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LINEAR RECURRENCE SEQUENCES WITHOUT ZEROS

Artūras Dubickas, Aivaras Novikas, Vilnius

(Received October 14, 2013)

Abstract. Let ad−1, . . . , a0 ∈ Z, where d ∈ N and a0 6= 0, and let X = (xn)
∞

n=1 be
a sequence of integers given by the linear recurrence xn+d = ad−1xn+d−1 + . . .+ a0xn for
n = 1, 2, 3, . . .. We show that there are a prime number p and d integers x1, . . . , xd such
that no element of the sequence X = (xn)

∞

n=1 defined by the above linear recurrence is
divisible by p. Furthermore, for any nonnegative integer s there is a prime number p > 3
and d integers x1, . . . , xd such that every element of the sequence X = (xn)

∞

n=1 defined as
above modulo p belongs to the set {s+ 1, s+ 2, . . . , p− s− 1}.
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1. Introduction

The sequence of integers X = (xn)
∞

n=1 is called a linear recurrence sequence of

order d ∈ N if for some ad−1, . . . , a0 ∈ Z, a0 6= 0, we have

(1.1) xn+d = ad−1xn+d−1 + . . .+ a0xn

for n = 1, 2, 3, . . .. The polynomial

(1.2) fX(z) := zd − ad−1z
d−1 − . . .− a1z − a0 ∈ Z[z]

is called a characteristic polynomial of the sequence X satisfying (1.1). Clearly, the

sequence X satisfying (1.1) is ultimately periodic modulo l for every l ∈ N and,

furthermore, X is purely periodic if gcd(a0, l) = 1 (see, e.g., page 45 in [6]).

There is a variety of problems related to linear recurrence sequences. They appear

in number theory [6] (e.g., in Diophantine equations [14]), cryptography and finite
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fields [11], [22], etc. In particular, the papers [2], [13], [16], [18], [17] investigate

which elements and how often appear in the period of the sequence X modulo l. See

also [10] for a summary on the periodic structure of linear recurrent sequences over

a finite field.

The motivation for this note comes from the papers [4], [3], [23] and [24]. In [4]

we proved an estimate for the difference between the largest and the smallest limit

points of the sequence of fractional parts {ξαn}∞n=1, where α > 1 is a real algebraic

number and ξ 6= 0 is a real number (see also subsequent papers [5], [8], [7]). The

exceptions of the theorem proved in [4] are the pairs ξ, α, where α is a Pisot number

or a Salem number and ξ lies in the field Q(α). The case of Salem numbers α and

ξ ∈ Q(α) has been consider by Zäımi in [21].

As for the distribution of the sequence {ξαn}∞n=1 and also of the sequence of

distances to the nearest integer ‖ξαn‖∞n=1 for Pisot numbers α, the important case

turns out to be exactly when ξ ∈ Q(α) which was not considered in [4]. For instance,

for the golden section number α = (1 +
√
5)/2, the maximal value of lim inf

n→∞

‖ξαn‖
taken over every real ξ was proved to be equal to 1/5 when the respective ξ lies in

the field Q(α) (see [23], and also [24] for a subsequent work on this problem). This

is the first example of α /∈ N, where such maximal value was not just evaluated,

but calculated explicitly. In [3] we gave some related results and explained why the

constant 1/5 appears for the golden section number. The reason is that the sequence

given by xn+2 = xn+1 + xn, n = 1, 2, 3, . . ., with initial values x1 = 1, x2 = 3 is

periodic modulo 5 and, what is the most important, the period 1, 3, 4, 2 does not

contain zeros. Similar constants (1/5 and 3/17) come for Pisot numbers which are

roots of x3−x−1 = 0 and x4−x3−1 = 0, by considering their respective recurrence

sequences xn+3 = xn+1 + xn and xn+4 = xn+3 + xn, n = 1, 2, 3, . . . (see [24]).

We proved in [3] that this constant is at least (s + 1)/l if for some initial values

x1, . . . , xd ∈ Z the sequence X defined by (1.1) modulo l does not contain any of the

numbers {0, 1, . . . , s} ∪ {l− s, l − s+ 1, . . . , l − 1}.
In this note we will first show that one can always avoid zeros in a period modulo p

for some prime number p. This is true for any X defined by (1.1), not just for those

X which define the Pisot polynomial fX in (1.2). To state this result, we use the

following notation. Given a polynomial f with integer coefficients, let P (f) be the set

of primes p such that f(x) ≡ 0 (mod p) has a solution in integers x satisfying p ∤ x.

