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Abstract. In this paper, we study a general structure for the so-called Farlie-Gumbel-
Morgenstern (FGM) family of bivariate distributions. Through examples we show how to
use the proposed structure to study dependence properties of the FGM type distributions
by a general approach.
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1. Introduction

The construction of multivariate distributions with given marginals has been

a problem of interest to statisticians for many years. For any pair of univariate

cumulative distribution functions (cdf) F1 and F2, one of the most popular bivariate

distributions is the so-called (bivariate) Farlie-Gumbel-Morgenstern (FGM) class of

distributions defined by

(1.1) H(x, y) = F1(x)F2(y){1 + αF 1(x)F 2(y)}, −1 6 α 6 1,

originally considered by Farlie [10], Gumbel [12] and Morgenstern [18]. A well-known

limitation to this family is that it does not allow the modeling of large dependencies

since, for example, Spearman’s rho of this family is limited to [−1/3, 1/3]. For

this reason and its simple analytical form, various generalizations of this family

We acknowledge the helpful comments of the reviewers that led to several improvements
in this paper. This research was supported by a grant from Ferdowsi University of
Mashhad (No. MS92298AMI).
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have been introduced in the literature, e.g., [2], [4], [5], [3], [6], [9], [11], [14], [15],

[16], [17], [20]. Lai and Xie [16] considered a representation of the FGM bivariate

distribution possessing positive quadrant dependence property of the form

(1.2) H(x, y) = F1(x)F2(y) +W (x, y) for all x, y,

with nonnegative W (x, y) satisfying certain regularity conditions ensuring that

H(x, y) is a bivariate distribution function. Recently, Han [13] studied the above

representation of the FGM family possessing negative quadrant dependence property.

In this paper we consider a generalization of the above model defined by

(1.3) H(x, y) = F1(x)F2(y) +W{F1(x), F2(y)} for all x, y,

to obtain a general extension for the FGM family of distributions. Our modelling

approach starts on the path of Lai and Xie [16], but then rapidly diverges, because

the marginal cdfs of our model are of the form

Hi(x) = Fi(x) +W{Fi(x), 1}, i = 1, 2,

rather than F1 and F2. Through examples we show how to use the proposed structure

to analyze different dependence properties of the already existent and new extensions

of the FGM model. The paper is organized as follows. We discuss the general form

of the proposed model in Section 2. In Section 3 we study different dependence

properties of the general model. Several new extensions of the FGM family are given

in Section 4. We conclude the paper in Section 5.

2. The proposed model

Let F1 and F2 be two continuous cdfs with the density functions f1 and f2 and

suppose that I = [0, 1]. Let W : I2 → I and consider the function H(x, y) defined

by

(2.1) H(x, y) = F1(x)F2(y) +W{F1(x), F2(y)}.

The following proposition shows under which conditions on W the function H

defines a bivariate cdf.
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Proposition 1. The function H defined by (2.1) is a bivariate distribution func-

tion with the univariate marginal distribution functions

(2.2) H1(x) = F1(x) +W (F1(x), 1) and H2(x) = F2(y) +W (1, F2(y)),

provided that the kernel W satisfies

(i) W (u, 0) =W (0, v) =W (1, 1) = 0 for all u, v ∈ I;

(ii) uv +W (u, v) is 2-increasing on I2.

P r o o f. We recall that H is a bivariate cdf if and only if

(P1) H(x,−∞) = H(−∞, y) = 0, H(x,∞) = H1(x), and H(∞, y) = H2(y) for

all x, y;

(P2) for every x1, x2, y1, y2 such that x1 6 x2 and y1 6 y2,

∆x2

x1
∆y2

y1
H(x, y) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1) > 0.

