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Abstract. We consider a class of evolution differential inclusions defining the so-called
stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These
differential inclusions depend on a constraint which is represented by a convex set that
is called the characteristic set. For BV (bounded variation) data we compare different
notions of BV solutions and study how the continuity properties of the solution operators
are related to the characteristic set. In the finite-dimensional case we also give a geometric
characterization of the cases when these kinds of solutions coincide for left continuous inputs.
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1. Introduction

Let us assume that H is a real Hilbert space and Z ⊆ H is a closed convex proper

subset containing the zero vector: 0 ∈ Z 6= H. If a final time T > 0 is given, together

with a function u ∈ W 1,1(0, T ;H) and a vector z0 ∈ Z, we consider the following

evolution differential inclusion for the unknown x ∈ W 1,1(0, T ;H):

x(t) ∈ Z ∀t ∈ [0, T ],(1.1)

x′(t) + ∂IZ(x(t)) ∋ u′(t) for a.e. t ∈ [0, T ],(1.2)

x(0) = z0.(1.3)

Here,W 1,1(0, T ;H) is the Sobolev space of H-valued absolutely continuous functions

This research was partially supported by GNAMPA-INDAM, GAČR Grant No. P201/10/
2315, and RVO: 67985840.
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(cf. [3], Appendix), IZ : H −→ [0,∞] is the indicator function of Z defined by

IZ(x) :=

{
0 if x ∈ Z,

∞ if x 6∈ Z,

and ∂IZ : H −→ 2H is the subdifferential of IZ in the sense of convex analysis (cf. [3],

Example 2.1.4, page 21):

(1.4) ∂IZ(x) =

{
{y ∈ H : 〈y, v − x〉 6 0 ∀v ∈ Z} if x ∈ Z,

∅ if x 6∈ Z.

Observe that ∂IZ(x) is a cone, i.e., a subset K ⊆ H such that λx ∈ K whenever

λ > 0 and x ∈ K.

This differential inclusion arises in mathematical models of material memory and

can be solved by means of the classical methods for evolution equations governed by

maximal monotone operators. To be more precise, it is well known that exploiting [3],

Proposition 3.4, Remark 3.7, page 69, one can prove the following theorem.

Theorem 1.1. If z0 ∈ Z and u ∈ W 1,1(0, T ;H), then there exists a unique

x ∈ W 1,1(0, T ;H) such that (1.1)–(1.3) hold.

The solution operator of problem (1.1)–(1.3) is also called the stop operator :

it is the operator S = S(·, z0) : W 1,1(0, T ;H) −→ W 1,1(0, T ;H) that with each

u ∈ W 1,1(0, T ;H) associates the solution S(u, z0) := x of (1.1)–(1.3). Usually the

functions u and S(u, z0) are called, respectively, input and output of the stop op-

erator. The constraint Z is called the characteristic set. The dependence on the

fixed initial state z0 will be omitted in the remainder of this paper, and the notation

S(u, z0) will be shortened to S(u).

One of the main features of the differential inclusion (1.1)–(1.3) is its rate inde-

pendence: If the speed of u changes, then the speed of the resulting output changes

in the same way. This is the content of the following proposition, which is easily

proved using the positive zero-homogeneity of ∂IZ .

Proposition 1.2. The operator S : W 1,1(0, T ;H) −→ W 1,1(0, T ;H) is rate inde-

pendent, i.e., if ϕ : [0, T ] −→ [0, T ] is absolutely continuous, increasing and surjec-

tive, then

S(u ◦ ϕ) = S(u) ◦ ϕ ∀u ∈ W 1,1(0, T ;H).

Rate independent operators have been widely studied, especially when H is one-

dimensional. We refer the reader to the monographs and surveys [4], [7]–[9], [29] and

the references therein.
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Since the 1970s, some authors have been investigating how to extend the formu-

lation of problem (1.1)–(1.3) for data u ∈ BV(0, T ;H), the space of functions of

bounded variation. For this space of functions we refer, e.g., to [3], [22]. Anyway,

in order to fix the terminology, let us just recall that the (pointwise) variation of

a function u : [0, T ] −→ H on [a, b] ⊆ [0, T ] is defined as

V(u, [a, b]) := sup

{ m∑

j=1

‖u(tj)− u(tj−1)‖ : m ∈ N, a = t0 < . . . < tm = b

}
,

where ‖·‖ is the norm on H induced by its scalar product 〈·, ·〉 and N = {1, 2, . . .} is

the set of positive integers. Hence

BV(0, T ;H) = {u : [0, T ] −→ H : V(u, [0, T ]) < ∞}.