Theorem 1.1. For any ad−1, . . . , a0 ∈ Z, where d ∈ N and a0 6= 0, there are

a prime number p and d integers x1, . . . , xd such that no element of the sequence

X = (xn)
∞

n=1 defined by (1.1) is divisible by p. Furthermore, we can take any prime p

in the infinite set P (fX).
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The proof of Theorem 1.1 given in Section 2 is elementary. We remark that the

smallest prime p for which the congruence f(x) ≡ 0 (mod p) has a solution in positive

integers x had been investigated earlier in connection with the Chebotarev density

theorem. An upper bound on the smallest such p can be extracted from Lemma 3

of [1] under the generalized Riemann hypothesis and also from [20] without extra

assumptions (see also [9]).

We also remark that the main part of Theorem 1.1 is nontrivial only if S :=
d−1
∑

j=0

aj

is equal to 0 or 2. Otherwise, if S /∈ {0, 2} we can select any prime number p
dividing |S − 1| (for example, p = 2 for S = 1) and choose the first d elements of X

as follows: x1 = . . . = xd = 1. Then by induction (1.1) implies that xn modulo p

equals S ≡ (S − 1 + 1) (mod p) ≡ 1 (mod p) for each n ∈ N.

In the next theorem we state a more general result asserting that by appropriate

choice of x1, . . . , xd and p we can avoid modulo p not only 0 but also any finite subset

of the set N ∪ {0}.

Theorem 1.2. For any ad−1, . . . , a0 ∈ Z, where d ∈ N and a0 6= 0, and any

nonnegative integer s there are a prime number p > 3 and d integers x1, . . . , xd such

that every element of the sequence X = (xn)
∞

n=1 defined by (1.1) modulo p belongs

to the set {s+ 1, s+ 2, . . . , p− s− 1}.

We shall derive Theorem 1.2 from the following (stronger) result:

Theorem 1.3. For any ad−1, . . . , a0 ∈ Z, where d ∈ N and a0 6= 0, and any

positive integer M > 2 there are a prime number p satisfying M | (p − 1) and d

integers x1, . . . , xd such that every element of the sequence X = (xn)
∞

n=1 defined

by (1.1) modulo p is a quadratic nonresidue modulo p.

The proof of Theorem 1.3 is more involved. More precisely, we shall prove that

there are two positive integers t and c (here t is a quadratic nonresidue modulo p and c

is not divisible by p) such that the elements of the sequence defined in (1.1) modulo

p all belong to the set {t, tc2, tc4, . . . , tc2(l−1)} modulo p, where l is the smallest

positive integer satisfying c2l ≡ 1 (mod p). In the proof we will use a version of the

Chebotarev density theorem (see, e.g., [19] or [12]), Hilbert’s irreducibility theorem

(see, e.g., [15]) and the next lemma taken from [11].

Lemma 1.4. Let ΦM (z) be the Mth cyclotomic polynomial and let p be a prime

number which is coprime to M . If t is the minimal positive integer satisfying pt ≡ 1

(mod M) then ΦM (z) in Fp[z] splits into ϕ(M)/t distinct monic irreducible polyno-

mials of the same degree t.
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Now, in Sections 2 and 3 we prove Theorems 1.1 and 1.3, respectively. (Even

though Theorem 1.1 is a direct consequence of Theorem 1.2, we give its separate

much simpler proof.) Then, in Section 4 we derive Theorem 1.2 from Theorem 1.3.

2. Proof of Theorem 1.1

Assume that there are only finitely many primes p1, p2, . . . , ps that divide the

values of fX(j), where j runs through Z. Since fX(0) = −a0, the prime divisors of

a0 6= 0 are all in the set {p1, p2, . . . , ps}. Take any y ∈ Z for which |fX(a0p1 . . . psy)| >
2|a0|. Since the integer fX(a0p1 . . . psy)/a0 is coprime to the product p1p2 . . . ps and

is greater than or equal to 2 in absolute value, it must have a prime divisor that is

not in the set {p1, p2, . . . , ps}. Thus, fX(a0p1 . . . psy) must have such a prime divisor

too, a contradiction. This proves that there are infinitely many primes p that divide

fX(x) for some x ∈ Z. Consider any such prime p satisfying p ∤ a0. Let x be an

integer for which p | fX(x). Clearly, if p | x, then p | a0, which is not the case. Thus,
p ∤ x, and, consequently, the set P (fX) of primes p such that fX(x) ≡ 0 (mod p) has

a solution in integers x satisfying p ∤ x is infinite.