It is clear that (i) ensures (P1). For condition (ii) we notice that (P2) holds if and

only if

∆x2

x1
∆y2

y1
H(x, y) = [F1(x2)− F1(x1)][F2(y2)− F2(y1)] +W (F1(x2), F2(y2))

−W (F1(x1), F2(y2))−W (F1(x2), F2(y1))

+W (F1(x1), F2(y1)) > 0,

or equivalently,

∆u2

u1
∆v2

v1
H(u, v) = (u2 − u1)(v2 − v1) +W (u2, v2)−W (u1, v2)

−W (u2, v1) +W (u1, v1) > 0,

for all u1, u2, v1, v2 ∈ I with u1 6 u2 and v1 6 v2, which is the 2-increasingness

property of the function uv + W (u, v), u, v ∈ I. Note that if uv + W (u, v) is 2-

increasing, then the functions u + W (u, 1) and v + W (1, v) are increasing. This

property together with the condition (i) ensures that H1 and H2 are univariate cdfs.

�

IfW (u, v) is a twice-differentiable function defined on I2, then the following result

shows under which conditions on W the function H defines an absolutely continuous

bivariate cdf.
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Proposition 2. The function H defined by (2.1) is an absolutely continuous

bivariate distribution function with the univariate marginal cdfs H1 and H2 if the

kernel W satisfies

(i) W (u, 0) =W (0, v) = 0, W (1, 1) = 0;

(ii) W 12(u, v) > −1, W 1(u, 1) > −1, W 2(1, v) > −1;

(iii)
∫ 1

0
W 1(u, 1) du = 0,

∫ 1

0
W 2(1, v) dv = 0,

∫ 1

0

∫ 1

0
W 12(u, v) du dv = 0, where

W 12(u, v) =
∂2

∂u∂v
W (u, v), W 1(u, 1) =

∂

∂u
W (u, 1), and W 2(1, v) =

∂

∂v
W (1, v).

P r o o f. Under conditions (i) and (ii) the functions h, h1, and h2 given by

h(x, y) =
∂2

∂x∂y
H(x, y) = f1(x)f2(y){1 +W 12(F1(x), F2(y))},(2.3)

h1(x) =

∫ ∞

−∞

h(x, y) dy(2.4)

= f1(x)

∫ ∞

−∞

f2(y){1 +W 12(F1(x), F2(y))} dy

= f1(x)

∫ 1

0

{1 +W 12(F1(x), v)} dv

= f1(x){1 +W 1(F1(x), 1)}

=
∂

∂x
H1(x),

and similarly

(2.5) h2(y) =

∫ ∞

−∞

h(x, y) dx = f2(y){1 +W 2(1, F2(y))} =
∂

∂y
H2(y),

satisfy h(x, y) > 0, h1(x) > 0, h2(y) > 0, for all x, y and under condition (iii) we

have
∫ ∞

−∞

∫ ∞

−∞

h(x, y) dxdy =

∫ ∞

−∞

h1(x) dx =

∫ ∞

−∞

h2(y) dy = 1;

that is, the function H defined by (2.1) is an absolutely continuous bivariate cdf

with the joint density function (2.3) and univariate marginal density functions (2.4)

and (2.5). �

R em a r k 1. For the special case W (u, 1) = W (1, u) = 0, for all u ∈ I, the

marginal distribution functions of (2.1) are F1 and F2. Distributions of this form are

well studied in [11], [15], [20].
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R em a r k 2. Note that every convex combination of two bivariate distribution

functions of the form (2.1), with the kernels satisfying conditions of Proposition 1,

is still a distribution function of the form (2.1). Let

H1(x, y) = F1(x)F2(y) +W1{F1(x), F2(y)},

and

H2(x, y) = F1(x)F2(y) +W2{F1(x), F2(y)},

where W1 and W2 satisfy conditions of Proposition 1. For every λ ∈ I, let

H(x, y) = λH1(x, y) + (1− λ)H2(x, y).

Then

H(x, y) = F1(x)F2(y) +W{F1(x), F2(y)},

where W (u, v) = λW1(u, v) + (1− λ)W2(u, v), u, v ∈ I.