Let us also recall that W 1,1(0, T ;H) ⊆ BV(0, T ;H) ⊆ Reg(0, T ;H), where we

denote by Reg(0, T ;H) the space of regulated functions, i.e., those functions u that

admit left and right limits u(t−), u(t+) in H at any point t ∈ [0, T ], with the

convention that u(0−) = u(0) and u(T+) = u(T ) (cf. [1], [2], [5]).

The first works about BV solutions of rate independent differential inclusions are

due to J. J.Moreau (cf. [18]–[20]), who studied the so-called sweeping processes, which

contain (1.1)–(1.3) as a particular case. For a survey on this subject we refer, e.g.,

to [14], [17], [28] and to the references therein.

In [10], a variational approach is adopted instead. Since, thanks to (1.4), the inclu-

sion (1.2) can be rewritten as a variational inequality, by integrating this inequality

in time one gets an integral variational formulation of (1.1)–(1.3) that allows to in-

terpret the stop operator when the input u is a BV function. Here the integral has

to be considered in the sense of Kurzweil (cf. [15]).

Another method, which strongly relies on the rate independence property, can

be found in the paper [22]. There the extension of S is constructed by “filling in”

the jumps of the input u with straight segments along which the input moves with

infinite speed. In this way, one can reduce the problem to the continuous case and

then use the rate independence to define the new output S(u). This approach can be

applied to a large class of rate independent vectorial operators and is also related to

the study of continuity properties of S with respect to the BV topology, as we will

see in the next sections.

The aim of this paper is to recall and compare these notions of BV solutions. In

particular, in the finite-dimensional case, we provide a geometrical characterization,

in terms of the set Z, of the cases when all these extensions are equivalent. Detailed

proofs can be found in [13]. Here, we give some more details about the geometric

description of the sets Z for which the various extensions coincide: the non-obtuse

polyhedra.
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Let us stress the fact that when H = R, the notions of BV solutions given in [10],

[18], [22] coincide. This is well known, but it is also a straightforward consequence

of our result.

Of course, the list of notions of BV solutions recalled above is not exhaustive. In

particular we would like to mention [23] and the recent work [6], where the procedure

of [4] is generalized to Banach spaces. Moreover, we point out that in the one-

dimensional case much more has been done, and we mention for instance [4], [11],

[16], [24], [25], [27].

In this paper we will limit ourselves to left continuous functions and we will con-

sider the space

BVL(a, b;H) := {u : [a, b] −→ H : V(u, [0, T ]) < ∞, u is left continuous}.

This is essentially equivalent to dealing with Lebesgue equivalence classes of functions

with a special view on the initial point 0, allowing us to take into account Dirac

masses at 0 (see e.g. [13], [22]). The use of left continuous functions is also justified

by the fact that the viscous regularizations of rate independent processes converge

to a left continuous function when the viscosity coefficient tends to zero (cf. [12],

Theorem 2.4).

Our result can be extended to the case where the input function u is left continuous

or right continuous at every t ∈ (0, T ), but we do not deal with input functions u

such that u(t) /∈ {u(t−), u(t+)} for some t ∈ (0, T ).

In Sections 2–5 we recall the notions of BV solutions introduced in [10], [18], [22],

here reformulated for the stop operator S instead of the dual concept of play operator

P(u) = u− S(u). Some more details can be found in [13].

2. BV solutions in the sense of sweeping processes

In this section we describe the notion of BV solution introduced by Moreau. As

mentioned in the Introduction, Moreau dealt with a more general problem, but

we present his procedure for the stop operator only. We first consider the case

when u is a left continuous step function, i.e., there exist m ∈ N, a subdivision

0 = t0 < . . . < tm = T of the interval [0, T ], and vectors u1, . . . , um ∈ H such that

u(t) = uk for t ∈ (tk−1, tk]. The idea considered in [18] is to discretize the evolution

differential inclusion (1.2) using an implicit Euler scheme. Thus, if hk := tk − tk−1

for k ∈ {1, . . . ,m}, one has to look for vectors x1, . . . , xm ∈ H such that if x0 := z0,

u0 := u(0), then

xk − xk−1

hk

+ ∂IZ(x
k) ∋

uk − uk−1

hk

, k = 1, . . . ,m.(2.1)
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Since the subdifferential of IZ is positively zero-homogeneous, the previous inclusion

is equivalent to

xk − xk−1 + ∂IZ(x
k) ∋ uk − uk−1, k = 1, . . . ,m,(2.2)

i.e.,

xk−1 + uk − uk−1 − xk ∈ ∂IZ(x
k), k = 1, . . . ,m,(2.3)

