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Abstract. Let X be the quotient group of the S-adele ring of an algebraic number field by
the discrete group of S-integers. Given a probability measure µ on Xd and an endomorphism
T of Xd, we consider the relation between uniform distribution of the sequence Tn

x for
µ-almost all x ∈ Xd and the behavior of µ relative to the translations by some rational
subgroups of Xd. The main result of this note is an extension of the corresponding result
for the d-dimensional torus Td due to B. Host.
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1. Introduction and the main result

Given a probability measure µ on the d-dimensional torus Td and an endomor-

phism T of Td, B.Host considered the relation between uniform distribution of the

sequence T nt for µ-almost all t ∈ Td and the behavior of µ relative to the transla-

tions by some rational subgroups of Td. In this paper we considerably extend Host’s

theorems ([8], Theorem 1 and Theorem 2) to the d-fold Cartesian product of the

quotient group of the S-adele ring of an algebraic number field by the discrete group

of S-integers.

Let k be an algebraic number field1, i.e., a finite extension of the rational fieled Q.

It is known, that k = Q(θ), where θ is an algebraic integer. The set of places, finite

places and infinite places of k is denoted by P = P(k), Pf = Pf (k) and P∞ = P∞(k),

1 For more details on the number theoretical notions appearing in this Introduction see §2.
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respectively. Denote by kv the completion of k under the metric dv(x, y) = |x− y|v
on k.

For a subset S of Pf(k), consider a discrete countable group RS of S-integers,

RS = {x ∈ k : |x|v 6 1 for all v 6∈ S ∪ P∞(k)},

and, kA(S) the S-adele ring of k (with a topology defined in §3)

kA(S) =

{
x = (xv) ∈

∏

v∈S∪P∞(k)

kv : |xv|v 6 1 for all but finitely many v

}
.

For a given abelian group RS of S-adic integers we consider its dual group R̂S (the

set of all characters on RS , i.e., the set of all continuous homomorphisms RS → T)

which is a compact abelian group (see [7]) and we denote it by

(1.1) X = X(k,S) := R̂S .

Dynamical systems with the state space X were considered by Chothi, Everest and

Ward in [3] (see also §3 for more details). Information on uniform distribution of

sequences in the adelic setting can be found in the book by M.-J.Bertin et al. [2] (see

also the references therein). In this paper we will be interested in higher dimensional

spaces Xd and sequences of the form T nx, where T is a continuous endomorphism

of Xd.

In what follows we assume that S is a finite set, and denote

m = mS +m∞ := card(S) + card(P∞(k)).

Then

kA(S) =
∏

v∈S∪P∞(k)

kv

and, by Theorem 3.1,

X = kA(S)/R
′
S ,

where

R′
S = {(x, . . . , x︸ ︷︷ ︸

m times

) : x ∈ RS}.

By (1.1) it follows that for any positive integer d the Cartesian product Xd is the

quotient group

Xd =
∏

v∈S∪P∞(k)

kdv
/
R′

S,d,
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where

R′
S,d = {(x, . . . , x︸ ︷︷ ︸

m times

) : x ∈ Rd
S}.

Let, for an algebraic integer θ of degree t,

Z[θ] = {x0 + x1θ + . . .+ xt−1θ
t−1 : xj ∈ Z}

be the ring obtained from Z by adjoining θ. We introduce the following notation:

Z[θ]6n = {x0 + x1θ + . . .+ xt−1θ
t−1 : xj ∈ Z and 0 6 xj 6 n}.

For a rational integer q > 1, define the following subgroup2 of Xd,

(1.2) Dq = {(y/qn, . . . , y/qn︸ ︷︷ ︸
m times

) +R′
S,d : y ∈ Z[θ]d6qn , n > 1}.

We have,

Dq =
⋃

n>1

Dq,n,

where

(1.3) Dq,n = {(y/qn, . . . , y/qn︸ ︷︷ ︸
m times

) +R′
S,d : y ∈ Z[θ]d6qn}

are subgroups of Xd. Define the following sequence of measures on Xd,

ωn =
∑

x∈Dq,n

δx ∗ µ.

Let

(1.4) ϕk(x) =
dµ(x)

dωk(x)

be the Radon-Nikodym derivative (if it exists).