In view of Sklar’s Theorem [21] from (2.1) and (2.2), solving the equation

C{H1(x), H2(y)} = H(x, y)

for the function C : I2 → I yields the underlying copula associated with the bivariate

cdf H defined by (2.1) as

(2.6) C(u, v) = ψ−1
1 (u)ψ−1

2 (v) +W{ψ−1
1 (u), ψ−1

2 (v)},

for all u, v ∈ I, where ψi : I → I, i = 1, 2, are two (distribution) functions given

by ψ1(t) = t + W (t, 1) and ψ2(t) = t + W (1, t). For 0 < p < 1, the function

ψ−1
i (p) = inf{t : ψi(t) > p}, denotes the inverse (quantile function) of ψi, i = 1, 2.

Note that the equation (2.6) could be written as

(2.7) C(ψ1(u), ψ2(v)) = uv +W (u, v).

Let (X1, X2) be a pair of random variables distributed as (2.1). If F1(x) = F2(x) for

all x, then (X1, X2) is exchangeable, that is, (X1, X2) and (X2, X1) have the same

joint cdf, if and only if W (u, v) =W (v, u) for all u, v ∈ I.

The joint survival function associated with (2.1) is given by

(2.8) H(x, y) = P [X > x, Y > y]

= 1−H1(x) −H2(y) +H(x, y)

= F1(x)F2(y)−W (F1(x), 1)−W (1, F2(y)) +W (F1(x), F2(y)).
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Recall that a pair (X1, X2) with the joint cdf H and marginal cdfs H1 and H2 is

radially symmetric (see [19]) if the pairs (X1, X2) and (−X1,−X2) have the same

joint cdf or equivalentlyH(x, y) = H(−x,−y) for all x, y. In such a case the marginal

cdfs satisfy H1(x) = H1(−x) and H2(y) = H2(−y) for all x, y. For the joint cdf

(2.1) we have the following result.

Proposition 3. Let H be the joint distribution function defined by (2.1) with

F1(x) = F 1(−x) and F2(y) = F 2(−y) for all x, y. Then H is radially symmetric if

and only if for all u, v ∈ I,

(2.9) W (u, v) =W (1− u, 1− v)−W (1− u, 1)−W (1, 1− v).

P r o o f. The result follows from (2.8) and the assumption Fi(−x) = 1 − Fi(x),

i = 1, 2. �

3. Dependence properties

A useful way of formalizing properties of a bivariate distribution is to examine

the form of its stochastic dependence. In this section we study some results on de-

pendence properties of the bivariate distribution defined by (2.1). Four forms of

stochastic dependence between two random variables X and Y are the quadrant

dependence, tail monotonicity, regression dependence and the likelihood ratio de-

pendence; see [19] for detail. Let X and Y be two random variables with the joint

distribution function H , the joint density function h and the associated copula C.

Recall that X an Y are said to be positively quadrant dependent (PQD) if and only

if C(u, v) > uv for all u, v ∈ I. Similarly, X and Y are said to be negatively quadrant

dependent (NQD) if and only if C(u, v) 6 uv for all u, v ∈ I. The random variable Y

is said to be left tail decreasing in X (briefly, LTD(Y |X)) if and only if C(u, v)/u is

decreasing in u, for all v. The random variable Y is right tail increasing in X (briefly,

RTI(Y |X)) if and only if (v−C(u, v))/(1−u) is increasing in u for all v. Y is said to

be positive regression dependent in X (briefly, PRD(Y |X)) if and only if C(u, v) is

concave in u for every v. The random vector (X,Y ) is said to be positive likelihood

ratio dependent (PLRD) if h(x, y) is total positive of order two (TP2), that is,

(3.1) h(x1, y1)h(x2, y2) > h(x1, y2)h(x2, y1),

for all x1 6 x2 and y1 6 y2. The negative likelihood ratio dependence (NLRD) is

defined by reversing the inequality (3.1).

The following propositions provide some results for the bivariate distribution de-

fined by (2.1).
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Proposition 4. Let (X1, X2) be a vector of continuous random variables dis-

tributed as (2.1). Then (X1, X2) is PQD (NQD) if for all u, v ∈ I,

W (u, v) > uW (1, v) + vW (u, 1) +W (u, 1)W (1, v)

(W (u, v) 6 uW (1, v) + vW (u, 1) +W (u, 1)W (1, v)).