which is in turn equivalent to

(2.4) xk = ProjZ(x
k−1 + uk − uk−1), k = 1, . . . ,m,

where ProjZ denotes the orthogonal projection on the convex set Z characterized by

the relation

x = ProjZ(y) ⇐⇒ 〈y − x, x− v〉 > 0 ∀v ∈ Z,

cf. (1.4). This suggests to define (cf. [18], page 353) the stop operator for a left

continuous step input function u as

(2.5) SP (u; z0)(t) :={
x0 := z0 if t = 0,

xk := ProjZ(x
k−1 + uk − uk−1) if t ∈ (tk−1, tk], k = 1, . . . ,m,

where the index P stands for “Projection”. Since every left continuous u ∈

BV(0, T ;H) can be approximated in the topology of uniform convergence by a se-

quence of left continuous step functions un, we can consider the resulting sequence

xn := SP (un, z0). One of the main results in [18] is that xn converges uniformly to

a BV function. Here is the precise statement ([18], Proposition 2 a, page 355, Propo-

sition 3 c, page 373).

Theorem 2.1. Assume that u ∈ BVL(0, T ;H) and un is a sequence of left con-

tinuous step functions such that un → u uniformly on [0, T ]. If xn := SP (un, z0),

the operator SP being defined for step functions as in (2.5), then there exists x ∈

BV([0, T ];H) such that xn → x uniformly on [0, T ]. If SP (u) := x, the resulting oper-

ator SP : BVL(0, T ;H) −→ BVL(0, T ;H) is continuous with respect to the topology

of uniform convergence. Moreover, if u ∈ W 1,1(0, T ;H), then SP (u) = S(u).

The previous theorem provides the desired extension of the stop operator to BV.

We mention the fact that SP (u) can also be characterized as the solution of a differen-

tial inclusion involving the so-called differential measures, we refer to [18], Section 3 a,

for details.
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3. BV solutions in the Kurzweil integral sense

In order to describe the formalism proposed in [10], let us recall that using (1.4),

the differential inclusion (1.2) can be rewritten as the following variational inequality:

(3.1) 〈x(t)− z(t), u′(t)− x′(t)〉 > 0 ∀z ∈ Z, for a.e. t ∈ [0, T ].

Another way to define the generalized BV solutions is thus to integrate inequal-

ity (3.1) in time. When u is not absolutely continuous, one has to interpret such

integration in a proper way, and a possible choice is to adopt the Kurzweil integral

(cf. [15]), or the Young integral as its special case. This is the procedure followed

in [10], Lemma 2.1, Theorem 2.3, where the following theorem is proved.

Theorem 3.1. If u ∈ BVL(0, T ;H), then there exists a unique SK(u) := x ∈

BVL(0, T ;H) such that

x(t) ∈ Z ∀t ∈ [0, T ],(3.2)
∫ T

0

〈x(s+)− z(s), d(u− x)(s)〉 > 0 ∀z ∈ Reg([0, T ];H), z([0, T ]) ⊆ Z,(3.3)

x(0) = z0,(3.4)

where the integral in (3.3) is meant in the sense of Kurzweil. Moreover, if u ∈

W 1,1(0, T ;H) then, SK(u) = S(u).

We also refer to [12] for further extensions. Notice that in (3.3), the test functions

belong to the space of regulated functions, and this allows to extend the definition of

the stop operators even to Reg([0, T ];H), provided that the interior of Z is nonempty.

This is shown in [10], following an idea of A.Vladimirov which is published in [7],

Section 19.

4. BV-continuous solutions

In this section we show how to define a notion of BV solution by means of a con-

tinuity method. In dealing with extensions from W 1,1 to BV, the natural topology

is the one induced by the strict metric on BV, defined by:

ds(u, v) := ‖u− v‖L1(0,T ;H) + |V(u, [0, T ])−V(v, [0, T ])|, u, v ∈ BVL(0, T ;H).

We say that un → u strictly on [0, T ] if ds(un, u) → 0 as n → ∞. Indeed, any u ∈

BVL(0, T ;H) can be approximated in the strict metric by a sequence in C∞([0, T ];H)

(cf. [22], Proposition A.2, for the vector case).
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Thus if un ∈ C∞([0, T ];H) and un → u strictly on [0, T ], it makes sense to consider

the sequence S(un) of the stop operator applied to the sequence un of regular inputs.

The question is if the outputs S(un) converge to some function x : [0, T ] −→ H in

a reasonable topology and, in this case, the limit x is another candidate for the

definition of the stop operator for BV data. First we observe that the classical stop

operator enjoys an even stronger continuity property proved in [22], Theorem 3.7.

