite rings corresponding to M

1: N := {1, . . . , n};

2: let A be the set of all P = (pij)i,j∈N with the following property:

3: for (j, k) ∈ N2 do

4: pjk ∈ {(mk/ gcd(mk,mj))l modmk ; l = 0, . . . ,mk − 1}

5: end for

6: P := {};

7: for P = (pij)i,j∈N ∈ A do

8: flag1 := true;

9: for (s1, . . . , sn) ∈ {1, . . . ,mn}
n while flag1 do

10: flag2 := true;

11: for k ∈ {1, . . . , n} while flag2 do

12: if
n
∑

j=1

sjpjk 6≡ 0 modmk then

13: flag2 := false;

14: end if

15: end for

16: flag3 := true if mi | si for all i, and false otherwise;

17: if flag2 and not flag3 then

18: flag1 := false;

19: end if

20: end for

21: if flag1=true then

22: P := P ∪ {P};

23: end if

24: end for

25: W := Structure(M);

26: R := {the first element of W} (we remove this element from W);

27: for W ∈ W do

28: flag := false;

29: for R ∈ R while not flag do

30: flag := Isomorphic(M,W,R,P);

31: end for

32: if not flag then

33: R := R∪ {W};

34: end if

35: end for

36: Return (R)
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the first step of the algorithm, we compute the set P of all P = (pij) satisfying two

first conditions of Theorem 3.2. In doing so, we first construct the set A containing

all P = (pij) meeting the first condition of Theorem 3.2. Next, in the second for-

loop, we verify the second condition of this theorem for each P ∈ A. Note that

we must check the relation
n
∑

j=1

sjpjk 6≡ 0 modmk for all sj ∈ Z. On the other

hand, the maximum order of the additive subgroups of the rings corresponding to

the p-decompositionM is mn. Thus, it is enough to check the required relation only

for sj ∈ {1, . . . ,mn}. After constructing the set P , we calculate the set W of all

presentations of all finite rings corresponding to M , and we save one of them in R;

the output of the algorithm. Now, for each W ∈ W , if it is not isomorphic to any

element of R (see Isomorphic algorithm) then we add it to R. Therefore, at the

end, R will be the set of all presentations of all finite rings (up to isomorphism)

corresponding to M . �

In the next theorem, we discuss the arithmetic complexity of this algorithm.

Theorem 4.2. Let M = [m1, . . . ,mn] be a p-decomposition, and m = mn. The

arithmetic complexity of the Classification algorithm to compute the presenta-

tions of all finite rings (up to isomorphism) corresponding to M is mO(n3).

P r o o f. In the second for-loop in the algorithm, we have, in the worst case,

mn2

choices for P ∈ A. On the other hand, for each P we may perform mn
n × n

operations. Since n 6 mn and mn = m, the maximum number of operations that we

carry out in this for-loop is of the order of mO(n2). At the second step, we compute

the set W =Structure(M). In doing so, we construct a set A with at most mn3

elements and for each member of this set we do n4 checks. Thus, at this stage, the

arithmetic complexity is mO(n3), and the size of W would be of this order. Finally,

for each element of W , we perform |P| × |R| × n3 tests. However, |R| 6 |W| and

|P| is of the order of mO(n2). This implies that the complexity of this step of the

algorithm is mO(n3), and this completes the proof. �

We have implemented Classification algorithm in Maple 12.1 Finally, we end

this section by giving an example where we compute all presentations of all finite rings

(up to isomorphism) of order 12. It should be noted that, as far as our knowledge

is concerned, there is no contribution dealing with algorithmic aspects of classifying

finite rings. Thereby, we have not compared our results with other methods.

Example 4.1. In this example, we calculate the presentations of all finite rings (up

to isomorphism) of order 12. Recall that [3, 4] and [2, 2, 3] are all p-decompositions

1 The Maple codes of our program are available at http://amirhashemi.iut.ac.ir/
software.html
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of 12. The outputs of Classification algorithm for [3, 4] and [2, 2, 3] are listed be-

low, where each row is a sequence of the form (w111, w112, . . . , w11n, w121, . . . , wnnn)

showing a presentation corresponding to a finite ring.

(0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 1)

(0 0 0 0 0 0 0 2)

(1 0 0 0 0 0 0 0)

(1 0 0 0 0 0 0 1)

(1 0 0 0 0 0 0 2)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

(1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1)

For example, if we consider the second row, it is a presentation of a ring over the

additive group Z3 ⊕ Z4. If we denote the elements (1, 0) and (0, 1) of this ring by

a1 and a2, respectively, then the structure of this ring is as follows: a1 · a1 = 0,

a1 · a2 = 0, a2 · a1 = 0 and a2 · a2 = a2. We can see that there are 22 finite rings of

order 12. For more details on the classification of finite rings of some classical orders,

we refer to the web site http://home.wlu.edu/~dresdeng/smallrings/.
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