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On a binary recurrent sequence of polynomials

Reinhardt Euler, Luis H. Gallardo, Florian Luca

Abstract. In this paper, we study the properties of the sequence of polyno-
mials given by g0 = 0, g1 = 1, gn+1 = gn+∆gn−1 for n ≥ 1, where∆ ∈ Fq[t]
is non-constant and the characteristic of Fq is 2. This complements some
results from [2].

1 Introduction
Let Fq be the finite field with q = 2k elements for some k ≥ 1. Given ∆ ∈ Fq[t]
non constant define {gn}n≥0 by g0 = 0, g1 = 1 and

gn+2 = gn+1 + ∆gn for n ≥ 0 . (1)

This sequence was studied in [2]. In this paper, we correct an oversight from [2],
answer an open question about this sequence asked there and prove a few more
properties of this sequence.

In [2], it was shown that gn = 0 holds infinitely often. Here, we correct this
statement and show that in fact gn = 1 holds infinitely often and gn = 0 for n = 0
only. At the end of [2] it was asked whether the sequence {gn}n≥0 is periodic. Here,
we show that this is not the case by proving in fact that lim supn→∞ deg(gn) =∞.
We also find explicit formulas for gn when n = 2m, 2m−1, 2m +1 for some m ≥ 0.
We also find more properties of the polynomials {gn}n≥0. For example, it is easy to
show by induction that the degree of gn is at most n−1 and that gn is a polynomial
in ∆ with coefficients in {0, 1}. We let `(gn) be the length of gn as a polynomial in
Fq[∆], namely the sum of its coefficients and compute this number. We find that
`(gn) = an, where {an}n≥0 is the Stern-Brocot sequence given by a0 = 0, a1 = 1
and

a2n = an and a2n+1 = an+1 + an for all n ≥ 0 .

We also compute how many of the an monomials in gn have odd degree in ∆. Let
bn be this number. We find that b2n = 0 and b2n+1 = an for all n ≥ 0.
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All these results are summarized in the theorem below.

Theorem 1. The following holds:

(i) g2m = 1 for all m ≥ 0 ,

(ii) g2m+1 = 1 + ∆ + ∆2 + · · ·+ ∆2m−1

for all m ≥ 1 ,

(iii) g2m−1 = 1 + ∆ + ∆3 + · · ·+ ∆2m−1−1 for all m ≥ 1 ,

(iv) `(gn) = an ,

(v) b2n = 0 ,

(vi) b2n+1 = an for all n ≥ 0 .

2 The proof of Theorem 1
We first prove a lemma.

Lemma 1. For all n ≥ 0:

(i) g2n+4 = g2n+2 + ∆2g2n ,

(ii) g2n = g2n .

Proof. For (i), we write using (1) (with n replaced by 2n and by 2n + 2) and the
fact that the characteristic of Fq is 2:

g2n+1 = g2n+2 + ∆g2n and g2n+3 = g2n+4 + ∆g2n+2 . (2)

Inserting the above relations into (1) with n replaced by 2n + 1, we get

g2n+4 + ∆g2n+2 = g2n+3 = g2n+2 + ∆g2n+1 = g2n+2 + ∆(g2n+2 + ∆g2n) ,

or
g2n+4 = g2n+2 + ∆2g2n

as desired. For (ii), we use induction on n. The cases n = 0, 1 are clear. Assuming
that n ≥ 2 and that (ii) holds for all m ≤ n, we have, by (i),

g2n+2 = g2n + ∆2g2n−2 = g2n + ∆2g2n−1 = (gn + ∆gn−1)2 = g2n+1 ,

which completes the induction and the proof of (ii). �

We are now ready to prove Theorem 1. We first prove (i)–(iii) by induction
on m ≥ 0. The cases m = 0, 1 can be verified by hand. Assume that m ≥ 2 and
(i)–(iii) hold for all n < m. Then, by Lemma 1 (ii) and the induction hypothesis,
we have

g2m = (g2m−1)2 = 12 = 1 .