Theorem 4.1. The operator S : W 1,1(0, T ;H) −→ W 1,1(0, T ;H) is continuous if

W 1,1(0, T ;H) is endowed with the strict metric.

The stop S : W 1,1(0, T ;H) −→ W 1,1(0, T ;H) is always continuous with respect

to the Sobolev norm in W 1,1(0, T ;H), see [9], Theorem I.3.12. It is interesting to

note that the continuity with respect to the strict metric is a consequence of this

fact for general rate independent operators. It was first proved in [26] for the scalar

case and then in [22] for the vectorial case. Now we state the result obtained by this

continuity method.

Theorem 4.2. The stop operator S : W 1,1(0, T ;H) −→ W 1,1(0, T ;H) admits

a unique continuous extension to BVL(0, T ;H) in the following sense. If u ∈

BVL(0, T ;H), un ∈ W 1,1(0, T ;H) and un → u strictly on [0, T ], then there exists

SV (u) := x ∈ BV(0, T ;H) such that S(un) → x in L1(0, T ;H).

The previous theorem can be found in [22], Theorem 3.2, Proposition 3.3, Theo-

rem 3.7, and together with (4.1) enables to define an operator SV : BVL(0, T ;H) −→

BVL(0, T ;H) which extends S : W 1,1(0, T ;H) −→ W 1,1(0, T ;H). Here the index V

stands for “Variation”. By a diagonalization procedure it turns out that SV is contin-

uous when its domain is endowed with the strict metric and its codomain is endowed

with the L1-topology. Let us mention the fact that a similar continuity method can

be exploited for continuous sweeping processes (see [21]).

5. BV solutions by filling in the jumps

The property of rate independence suggests a very natural way to extend the stop

operator to BV functions by “filling in” the discontinuities with segments traversed

at “infinite speed”. In order to do this, if u ∈ BVL(0, T ;H) is nonconstant, the

following normalized arc length function lu : [0, T ] −→ [0, T ] is considered:

(5.1) lu(t) :=
T

V(u, [0, T ])
V(u, [0, t]), t ∈ [0, T ].

Thus one can obtain a Lipschitz reparametrization U : lu([0, T ]) −→ R by this arc

length, i.e., the unique U such that u = U ◦ lu. The classical stop operator S cannot
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be applied to U that is not defined on the whole [0, T ], thus we have to fill in the

discontinuities in such a way that the extension of U remains of Lipschitz class. In

one dimension this method is adopted in [24], [27] for a quite general class of rate

independent operators (see also [4], where the jumps are filled in a different way). In

higher dimensions this procedure turns out to be trajectory-dependent, since one has

several choices to connect the jump points. A canonical way to do this is to fill in the

jumps with segments which represent the shortest way. This analysis is performed

in [22], [23]: The reparametrization of u obtained by such an extension of U is the

unique Lipschitz function ũ : [0, T ] −→ H such that ‖ũ′‖∞ 6 V(u, [0, T ])/T and

u = ũ ◦ lu,(5.2)

ũ is affine on [lu(t), lu(t+)] ∀t ∈ [0, T ].(5.3)

Hence a natural definition of the extension of the stop operator for a BV function is

SR : BVL(0, T ;H) −→ BVL(0, T ;H) defined by

(5.4) SR(u) := S(ũ) ◦ lu, u ∈ BVL([0, T ];H).

Here the notation SR is used to remind the use of “Reparametrizations”. It is easily

seen that if u ∈ W 1,1(0, T ;H), then SR(u) = S(u).

6. Comparison of BV solutions

In this section we compare the various kinds of BV solutions described in the

previous sections. In fact they reduce to two notions of a solution. Indeed, concerning

SP and SK , in [10] it is shown that they are exactly the same operator.

Theorem 6.1. SP = SK .

Furthermore, in [22] it is proved that the other two operators are equal.

Theorem 6.2. SV = SR.

So, it remains to compare the two extensions SK and SR. A counterexample

in [22] with Z a disc in R
2 shows that in general SK 6= SR. Hence a very natural

mathematical issue is to find necessary and sufficient conditions on Z such that these

operators coincide. For the finite-dimensional case this analysis is performed in [13],

where such a characterization is provided in terms of the shape of the nonempty

convex constraint Z. We can indeed reduce our analysis to the case that 0 ∈ Z. In

order to state this result we first recall the following concept.
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Definition 6.3. A set P ⊆ H containing 0 is called a (closed convex) polyhedron

if there exist n1, . . . , np ∈ ∂B1(0) and c1, . . . , cp ∈ [0,∞) such that

(6.1) P = {x ∈ H : 〈nj , x〉 6 cj , j = 1, . . . , p}.