Definition 1.1. We say that the probability measure µ on Xd is Dq-conservative

if for every Borel set E with µ(E) > 0, there exists y ∈ Dq, y 6= 0, with µ(E ∩
(y + E)) > 0.

2 That Dq forms a subgroup follows from the fact that θ ∈ Ok, the ring of algebraic
integers, and Ok = k ∩

⋂
w∈Pf(k)

{x ∈ kw : |x|w 6 1} (see [19], Theorem V.1).

913



Definition 1.2. We say that the probability measure µ on Xd is Dq-conservative

with exponential decay if

lim inf
k→∞

− 1

k
logϕk(x) > 0, µ-a.e.

Let R be a given ring and d ∈ N. ByM(d,R) we denote the set of all d×d-matrices
with element from R.

Definition 1.3. Let T ∈ M(d,RS), d > 1. We say that the sequence T nx,

x ∈ Xd is equidistributed if the sequence of probability measures µN = N−1
N−1∑
n=0

δTnx

converges to the Haar measure in the weak-∗ topology, i.e., for every f ∈ C(Xd),

lim
N→∞

1

N

N−1∑

n=0

f(T nx) =

∫

X

f(x) dx.

Definition 1.4. Let T ∈ M(d,RS), d > 1. According to [8], [9], we say that the

sequence T nx, x ∈ Xd is equidistributed in probability for the measure µ if, for every

weak-∗ neighborhood U of the Haar measure on Xd,

lim
N→∞

µ

{
x ∈ Xd :

1

N

N−1∑

n=0

δTnx 6∈ U

}
= 0.

An excellent introduction into the topic of equidistribution theory can be found

in the book of Kuipers and Niederreiter [11] or in the book of Drmota and Tichy [4].

The main result of this note is the following.

Theorem 1.1. Let k = Q(θ), where θ is an algebraic integer, S be the finite

subset of Pf (k), and T ∈ M(d,RS). Set r = 2+ d(d− 1)/2. Let Dq be the subgroup

of Xd defined in (1.2).

Assume that

(i) for every integer k > 1 the characteristic polynomial of T k is irreducible over

Q(θ),

(ii) for every v ∈ S, |q|v = 1,

(iii) the determinant detT , considered as an element of the ring

R := RS/q
rRS

is a unit in R.

Then
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(1) if the probability measure µ on Xd is Dq-conservative then the sequence T
nx

is equidistributed in probability for µ;

(2) if the probability measure µ on Xd is Dq-conservative with exponential decay

then for µ-a.e. x ∈ Xd the sequence T nx is equidistributed.

The outline of the rest of the paper is as follows. In §2 we recall some basic

notions from algebraic number theory, in particular, the notion of places of algebraic

number field and a definition of p-adic fields. We also consider additive characters

and duality of local fields as well as logarithms and exponentials of a matrix with

entries from p-adic fields.

In §3 we define an S-adele ring of an algebraic number field k and, following [3],

the S-adic dynamical systems.

The next §4 contains some lemmas which are used in the proof of Theorem 1.1—

which is given in §5.

Finally, in §6 we give some examples.

2. Preliminaries

2.1. p-adic fields. The basic references for this subsection are [5], [10], [12], [16].

Let p ∈ P, the set of rational primes. The p-adic norm |·|p on the field Q is defined

by |0|p = 0 and |pkn/m|p = p−k for k, n,m ∈ Z and p ∤ nm. The p-adic field of

rational numbers Qp is defined as the completion of Q with respect to the norm |·|p.
The p-adic field Qp is a locally compact field and every x ∈ Qp can be uniquely

expressed as a convergent sum, in |·|p-norm (Hensel representation),

(2.1) x =

∞∑

k=t

xkp
k,

for some t ∈ Z and xk ∈ {0, 1, . . . , p− 1}. The fractional part of x ∈ Qp, denoted by

{x}p or {x}, is 0 if the number t in the Hensel representation (2.1) is greater than
or equal to 0, and equal to

∑
k<0

xkp
k, if t < 0.

The integral part [x]p (or simply [x]) of an element x ∈ Qp is
∑
k>0

xkp
k.