Take any p ∈ P (fX) and m ∈ Z for which p | fX(m) and p ∤ m. Put xj := mj−1

for each j = 1, . . . , d. Now, we will show (by induction) that

(2.1) xj ≡ mj−1 (mod p)

for each j ∈ N. Clearly, then p ∤ xj for every j ∈ N, since p ∤ m. This will complete

the proof of the theorem.

Evidently, (2.1) holds for j = 1, . . . , d, by the definition of the first d terms of

the sequence X = (xj)
∞

j=1. Assume that (2.1) holds for j = 1, . . . , k, where k > d.

We must show that then (2.1) holds for j = k + 1. Indeed, first, using (1.1), sec-

ond, applying (2.1) to j = k, k − 1, . . . , k − d + 1, and, finally, using the equality

ad−1m
d−1 + . . .+ a1m+ a0 = md − fX(m) and the fact that p | fX(m), we obtain

xk+1 ≡ ad−1xk + . . .+ a0xk−d+1 (mod p)

≡ ad−1m
k−1 + . . .+ a0m

k−d (mod p)

≡ mk−d(md − fX(m)) (mod p) ≡ mk (mod p).

This completes the proof of (2.1). �
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3. Proof of Theorem 1.3

Let g(z) := zD +
D−1
∑

j=0

bjz
j be a monic irreducible divisor of the polynomial fX(z2)

of degree D, where 1 6 D 6 2d = deg fX(z2). (If fX(z2) is irreducible then g(z) =

fX(z2).)

We claim that for some m ∈ Z the polynomial g(zM −m) is irreducible in Z[z].

Indeed, otherwise (if there is no such m), by Hilbert’s irreducibility theorem (see

page 298 in [15]), the polynomial g(zM − y) is reducible in Z[z, y], namely,

(3.1) g(zM − y) = (zM − y)D + . . .+ b1(z
M − y) + b0 = g1(z, y)g2(z, y)

for some nonconstant polynomials g1 and g2 in Z[z, y]. Assume that the degree of

g1(z, y) in the variable y is d1 and the degree of g2(z, y) in the variable y is d2. Then

d1 + d2 = D and the coefficients for yd1 in g1(z, y) and yd2 in g2(z, y) are ±1. Also,

without restriction of generality we may assume that d1, d2 > 1, since g(zM−y) is not

divisible by a nonconstant polynomial in the variable z only (the leading coefficient

of the polynomial g(zM−y) in the variable y over the ring Z[z] is ±1). Now, inserting

z = 0 into (3.1) we obtain g(−y) = g1(0, y)g2(0, y), where deg g1(0, y) = d1 > 1 and

deg g2(0, y) = d2 > 1, which is impossible, because g(−y) is irreducible in Z[y]. This

proves the claim.

Fix m ∈ Z for which the polynomial g(zM − m) is irreducible in Z[z]. By the

theorem of Frobenius (a weaker version of the Chebotarev theorem), the polynomial

g(zM −m) modulo p splits into linear factors for infinitely many primes p (see, e.g.,

[19]; in fact, the density of such primes p is equal to 1/|G|, where G is the Galois
group of the polynomial g(zM − m)). Let p > 3 be one of those primes which is

coprime to Mg(−m)g(0). Here, g(−m) 6= 0, since g(zM −m) is irreducible in Z[z],

and g(0) 6= 0, since g(0) divides fX(0) = −a0 6= 0. Note that, as g(zM −m) splits

into linear factors in Fp[z], so does g(z). Indeed, factorize g(z) =
D
∏

j=1

(z−αj) in L[z],

where L is some finite extention of Fp. The polynomial g(z
M−m) =

D
∏

j=1

(zM−m−αj)

in L[z] is equal to
MD
∏

i=1

(z − ri) with ri ∈ Fp. Hence, each factor z
M −m − αj is the

product of some M linear factors z − ri with ri ∈ Fp. It follows that αj ∈ Fp, and

so we can take L = Fp.

Fix j ∈ {1, . . . , D} and write the element m + αj of Fp as b
M with some b ∈ Fp.