P r o o f. The proof follows from (2.6). �

Proposition 5. Let (X1, X2) be a vector of continuous random variables dis-

tributed as (2.1). Then (X1, X2) is PLRD if for all u, v ∈ I, the function 1+W 12(u, v)

is TP2.

P r o o f. From (2.3), the inequality (3.1) holds if and only if

[1 +W 12(F1(x1), F2(y1)][1 +W 12(F1(x2), F2(y2)]

> [1 +W 12(F1(x1), F2(y2)][1 +W 12(F1(x2), F2(y1)],

for all x1 6 x2 and y1 6 y2, or equivalently,

[1 +W 12(u1, v1)][1 +W 12(u2, v2)] > [1 +W 12(u1, v2)][1 +W 12(u2, v1)],

for all 0 6 u1 6 u2 6 1 and 0 6 v1 6 v2 6 1, which is the TP2 property of

1 +W 12(u, v). �

R em a r k 3. The following chain of implications is known; see, e.g., [19].

(3.2) PLRD ⇒ PRD ⇒
LTD

RTI
⇒ PQD.

Thus under the condition of Proposition 5, a random vector (X1, X2) distributed as

(2.1) has PRD, LTD, RTI, and the weaker dependence property PQD.

The population versions of two of the most common nonparametric measures

of association between the components of a continuous random pair (X1, X2) are

Kendall’s tau (τ) and Spearman’s rho (̺) which depend only on the copula C of the

pair (X1, X2), and are given by

(3.3) τ(X1, X2) = 4

∫ 1

0

∫ 1

0

C(u, v) dC(u, v)− 1

= 1− 4

∫ 1

0

∫ 1

0

∂

∂u
C(u, v)

∂

∂v
C(u, v) du dv,
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and

(3.4) ̺(X1, X2) = 12

∫ 1

0

∫ 1

0

C(u, v) du dv − 3.

See [19] for detail. The following result provides expressions for these measures

associated with a vector (X1, X2) distributed as (2.1).

Proposition 6. Let (X1, X2) be a random vector distributed as (2.1). Then

(3.5) τ(X1, X2) = −4

∫ 1

0

∫ 1

0

[vW 2(u, v) + uW 1(u, v) +W 1(u, v)W 2(u, v)] du dv

and

(3.6) ̺(X1, X2) = 12

∫ 1

0

∫ 1

0

[uv +W (u, v))(1 +W 1(u, 1))(1 +W 2(1, v))] du dv − 3.

P r o o f. Applying (2.6), the proof is a straightforward calculation using (3.3)

and (3.4). �

The stress-strength parameter (i.e. R = P (X1 < X2)) is useful for data analysis

purposes [7]. The following proposition gives a convenient form for the stress-strength

parameter of the proposed model. Let X1 and X2 be independent and identically

distributed continuous random variables. Then P (X1 < X2) = 1
2 . For a random

vector (X1, X2) distributed as (2.1) we have the following result.

Proposition 7. Let (X1, X2) be a vector of continuous random variables dis-

tributed as (2.1). Then

(3.7) P (X2 6 X1) = E[F2 ◦ F
−1
1 (U) +W 1(U, F2 ◦ F

−1
1 (U))],

where U is a uniform (0, 1) random variable and F−1
i (u) = sup{x|Fi(x) 6 u} for

i = 1, 2.

P r o o f. By using (2.2) and the conditional density function of (X2|X1 = x)

(3.8) h(y|x) =
1 +W 12(F1(x), F2(y))

1 +W 1(F1(x), 1)
f2(y),
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we obtain

P (X2 6 X1) =

∫ ∞

−∞

P (X2 6 t|X1 = t] dH1(t)

=

∫ ∞

−∞

∫ t

−∞

h(y|t) dy dH1(t)

=

∫ ∞

−∞

F2(t) +W 1(F1(t), F2(t))

1 +W 1(F1(t), 1)
dH1(t).

Now the transformation F1(t) = u gives the required result. �

Note that under the assumption F1(x) = F2(x) for all x we have

P (X2 6 X1) =
1

2
+

∫ 1

0

W 1(u, u) du,

where U is a uniform (0,1) random variable.