Further,
1 = g2m = g2m−1 + ∆g2m−2 = g2m−1 + ∆(g2m−1−1)2,
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so

g2m−1 = 1 + ∆g22m−1−1

= 1 + ∆(1 + ∆ + ∆3 + · · ·+ ∆2m−2−1)2

= 1 + ∆ + ∆3 + · · ·+ ∆2m−1−1.

Finally,

g2m+1 = g2m + ∆g2m−1

= 1 + ∆(1 + ∆ + ∆3 + · · ·+ ∆2m−1−1)

= 1 + ∆ + ∆2 + · · ·+ ∆2m−1

.

For (iv), we check that the statement is true for n = 0, 1. Since

g2n = g2n

we have a2n = `(g2n) = `(g2n) = `(gn) = an. Since

g2n+1 = g2n+2 + ∆g2n = g2n+1 + ∆g2n (3)

and every monomial appearing in either g2n+1 or g2n appears with even degree, we
have that

`(g2n+1) = `(g2n+1) + `(g2n) = `(gn+1) + `(gn) = an+1 + an ,

which is what we wanted.
We now prove (v) and (vi). By (ii) of Lemma 1, we have that

g2n = g2n

is a polynomial in ∆ whose monomials have even degree. Hence, b2n = 0. For the
odd n, note that bn = `(g′n), where g′n denotes the derivative of gn as a polynomial
in ∆. Taking the derivative in relation (1) and using the fact that the characteristic
of Fq is 2, we get

gn = g′n+2 + g′n+1 + ∆g′n .

Inserting the above relation with n replaced by n + 1 and n + 2 in (1), we get

g′n+4 + g′n+3 + ∆g′n+2 = gn+2 = gn+1 + ∆gn

= g′n+3 + g′n+2 + ∆g′n+1 + ∆(g′n+2 + g′n+1 + ∆g′n) ,

which leads to
g′n+4 = g′n+2 + ∆2g′n .

Since g0 = 0, g1 = 1, g2 = 1, g3 = 1 + ∆, we have that g′1 = 0 and g′3 = 1. Thus,
we get that g′2n+1 = gn(∆2), where gn(∆2) is the same sequence of polynomials
{gn}n≥0 but with ∆ replaced by ∆2. Now (vi) follows from (iv).
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A simpler argument for (vi) suggested by the referee goes as follows: since

g2n+1 = g2n+2 = g2n+1 + ∆g2n = g2n+1 + ∆g2n ,

taking derivatives yields

0 = (g2n+1)′ = g′2n+1 + g2n + ∆(g2n)′ = g′2n+1 + g2n ,

and therefore g′2n+1 = g2n. Hence,

b2n+1 = `(g′2n+1) = `(g2n) = a2n = an .

Of course, the even case can be treated similarly:

b2n = `(g′2n) = `((g2n)′) = `(0) = 0 .

Remark 1. Another approach to (iv)–(vi) of Theorem 1 due to the referee is as
follows. First let us define the sequence {gn}n≥0 of polynomials in Z[∆] given by
the same recurrence

gn+2 = gn+1 + ∆gn

with g0 = 0, g1 = 1. Then we have the following representation of the general
term gn.

Lemma 2. We have for n ≥ 0,

gn+1 =

bn/2c∑
k=0

(
n− k

k

)
∆k. (4)

Proof. For n = 0, 1, we have g1 = 1, g2 = 1 + ∆ which are consistent with what is
shown at (4) when n = 0, 1. Assuming now that n ≥ 1 and that (4) holds both for
n and for n replaced by n− 1, then

gn+2 = gn+1 + ∆gn (5)

=

bn/2c∑
k=0

(
n− k

k

)
∆k + ∆

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
∆k


=

(
n

0

)
+

bn/2c∑
k=1

((
n− k

k

)
+

(
(n− 1)− (k − 1)

k − 1

))
∆k

+

b(n−1)/2c+1∑
k=bn/2c+1

(
n− 1− (k − 1)

k − 1

)
∆k

= 1 +

bn/2c∑
k=1

(
n + 1− k

k

)
∆k +

b(n−1)/2c+1∑
k=bn/2c+1

(
n− k

k − 1

)
∆k. (6)
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In the above formula we used the fact that(
n− k

k

)
+

(
(n− 1)− (k − 1)

k − 1

)
=

(
n− k

k

)
+

(
n− k

k − 1

)
=

(
n + 1− k)

k

)
.