The closure of Z in Qp is the compact ring Zp of p-adic integers. An element

x ∈ Qp is a p-adic integer if it has a Hensel representation (2.1) with t > 0, that is,

its fractional part {x} = 0.

2.2. Characters and duality of local fields. A good reference for this subsec-

tion is [15]. For a positive integer a, denote by Z[1/a] the ring obtained from Z by
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adjoining 1/a. Thus, any x ∈ Qp can be uniquely written as x = [x] + {x}, where
[x] ∈ Zp and the fractional part {x} ∈ Z[1/p] ∩ [0, 1).

Define

ep : Qp → C : x 7→ exp(2πi{x}p).

It is easy to see that the map ep is a homomorphism and the additive group Qp/Zp

is isomorphic with the group µp∞ of p-th power roots of unity in the complex field C

(see [16]).

Recall that the dual group R̂ is topologically isomorphic with R. Moreover, Q̂p

is topologically isomorphic with Qp and the action of the character χx ∈ Q̂p corre-

sponding to x ∈ Qp is χx(y) = ep(xy) = exp(−2πi{xy}p). This is very similar to the
case of the action of the character from R̂ on R. For the field of complex numbers C,

the function

χ(z) = e−2πi(z+z) = e−4π Re(z)

defines a non-trivial character on C.

Generally, let F be a local field (i.e., R, C or a finite extension of Qp) and let χ

be any non-trivial additive character of F . For any α ∈ F , we write χα for the

character x 7→ χ(αx). Every character of F is of this form for some α, and the

mapping α 7→ χα is an isomorphism of topological groups. Thus the additive group

of local field is self-dual.

Let F be a finite extension of Qp. We construct a non-trivial character χ as follows.

It is a composition of four continuous homomorphisms,

(2.2) χ = e ◦ λ ◦ pr ◦Tr,

where Tr: F → Qp is the trace map, the map pr is the natural projection Qp →
Qp/Zp. Each coset of Qp/Zp is represented by a unique p-adic number of the form

amp
−m+. . .+a1p

−1, hence pr(x) = {x}p+Zp. Since the fractional part {x}p ∈ [0, 1),

the group homomorphism λ : Qp/Zp → Q/Z, which sends a coset to its representative

is well defined, and finally e(x) = e2πix.

2.3. Places. We follow the presentation contained in [17], page 60. Let k be an

algebraic number field, i.e., a finite extension of the rational fieled Q. An absolute

value of k is a homomorphism φ : k → R+ ∪ {0} such that φ(x) = 0 if and only if

x = 0, and and there is a real number c > 1 such that for all x, y ∈ k, φ(xy) =

φ(x)φ(y) and φ(x + y) 6 cmax{φ(x), φ(y)}. The absolute value φ is non-trivial if
φ(k) ) {0, 1}. The absolute value φ is non-Archimedean if φ is non-trivial and we
can set c = 1, and is said to be Archimedean otherwise. We say that two absolute

values φ, ψ of k are equivalent if there is an s > 0 such that φ(x) = ψ(x)s for every
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x ∈ k. An equivalence class v of a non-trivial absolute value of k is called a place

of k. A place v is finite if v contains a non-Archimedean absolute value, and infinite

otherwise.

The set of places, finite places and infinite places of k is denoted by P = P(k),

Pf = Pf (k) and P∞ = P∞(k), respectively.

By Ostrovski’s theorem every non-trivial absolute value of Q is either equivalent

to the usual absolute value |·|∞, or to the p-adic absolute value |·|p for some rational
prime p > 1.

A place w ∈ P is said to lie above a place v of Q, denoted w | v, if3 |·|w restricted
to Q is equivalent with |·|v. Above every place v of Q there are at least one and at
most finitely many places of k. Denote by kw the completion of k under the metric

dw(x, y) = |x− y|w on k.
The infinite places of the algebraic number field k of degree n come from the n

embeddings σi, i = 1, . . . , n, of k into C and all of them lie above the unique infinite

place |·|∞ of Q. If the place v comes from the embedding σi, σi(k) ⊂ R then v is

called real, otherwise v is called complex.

2.4. p-adic fields. Let Rk be the ring of integers of an algebraic number field k.