In the following we provide an expression for the expected value of the left trun-

cated model; i.e., (X1|X1 > X2) of a random vector (X1, X2) distributed as (2.1).

Proposition 8. Let (X1, X2) be a vector of continuous random variables dis-

tributed as (2.1) with F1(x) = F2(x) = x, 0 < x < 1. Then

(3.9) E(X1|X1 > X2) =
2

3
− 2

∫ 1

0

W (x, x) dx.

P r o o f. First we note that the conditional distribution of X1 given X2 6 X1 is

P (X1 6 x|X2 6 X1) =
P (X1 6 x,X2 6 X1)

P (X2 6 X1)
=
P (X2 6 X1 6 x)

P (X2 6 X1)

=
1

P (X2 6 X1)

∫ x

0

∫ u

0

h(u, v) dv du,

where h is the joint density function of X1 and X2. The conditional density function

of X1 given X2 6 X1 is then

hX1|X26X1
(x) =

1

P (X2 6 X1)

∫ x

0

h(x, v) dv,

and then

E(X1|X2 6 X1) =
1

P (X2 6 X1)

∫ ∞

0

x

{
∫ x

0

h(x, v) dv

}

dx.
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Using (2.3) and letting F1(x) = F2(x), we have P (X2 6 X1) =
1
2 and hence

E(X1|X2 6 X1) = 2E{F−1
1 (U)(U +W 1(U,U))},

where U is the uniform (0, 1) random variable. If F1(x) = x, 0 < x < 1, then

E(X1|X2 6 X1) =
2

3
+ 2E{UW 1(U,U)} =

2

3
− 2

∫ 1

0

W (u, u) du,

which completes the proof. �

Note that for independent and identically distributed random variables X1 and

X2 having uniform (0,1) distribution we have

E{X1|X1 > X2} =
2

3
.

Thus for two random variables X1 and X2 distributed as

H(u, v) = uv +W (u, v),

the value

(3.10) κ(X1, X2) =
∣

∣

∣
E(X1|X1 > X2)−

2

3

∣

∣

∣
= 2

∣

∣

∣

∣

∫ 1

0

W (u, u) du

∣

∣

∣

∣

provides a natural measure of dependence. This kind of dependence measures was

proposed in [3] for FGM type distributions.

4. Subfamilies and several new examples

For θ ∈ [−1, 1], the kernel W (u, v) = θuv(1 − u)(1 − v) generates the standard

FGM family of distributions defined by (1.1). An extension of the FGM family

is introduced in [20] with W (u, v) = f(u)g(v), where f and g are two continuous

functions on I with f(0) = f(1) = g(0) = g(1) = 0 and satisfying the Lipschitz

condition, i.e.,

|f(u2)− f(u1)| 6 |u2 − u1| and |g(v2)− g(v1)| 6 |v2 − v1|,

for all u2 6 u1 and v2 6 v1 in I. This class of copulas generalizes several families;

see, e.g., [1], [2], [5], [3], [15], [16]. Under the boundary conditions on f and g, the

joint distribution constructed via

H(x, y) = F1(x)F2(y) + f(F1(x))g(F2(y))
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has univariate marginals F1 and F2 and the kernelW satisfiesW (u, 1) =W (1, v) = 0.

In the following we introduce several new FGM type distributions of the form

(2.1), where the condition W (u, 1) =W (1, v) = 0 is cancelled and thus the marginal

distributions of H are not F1 and F2. The kernel W is constructed based on the

joint distributions of order statistics and record values of the uniform (0,1) random

samples of size two.

E x am p l e 1. Let X1, X2, Y1, and Y2 be independent uniform (0,1) random vari-

ables. Let X(1), X(2) and Y(1), Y(2) be their corresponding order statistics. For

−1 6 θ 6 1, consider the random pair (V1, V2) = (X(1), Y(1)) with the probabil-

ity 1
2 (1 + θ) and (V1, V2) = (X(2), Y(2)) with the probability

1
2 (1− θ). Then the joint

distribution function of (V1, V2) is given by

FV1,V2
(u, v) = uv + uv[θ(2− u− v) + (1− u)(1− v)], u, v ∈ I.