A polyhedron P of the form (6.1) is called non-obtuse if 〈ni, nj〉 6 0 whenever

1 6 i < j 6 p.

In other words, a polyhedron is non-obtuse if all inner angles formed by its faces

are smaller than or equal to π/2.

Here is the main result of [13], which we state in the following form.

Theorem 6.4. Let dim(H) < ∞. Then SK = SR if and only if Z is a non-obtuse

polyhedron.

Now we give a more geometric explicit description of non-obtuse polyhedra. For

any subset S ⊆ H we denote by L(S) the linear space generated by S, and by

S⊥ := {x ∈ H : 〈x, s〉 = 0 ∀s ∈ S} its orthogonal complement. The following

definition is important for the classification of non-obtuse polyhedra.

Definition 6.5. Let T ⊆ H be a polyhedron of the form (6.1). We say that T

is a simplex in H if dim(L({n1, . . . np})) = p − 1, and there exist aj > 0 for every

j ∈ {1, . . . , p}, such that
p∑

j=1

ajnj = 0.

From [13], Proposition 6.1, we infer the following theorem.

Theorem 6.6. Let P ⊆ H be a non-obtuse polyhedron given by (6.1) with p > 1.

If the interior of P is nonempty, then one of the following two cases occurs:

(a) If Hp := L({n1, . . . np}) = H, then there exist m ∈ N and H1, . . . ,Hm vector

subspaces of H such that

H = H1 × . . .×Hm, Hi is orthogonal to Hj for i 6= j,

and there exist polyhedra Pj ⊆ Hj such that, possibly after a permutation of

indices, we have

P = P1 × . . .× Pm,

Pm is a non-obtuse simplex if P is bounded,

Pm is a non-obtuse cone if P is unbounded,

P1, . . . ,Pm−1 are non-obtuse simplices in H1, . . . ,Hm−1,

this last condition holding for m > 1. Here Hj 6= {0} and Pj has nonempty

interior in Hj for each j.
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(b) If Hp := L({n1, . . . np}) 6= H, then P is the “cylinder” P = (P ∩Hp)+H⊥
p and

(P ∩Hp) is a non-obtuse polyhedron with nonempty interior in the space Hp.

If P has empty interior, then P is contained in a lower-dimensional subspace H̃ and

either P = {0} or it is described by one of the cases (a)–(b) in the Hilbert space H̃.

Simplices and cones are not decomposable. Now we present some pictures illustrat-

ing possible decompositions in H = R
3, classified according to the relation between

the number p of faces and d = dim(H) = 3. We only show the pictures of non-obtuse

polyhedra with nonempty interior in the situation (a), and we limit ourselves to some

comments for the remaining cases, since these can be easily reduced to the case (a).

Let us start with Figure 1 showing a cone as the only case in (a) with p = 3.

Figure 1. Cone.

For p = 4, we either have a non-decomposable simplex (tetrahedron) depicted in

Figure 2, or a semi-infinite prism in Figure 3 as the product of a two-dimensional

simplex (a triangle) and a one-dimensional cone (a half-line), or an infinite “cake

segment” in Figure 4 as the product of a one-dimensional simplex (a segment) and

a two-dimensional cone (an angle). Further orthogonal decomposition is possible into

the product of a segment and two half-lines if the angle between the two half-lines

is π/2, but this does not represent any new structure.

Figure 2. Simplex.

Now we deal with the case p = 5. In Figure 5 we have a prism, the product of

a triangle and a segment.
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Figure 3. Semi-infinite prism.

Figure 4. Infinite cake segment.

Figure 5. Prism.

Figure 6. Infinite parallelepiped.

In Figure 6, we have a sort of semi-infinite parallelepiped, which is the product of

two segments and a half-line, that is, two simplices in R and a one-dimensional cone.

Finally, for the case p = 6, we only have a parallepiped, which is the Cartesian

product of three segments (see Figure 7).

Figure 7. Parallelepiped.
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The situations in (b) can be obtained by adding orthogonal dimensions to a lower-

dimensional non-obtuse polyhedron. For instance, we have an infinite prism which is

the product of a triangle and a line, and an infinite parallelepiped, being the product

of a rectangle and a line. The remaining cases of (b) can be obtained in a similar

way.

If the interior of P is empty, then we can reduce to a lower dimension by considering

the affine hull of P .

In more than three dimensions there are many more alternatives, for instance, the

most special case for dim(H) = 4 is the orthogonal decomposition into two triangles.
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