Let p a prime ideal of Rk, v the (discrete) absolute value associated with p ([13],

Theorem 3.3). By kp or kv we denote the completion of k under v, and we call kp

the p-adic field. By κ we denote the quotient field Rk/p, the residue class field. The

cardinality of this residue field we denote by q = qp = qv. The extension of v to kp

will be also denoted by v. The ring of integers of kp, Rp = {x ∈ kp : v(x) 6 1} is
the closure of the ring R = {x ∈ k : v(x) 6 1}, and P = {x ∈ kp : v(x) < 1} = pRp

is a prime ideal of Rp, which is the closure of the prime ideal {x ∈ k : v(x) < 1}
of R. The invertible elements of Rp form a group U(Rp) = Rp \ P of units of kp.

The quotient fields Rk/p and Rp/P are isomorphic ([13], Proposition 5.1).

We define a uniformizer for v, or a local parameter, to be an element π, also

denoted by πv or πp of kp of maximal v(π) less than 1. If we fix a uniformizer π,

every element of k∗p can be written uniquely as x = uπm for some u with v(u) = 1

and m ∈ Z. Moreover, each element x ∈ k∗p can be expressed in one and only one

way as a convergent series

x =

∞∑

i=m

riπ
i,

where the coefficients ri are taken from a (finite) set R ⊂ Rp of representatives of

the residue classes in the field κp := Rp/P (i.e., the canonical map Rp → κp induces

a bijection of R onto κp).

3 We slightly abuse notation and denote v by |·|v if it is convenient.
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In what follows we consider the normalized valuation, i.e., if v | p, p ∈ P, then

|x|v = v(x) = f−m,

where m is the unique integer such that x = uπm for some unit u, and f > 1 is

chosen so that

(2.3) |p|v = p−1.

Let k be a field with a valuation v. Then k is a p-adic field with the p-adic valuation

if and only if k is a finite extension of Qp for a suitable p. (See [13], Theorem 5.10.)

2.5. Logarithms and exponentials of a matrix. We refer to [13], [14] for the

general theory. Consider an algebraic number field kv with the ring of integers Rv,

where v ∈ Pf (k). Let A = (aij) ∈ M(d, kv) and x = (x1, . . . , xd)
t ∈ kdv be a column

vector. Here and in what follows all vectors are column vectors unless explicitly

written as transposed. For a finite place v | p, p ∈ P, let |·|v denote the normalized
as in (2.3) absolute value. We define the norms of A and x by

‖A‖v = max
i,j

|aij |v and ‖x‖v = max
j

|xj |v.

Let A ∈ M(d,Rv) and ‖Id −A‖v 6 f−1. Since |1/n|v 6 n for every n > 1 it follows

that the following series

logA :=

∞∑

n=1

− 1

n
(Id −A)n

converges inM(d, kv) and logA ∈ M(d,Rv) satisfies ‖ logA‖v 6 ‖Id−A‖v. Moreover,
if A ∈ M(d,Rv) and ‖A‖v 6 f−2 then one can define expA as the series

expA :=

∞∑

n=0

1

n!
An.

In fact, since |1/n!|v 6 pn for every n > 0, the above series converges in M(d, kv),

and one has expA ∈ M(d,Rv). We have

(2.4) ‖ exp(A)− Id −A‖v 6 p2‖A2‖v.
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3. S-integer dynamical systems

Now, following [3], Definition 2.1, we can define the dynamical system associated

to a set S of finite places.

Let S ⊂ P(k)\P∞(k) and define the discrete countable group RS of S-integers as

RS = {x ∈ k : |x|w 6 1 for all w 6∈ S ∪ P∞(k)},

and define its dual group (see [7] for definition),

X = R̂S .

Hence, X is a compact abelian group.

For a given element ξ ∈ k∗, and any set S ⊂ P(k) \ P∞(k) with the property that

|ξ|w 6 1 for all w 6∈ S ∪ P∞(k), we define a dynamical system as

(X,α) = (X(k,S), α(k,S,ξ)),

where the continuous group endomorphism

α : X → X

is dual to the monomorphism

α̂ : RS → RS

defined by

α̂ : x 7→ ξx.

Example 3.1. Let k = Q, S = {2}, and ξ = 1. Then RS = R{2} = Z[1/2],

and X = R̂S is the 2-adic solenoid (of finite type) in this case (see [1] or [7] for

more information on a-adic solenoids). The automorphism α of X is dual to the

automorphism x 7→ 2x of R{2}.