It is clear that the above family of distributions complies with (2.1) for

(4.1) W (u, v) = uv[θ(2 − u− v) + (1− u)(1− v)].

Thus for every pair of univariate continuous distribution functions F1 and F2 and

each θ ∈ [−1, 1], the function

(4.2) H+(x, y) = F1(x)F2(y){1 + θ(F 1(x) + F 2(y)) + F 1(x)F 2(y)}

is a bivariate distribution with the univariate marginal distribution functions

H1(x) = F1(x){1 + θF 1(x)} and H2(y) = F2(y){1 + θF 2(y)}.

Alternatively, putting (V1, V2) = (X(1), Y(2)) with the probability
1
2 (1 + θ) and

(V1, V2) = (X(2), Y(1)) with the probability
1
2 (1− θ), gives

FV1,V2
(u, v) = uv + uv[θ(v − u)− (1− u)(1− v)], u, v ∈ I,

with the associated kernel

W (u, v) = uv[θ(v − u)− (1− u)(1 − v)].

For every θ ∈ [−1, 1], and fixed univariate distributions F1 and F2, the generated

bivariate distribution is given by

(4.3) H−(x, y) = F1(x)F2(y) + F1(x)F2(y){θ(F 1(x) − F 2(y))− F 1(x)F 2(y)},

101



with the univariate marginal distributions

H1(x) = F1(x){1 + θF 1(x)} and H2(y) = F2(y){1− θF 2(y)}.

The following result shows the dependence properties of the joint cdf’s defined by

(4.2) and (4.3).

Proposition 9. A random vector (X1, X2) with the joint distribution function

defined by (4.2) (or (4.3)) has PLRD (or NLRD) property.

P r o o f. We only prove the PLRD property of (4.2), the proof of NLRD for (4.3)

is similar. Note that for (4.2) we have

W 12(u, v) = 2θ(1− u− v)− 2(u− v + 2uv) + 1.

Using Proposition 4, we have

[1 +W 12(u1, v1)][1 +W 12(u2, v2)]− [1 +W 12(u1, v2)][1 +W 12(u2, v1)]

= 4θ2(u2 − u1)(v2 − v1) > 0,

for all u1 6 u2 and v1 6 v2, which is the TP2 property of the density function

of H+. �

The following result provides the measures of association Kendall’s tau and Spear-

man’s rho for the joint distribution functions (4.2) and (4.3).

Proposition 10. The Spearman’s rho and Kendall’s tau and the measure of

dependence (3.10) associated with the families of distributions H+ and H− defined

by (4.2) and (4.3) are given by

̺(H+) =
1− θ2

3
, τ(H+) =

2(1− θ2)

9
,

̺(H−) = −
1− θ2

3
, τ(H−) = −

2(1− θ2)

9
,

and

κ(H+) =
∣

∣

∣

1 + 5θ

15

∣

∣

∣
, κ(H−) =

1

15
.

P r o o f. The proof follows from expressions (3.5), (3.6), and (3.10). �

R em a r k 4. Note that for both families (4.2) and (4.3) we have the equality

2̺ = 3τ .
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R em a r k 5. Since the family of distributions defined by (4.2) has PLRD prop-

erty, it is suitable to describe the positive dependence of a random pair (X,Y ). In

contrast, the family of distributions defined by (4.3) with NLRD property is suit-

able for modeling a negative dependence. However, it is very simple to consider

a distribution with both positive and negative dependence property using a convex

combination of these models. For example, let α, β ∈ [0, 1], with α + β = 1, and

define

(4.4) H±(x, y) = αH+(x, y) + βH−(x, y).

Then, H± is a bivariate distribution with the univariate marginal distributions

H±
1 (x) = F1(x){1 + θF 1(x)}, H±

2 (y) = F2(y){1 + θ(α− β)F 2(y)}.

The following example provides some extensions of the FGM family based on the

joint distribution of the record statistics.