The left-most term 1 in (5) equals

(
n + 1− 0

0

)
, the last term is 0 when n is even

because then bn/2c = b(n−1)/2c+1 = b(n+1)/2c, while in case when n = 2m+1
is odd, then the last term is the monomial in k = m + 1 = b(n + 1)/2c with

coefficient

(
2m−m

m

)
= 1 =

(
n + 1− k

k

)
. This completes the induction. �

By Lemma 2, we have, in characteristic 2,

gn+1 =

bn/2c∑
k=0

[(
n− k

k

)
mod 2

]
∆k. (7)

Hence,

`(gn+1) =

bn/2c∑
k=0

[(
n− k

k

)
mod 2

]
= an+1 ,

which is (iv) for all n ≥ 1 (the fact that `(g0) = a0 = 0 is clear). The last equality
is Theorem 4.1 in [4] (see also sequence A002487 in [5]). Letting

bn+1 :=

bn/2c∑
k=0
k odd

[(
n− k

k

)
mod 2

]
,

we have, since

(
even
odd

)
= even (which can be easily checked by invoking Lucas’

theorem on binomial coefficients modulo p for the prime p = 2), we get

b2n :=

bn/2c∑
k=0
k odd

[(
2n− k − 1

k

)
(mod 2)

]
= 0 ,

which is (v). Further, because

(
2n

2k

)
≡
(
n

k

)
mod 2 (again by Lucas’s theorem),

we have

a2n+1 − b2n+1 =

n∑
k=0

[(
2n− 2k

2k

)
mod 2

]
=

n∑
k=0

[(
n− k

k

)
mod 2

]
= an+1 ,

from where we get that b2n+1 = a2n+1 − an+1 = an, which is (vi).
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3 Comments and Open questions
First of all, observe that our results hold more generally for the finite field Fq, with
q even, replaced by any infinite field of characteristic 2, since we have not used the
property hq = h for the elements h of our field. There are many questions one can
ask about the sequence {gn}n≥0. For example, what can we say about the number
of irreducible factors of gn as a polynomial in ∆? Is it true that all roots of g2n+1

are simple? We leave such questions to the reader. As for the degree of gn, writing
n = 2ab, where b is odd, gives deg(gn) = 2a(b− 1)/2. One may recognize this last
quantity as n ∗ (n − 1)/2, where for nonnegative integers m and n, the quantity
m ∗ n denotes the nonnegative integer whose binary representation is the bitwise
AND operation of the binary representations of m and n. Indeed, since g2n = g2n,
we get that gn = g2ab = g2

a

b , so it suffices to show that if m is odd, then gm has
degree (m− 1)/2. But this follows by replacing n by m− 1 in (7):

gm =

(m−1)/2∑
k=0

[(
m− 1− k

k

)
mod 2

]
∆k,

and noting that the last term of the above sum corresponding to k = (m − 1)/2

has coefficient

(
(m− 1)/2

(m− 1)/2

)
= 1.

The above questions may be asked in the more general context of the field F[∆].
A restriction to perfect fields of characteristic 2 may be useful since then we have
for all polynomials C ∈ F[t] the simple relation

C = A2 + tB2

for some polynomials A,B ∈ F[t]. By construction, the elements of our sequence
with odd subscripts satisfy a relation of this type (see (3) in the proof of (iv)).

Observe also that this sequence can be easily dealt with over fields of charac-
teristic p > 2 by the Binet formulae. However, in our case p = 2 and F finite, we
were not able to use these formulae to describe our sequence since we do not know
explicitly the solutions of the quadratic equation

x2 + x + ∆ = 0

in the ring Fq[t]. This motivates our new approach to study the sequence in the
present paper.

Moreover, the reader may try to check which of the properties in [3], that hold
for the classical case in which the coefficients are integers, are still true in our
characteristic 2 case by using the tools of [1].
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