3.1. S-adele ring. Let S ⊂ P(k) \ P∞(k). The S-adele ring of k is the ring

kA(S) =

{
x = (xv) ∈

∏

v∈S∪P∞(k)

kv : |xv|v 6 1 for all but finitely many v

}

furnished with the topology in which for every finite set S′ ⊂ S, the subring

kS
′

A :=
∏

v∈S′∪P∞(k)

kv ×
∏

v∈S\S′

Rv
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carries the product topology (so that is locally compact) and is open in kA(S), and

a fundamental system of open neighborhoods of 0 in the additive group of kA(S) is

given by a fundamental system of neighborhoods of 0 in any one of the subrings kS
′

A .

Since for every v ∈ P(k), the ring Rv is compact it follows that the S-adele ring

is locally compact.

Let

ı : RS → kA(S)

be the diagonal embedding

ı(x) = (x, x, x, . . .).

The following theorem taken from [3] is an extension (to arbitrary set of places) of

some results proved in [19], Chapter IV.2.

Theorem 3.1 ([3], Theorem 3.1). The map ı : RS → kA(S) embeds RS as a dis-

crete cocompact subring in the S-adele ring of k. There is an isomorphism between

the S-adele ring kA(S) and its dual, which induces an isomorphism between X = R̂S

and kA(S)/ı(RS).

4. Lemmas

The following theorem is classical.

Theorem 4.1 ([6], Theorem 1). Let X be a compact metrizable abelian group

and T : X → X a surjective continuous endomorphism. The Haar measure on X is

ergodic for T if and only if the trivial character χ ≡ 1 is the only χ ∈ X̂ satisfying

χ ◦ T n = χ for some n > 0.

As a corollary we get, as in [3], the following

Lemma 4.1. Let (X,α) = (X(k,S), α(k,S,ξ)) be an S-integer dynamical system.

Then α is ergodic if and only if ξ is not a root of unity.

P r o o f. The map α is non-ergodic if and only if there is an r ∈ RS \ {0} with
ξmr = r for some m 6= 0. This is possible in a field if and only if ξ is a root of

unity. �

The formula given in the following lemma can be view via an adelic covering lemma

that makes this just a volume calculation in some finite product of p-adic fields.
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Lemma 4.2 ([3], Lemma 5.2). Let (X,α) = (X(k,S), α(k,S,ξ)) be an S-integer

dynamical system. Then Fn(α), the number of points of period n > 1, is finite if α

is ergodic, and

|Fn(α)| =
∏

v∈S∪P∞(k)

|ξn − 1|v,

where v is normalized so that the product formula holds.4

Lemma 4.3. For every l ∈ N, the group

Rd
S/lR

d
S ≃ (RS/lRS)

d

is finite and its cardinality is bounded by lm∞d, where m∞ = card(P∞(k)).

P r o o f. The cardinality c of Rd
S/lR

d
S is the number of points fixed by the

endomorphism x 7→ (1 − l)x on Xd. This endomorphism is ergodic by Lemma 4.1.

Hence, it follows by Lemma 4.2 and the product formula (see footnote in Lemma 4.2)

that

c =

( ∏

v∈S∪P∞(k)

|l|v
)d

6

( ∏

v∈P∞(k)

|l|v
)d

= lm∞d.

�

Lemma 4.4. Let T ∈ M(d,RS), and let l ∈ N. Assume that detT , considered as

an element of the ring

R := RS/lRS,

is invertible in R. Then there exists a number τ ∈ N such that

T τ ≡ Id mod lRd
S ,

where Id stands for the identity d× d-matrix.

P r o o f. For a given T , define the matrix

T̃ ∈ M(d,R),

with entries

t̃ij = tij mod lRS = tij + lRS .

4 The product formula says that
∏

P(k)
|x|v = 1, for all x ∈ k \ {0} (see [13], [14], [15], [19]).
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By Lemma 4.3 the matrix T̃ acts naturally on the finite module

Rd = (RS/lRS)
d

over the finite ring R. Thus we have an action of the semigroup N on Rd, given by

k. x = T kx, k ∈ N, x ∈ Rd.