E x am p l e 2. Let X1 and X2 be independent random variables with the common

distribution functions F . It is known that the distribution functions of the lower

record statistics (XL2
) and upper record statistics (XU2

) are given by [8]

FXL2
(x) = F (x)− F (x) ln(F (x)) and FXU2

(x) = F (x) + F (x) ln(F (x)).

Let X1, X2, Y2, and Y2 be independent random variables from the univariate dis-

tributions F1 (of Xi) and F2 (of Yi). For θ ∈ [0, 1], choose the random vector

(V1, V2) = (XL2
, YL2

) with the probability θ and (V1, V2) = (X1, Y1) with the prob-

ability 1− θ. Then,

FV1,V2
(u, v) = uv + θuv[ln(u) ln(v)− ln(uv)], u, v ∈ (0, 1),

and

W (u, v) = θuv[ln(u) ln(v)− ln(uv)].

For every θ ∈ [0, 1] and univariate distribution functions F1 and F2, the correspond-

ing generated distribution function is given by

(4.5) G+(x, y) = F1(x)F2(y){1 + θ[ln(F1(x)) ln(F2(y))− ln(F1(x)F2(y))]},

whose univariate marginal distribution functions are

G1(x) = F1(x){1− θ ln(F1(x))} and G2(y) = F2(y){1− θ ln(F2(y))}.

103



Alternatively, we can take (V1, V2) = (XL2
, YU2

) with the probability θ and (V1, V2) =

(X1, Y1) with the probability 1− θ. Then, for θ ∈ [0, 1],

FV1,V2
(u, v) = uv + θu[(1 − v)(1− ln(u)) ln(1− v)− v ln(u)], u, v ∈ (0, 1).

Thus with the kernel

W (u, v) = θu[(1 − v)(1− ln(u)) ln(1− v)− v ln(u)]

we have a joint distribution function of the form

(4.6) G−(x, y) = F1(x)F2(y)

+ θF1(x)[F 2(y) ln(F 2(y))(1 − ln(F1(x))) − F2(y) ln(F1(x))],

with univariate marginal distribution functions

G1(x) = F1(x){1 − θ ln(F1(x))} and G2(y) = F2(y) + θF 2(y) ln(F 2(y)).

Proposition 11. The joint distribution functions defined by (4.5) and (4.6) have

PLRD and NLRD property, respectively.

Proposition 12. The Kendall’s tau, Spearman’s rho and measure of dependence

(3.10) associated with the families of distributions defined by (4.5) and (4.6) are

given by

τ(G+) =
1

2
θ(1 − θ), ̺(G+) =

3

4
θ(1 − θ),

τ(G−) = −
1

2
θ(1 − θ), ̺(G−) = −

3

4
θ(1− θ),

and

κ(G+) =
16θ

27
, κ(G−) =

(40− 3π
2)θ

54
.

R em a r k 6. Note that for α, β ∈ [0, 1], with α+ β = 1, the convex combination

(4.7) G±(x, y) = αG+(x, y) + βG−(x, y)

is a bivariate cdf which has both positive and negative dependence property.
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E x am p l e 3. Let (X1, Y1) and (X2, Y2) be two independent random vectors

having a common bivariate cdf F and univariate marginal cdfs F1 (of Xi) and F2

(of Yi), i = 1, 2. Let X(1), X(2) and Y(1), Y(2) be their corresponding order statistics.

For −1 6 λ 6 1, consider the random pair (V1, V2) = (X(1), Y(1)) with the probability
1
2 (1 + λ) and (V1, V2) = (X(2), Y(2)) with the probability

1
2 (1 − λ). Then, it is

straightforward to verify that (V1, V2) has the joint cdf

(4.8) Gλ(x, y) = (1 + λ)(F1(x)F2(y) + F (x, y)F (x, y))− λF 2(x, y),

with the univariate marginal distribution functions

(4.9) G1(x) = F1(x){1 + λF 1(x)} and G2(y) = F2(y){1 + λF 2(y)}.