This is possible, since the polynomial zM −m− αj has a root b = ri ∈ Fp for some

i ∈ {1, . . . ,MD}. Note that b 6= 0, since otherwise one of the factors of g(zM −m)
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modulo p wold be zM , which is not the case in view of gcd(p, g(−m)) = 1. Then, as

zM −m− αj = zM − bM = bM ((zb−1)M − 1) ∈ Fp[z]

splits into linear factors in Fp[z], so does the polynomial z
M − 1. It follows that its

divisor ΦM (z) also splits into linear factors in Fp[z]. Since p and M are coprime, by

Lemma 1.4 we must have t = 1 and M | (p − 1). Fix any c ∈ N coprime to p for

which p | g(c). Such c exists, since g(z) has a root α1 in Fp and α1 6= 0. The last

inequality follows from g(0) 6≡ 0 (mod p). As g(z) divides fX(z2) in Z[z], the prime

p divides fX(c2). Let t ∈ {1, . . . , p−1} be any quadratic nonresidue modulo p. (Note
that p > 3, so such t exists.) This time, we select xj := tc2(j−1) for j = 1, . . . , d.

In order to complete the proof of the theorem, it remains to show that

(3.2) xj ≡ tc2(j−1) (mod p)

for each j ∈ N. Indeed, as the Legendre symbol
(

t
p

)

is equal to −1, we find that

( tc2(j−1)

p

)

=
( t

p

)(c2(j−1)

p

)

= (−1) · 1 = −1

for each j ∈ N, so t, tc2, tc4, tc6, . . . all are nonresidues modulo p.

Evidently, (3.2) holds for j = 1, . . . , d, by the definition of the first d terms of

the sequence X = (xj)
∞

j=1. Assume that (3.2) holds for j = 1, . . . , k, where k > d.

Now, in the same fashion as in Theorem 1.1 it follows that (3.2) holds for j = k+1.

Indeed, first, using (1.1), second, applying (3.2) to j = k, k − 1, . . . , k − d + 1 and,

finally, using the equality ad−1c
2(d−1) + . . . + a1c

2 + a0 = c2d − fX(c2) (see (1.2))

combined with the fact that p | fX(c2), we deduce that

xk+1 ≡ ad−1xk + . . .+ a0xk−d+1 (mod p)

≡ t(ad−1c
2(k−1) + . . .+ a0c

2(k−d)) (mod p)

≡ tc2(k−d)(c2d − fX(c2)) (mod p) ≡ tc2k (mod p).

This completes the proof of (3.2). �
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4. Proof of Theorem 1.2

Observe that without restriction of generality we may assume that s > 2. Fix an

integer s > 2 and put

(4.1) M := 4
∏

q6s

q,

where the product is taken over the prime numbers q. By Theorem 1.3 applied to

the integer M , there is a prime number p = Mk + 1, where k ∈ N, and d integers

x1, . . . , xd such that every element of the sequence X = (xn)
∞

n=1 defined by (1.1)

modulo p is a quadratic nonresidue modulo p. We claim that for such p and M , as

defined in (4.1), 0, 1, . . . , s and p− 1, . . . , p− s are quadratic residues modulo p.

Indeed, 0, 1 and −1 are quadratic residues modulo p, since 4 | (p− 1). In order to

prove that all elements of the set

R := {0, 1, . . . , s} ∪ {p− s, . . . , p− 1}

are quadratic residues, it suffices to show that every prime number q lying in the

set {2, 3, . . . , s} is a quadratic residue modulo p. To prove this, let us calculate the
Legendre symbol for q = 2 and for every prime number q in the range 2 < q 6 s.

Since 8 | M and p = Mk + 1, we have p ≡ 1 (mod 8). Hence,

(2

p

)

= (−1)(p
2
−1)/8 = 1.

Similarly, using the fact that q | (p− 1) for each prime q in the range 2 < q 6 s we

find that
(q

p

)

= (−1)(p−1)(q−1)/4
(p

q

)

=
(p

q

)

=
(1

q

)

= 1,

since (p− 1)(q− 1)/4 is even. Thus, every prime number q in the range 2 6 q 6 s is

a quadratic residue modulo p. Therefore, each xj modulo p belongs to the set

{s+ 1, s+ 2, . . . , p− s− 1} = {0, 1, . . . , p− 1} \R

containing all nonresidues modulo p. This completes the proof of Theorem 1.2. �

Note that in a similar fashion one can eliminate not only the set of residues close

to 0 and p, but also a set of any fixed size composed of residues modulo p close to,

say, (p− 1)/2, where p is a large enough prime number.
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