We have that det T̃ is invertible in R, hence T̃ ∈ GL(d,R). Thus {T̃ k : k ∈ N} is
a semigroup contained in the finite group GL(d,R); it follows that {T̃ k : k ∈ N} is
a group. Thus there exists a τ such that T̃ τ = Id, and the lemma is proved. �

Let T = (tij) ∈ M(d,RS). Set

(4.1) r = 2 + d(d− 1)/2.

For an integer q satisfying (ii) of Theorem 1.1 consider, as in the proof of Lemma 4.4,

the matrix

T̃ ∈ M(d,RS/q
rRS),

with entries

t̃ij = tij mod qrRS = tij + qrRS .

Denote

I(N) = {0, 1, . . . , N − 1}d.

Let us fix some ε ∈ (0, 1), and let α be an integer so large that the set

(4.2) Λ = {n ∈ Nd : ni 6= nj mod pα for all i 6= j and all prime divisors p of q}

satisfies

card(I(N) ∩ Λ) > (1 − εd)Nd for all N large enough.

Let M be the transpose matrix of T τ , where τ is as in Lemma 4.4 (with l = qr),

that is,

(4.3) M = (T τ )t.

Now we are able to generalize the fundamental bound (and its proof) from [8], §4,

to our setting and get the following result.
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Lemma 4.5. Under the assumptions of Theorem 1.1 there exists an integer l > 0

such that for k > l, m,n ∈ Λ, and b ∈ Rd
S if m = n mod ql and

d∑
i=1

Mmib =
d∑

i=1

Mnib mod ql+kRS then m = n mod qk.

P r o o f. By Lemma 4.4 each entry of the matrix Id − T τ is equal to 0 modulo

qrRS . Thus, also (Id −M)ij = 0 mod qrRS . Hence, the ij-th entry of the matrix

Id −M belongs to qrRS , i.e.,

(4.4) (Id −M)ij = qraij , where aij ∈ RS .

Let P = {p1, . . . , ps} be the set of different prime numbers such that for every
j = 1, . . . , s there exists a place v ∈ S such that v | pj , i.e., P is the set of all places
of Q that lie below the places from S. By the assumption (ii) of Theorem 1.1, |q|v = 1

for every v ∈ S. Hence, |q|pj
= 1 for every pj ∈ P . Thus if p is a prime divisor

of q then also |p|pj
= 1 for every pj ∈ P , and we conclude that p 6= pj, j = 1, . . . , s.

Hence, it follows that if v ∈ Pf (k) and v | p, where p is a prime divisor of q, then
v 6∈ S. So, using (4.4) we can write

(4.5) ‖Id −M‖v = max
i,j

|(Id −M)ij |v

= max
i,j

|qraij |v = |qr|v max
i,j

|aij |v

6 |qr|v = p−r.

This together with the results of §2.5 implies that the following matrices are well

defined

(4.6) A = p−r log(M) ∈ M(d,Rv)

and

(4.7) Mx := exp(xprA) ∈ M(d,Rv), for x ∈ Rv.

By (2.4),

(4.8) ‖Mx − Id − x logM‖v 6 p2‖x‖2v‖Id −M‖2v.

For a given non-zero b ∈ RS and v | p, where p is a prime divisor of q, we define the
function Fv on R

d
v by formula

(4.9) Fv(x) =

d∑

i=1

Mxib, x ∈ Rd
v.
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Since |b|v 6 1,

Fv : R
d
v → Rd

v.

Let D ∈ kv is the determinant of the vectors b, Ab, . . . , A
d−1b in kdv ,

(4.10) D = det(b, Ab, . . . , Ad−1b), 0 6= b ∈ RS .

The following lemma is a straightforward generalization of [8], Lemma 1. We include

its proof for the sake of completeness. We also note that the proof of Lemma 4.6 is

the only place where condition (i) of Theorem 1.1 is used.

Lemma 4.6. Under the assumptions of Theorem 1.1 we have

detA 6= 0 and D 6= 0,

where A and D are as in (4.6) and (4.10), respectively.