The resulting distribution is of the form (1.3) with

W (u, v) = uv +D(u, v)D(u, v) + λ{uv +D(u, v)D(u, v)−D2(u, v)},

where D is the copula of the baseline cdf F . For the special case when F is equal to

FGM distribution (1.1) one gets a bivariate distribution of the form

(4.10) G(x, y) = F1(x)F2(y)
(

F1(x)F2(y)F
2

1(x)F
2

2(y)α
2

− F 1(x)F 2(y)((1 + λ− 2F2(y))F1(x)

− F
2

2(y)(1 + λ))α + F1(x)(λ + F 2(y)) + (1 + λ)(1 − F 2(y))
)

.

The associated Spearman’s rho with this distribution is given by

̺ =
1

3
+ α

( 1

75
α+

1

6

)

+ λ2
( 11

150
α−

1

3

)

.

Note that ̺ ∈ [−0.227, 0.513] which is larger than the Spearman’s rho associated

with usual FGM family. The maximum value of the Spearman’s ̺ is equal to 0.513

which happens at (λ, α) = (0, 1).

In the general structure (4.8), if one uses the extended FGM introduced by Huang

and Kotz [15], given by

F (x, y) = F1(x)F2(y)(1 + α(1 − F 2
1 (x))(1 − F 2

2 (y))), −
1

2
6 α 6

1

2
,

the resulting distribution has ̺ ∈ [−0.313, 0.539], which is a good progress in extend-

ing the dependence of the usual FGM family. The maximum value of the Spearman’s

̺ is equal to 0.539 which happens at (λ, α) = (0, 1). Table 1 shows the detailed range

of Spearman’s rho in the proposed models.
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Baseline cdf F (x, y)

̺ FGM Extended FGM

α → −1 −0.5 0 0.5 1 −0.5 −0.25 0 0.25 0.5

λ ↓ −1 −0.227 −0.117 0 0.123 0.253 −0.313 −0.162 0 0.172 0.354
−0.5 0.078 0.161 0.250 0.346 0.448 0.031 0.136 0.250 0.374 0.507
0 0.180 0.253 0.333 0.420 0.513 0.162 0.244 0.333 0.432 0.539
0.5 0.078 0.161 0.250 0.346 0.448 0.084 0.163 0.250 0.345 0.447
1 −0.227 −0.117 0 0.123 0.253 −0.199 −0.103 0 0.110 0.228

−0.333 −0.167 0 0.167 0.333 −0.375 −0.188 0 0.188 0.375

Table 1. Range of Spearman’s rho for models proposed in Example 3.

5. Concluding remarks

We presented a general new structure for the so-called FGM family of bivariate

distributions. We presented different dependence properties of the proposed model.

Several new extensions of the FGM family are discussed. Although the development

here is for the bivariate case, the generalization to higher dimensions is straightfor-

ward. In the following we present an example. By considering univariate distribution

functions Fi, i = 1, . . . , p, a multivariate generalization of the family (4.2) defined in

Example 1 could be

H+(x1, . . . , xp) =

p
∏

i=1

Fi(xi) +W (F1(x1), . . . , Fp(xp)).

The kernel W is then

W (u1, . . . , up) = FV1,...,Vp
(u1, . . . , up)− u1u2 . . . up

=

p
∏

i=1

ui

{

1 + θ

2

p
∏

i=1

(2− ui) +
1− θ

2

p
∏

i=1

ui − 1

}

,

where FV1,...,Vp
is the joint distribution function of the vector

(V1, . . . , Vp) = (min(X11, X12), . . . ,min(Xp1, Xp2))

with the probability 1
2 (1 + θ) and

(V1, . . . , Vp) = (max(X11, X12), . . . ,max(Xp1, Xp2))

with the probability 1
2 (1 − θ), where Xi1 and Xi2, i = 1, 2, . . . , p are independent

uniform (0, 1) random variables.

106



The functions W (·, ·) that we used here are constructed based on the joint dis-

tribution functions of the order statistics and record values of a sample of size two.

A natural question arises how to find methods for constructing a large and diverse

collection of functions W (·, ·) to generate extensions with stronger dependence than

the usual FGM family.
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