P r o o f. We follow the proof of [8], Lemma 1. Let v ∈ Pf (k) and v | p, where p
is a prime divisor of q. By (4.6), A ∈ M(d,Rv). Suppose that detA = 0. Then there

is a non-zero x ∈ kdv such that Ax = 0. Since exp(prA) = M , where M is defined

in (4.3), it follows that (Id−M)x = 0. Consequently det(Id−T τ) = det(Id−M t) =

det(Id −M), and we get that 1 is an eigenvalue of T τ . This gives us a contradiction

with the condition (i) of Theorem 1.1.

Now, suppose thatD = 0. Therefore, the vectors b, Ab, . . . , Ad−1b in kdv are linearly

dependent. Thus there is a non-trivial linear map ξ : kdv → kv such that ξ(A
nb) = 0

for 0 6 n 6 d − 1. The Cayley-Hamilton theorem allows us to express An for

n > d− 1 as a linear combination of the lower matrix powers of A, hence ξ(Anb) = 0

for all n > 0. Hence, it follows from (4.7) that ξ(Mnb) = 0 for n > 0, and so

b,Mb, . . . ,Md−1b are linearly dependent over kv. Hence, det(b,Mb, . . . ,Md−1b) = 0.

SinceM ∈ M(d,RS) and b ∈ RS , the coordinates of the vectors b,Mb, . . . ,Md−1b are

also from RS . Thus the vectors b,Mb, . . . ,Md−1b are not linearly independent over

k = Q(θ), and this gives us a contradiction with the condition (i) of Theorem 1.1. �

We will also need the following.

Lemma 4.7. Let v ∈ Pf(k) and v | p, where p is a prime divisor of q. Let x ∈ Rd
v

and xi 6= xj for i 6= j. Then for all y ∈ Rd
v such that ‖y‖v < pr−2δv|V (x)|v we have

‖Fv(x + y)− Fv(x)‖v > p−rδv|V (x)|v‖y‖v,
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where

V (x) =
∏

16i<j6d

(xj − xi) and δv =

∣∣∣∣D det(A)

d−1∏

i=0

pri

i!

∣∣∣∣
v

,

and Fv is defined in (4.9).

P r o o f. It goes along the lines of the proof of [8], Lemma 3, where the case of

the function F on Zd
p was considered.

Let for x ∈ Rd
v,

K = [Kij ] = [(AMxjb)i]16i,j6d ∈ M(d,Rv).

Then

Ky =

d∑

j=1

yjAM
xjb, y ∈ Rd

v.

By (4.5), (4.6) and (4.8) we get

‖Fv(x+ y)− Fv(x) − prKy‖v(4.11)

=

∥∥∥∥
d∑

j=1

((Myj − Id)M
xjb− pryjAM

xjb)

∥∥∥∥
v

6 p2‖y‖2v‖Id −M‖2v 6 p2−2r‖y‖2v.

The same argument as in the proof of [8], Lemma 2, shows that

| detK|v = δv|V (x)|v 6= 0.

Hence, ‖K−1‖v 6 1/| detK|v, and consequently

‖Ky‖v > | detK|v‖y‖v = δv|V (x)|v‖y‖v.

Using our assumption, ‖y‖v < pr−2δv|V (x)|v , we get

‖prKy‖v > ‖y‖2vp2−2r.

This together with (4.11) finishes the proof. �

Now we proceed as in [8], Section 4.3. For n ∈ Nd we have Fv(n) ∈ Rd
S . By (4.2),

for all n ∈ Λ and every v | p, where p is a prime divisor of q, we have,

|V (n)|v > p−d(d−1)α/2.
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We take an integer β > 0 such that β > 2 − r − log δv/ log p + d(d− 1)/2α for all

v | p, where p is a prime divisor of q. It follows from Lemma 4.7 that for all prime
divisors p of q, and all v | p,

(4.12) m,n ∈ Λ and ‖m− n‖v 6 p−β

⇒ ‖Fv(m)− Fv(n)‖v > p−β−2r+2‖m− n‖v.

Notice that m = n mod qk means that m − n = qka with a ∈ Zd, and this is

equivalent to ‖m− n‖p 6 p−k, and consequently to

‖m− n‖v = ‖qka‖v 6 p−k.

Similarly, using (ii) of Theorem 1.1 we see that the condition
d∑

i=1

Mmib =
d∑

i=1

Mnib

(mod ql+kRS) means that

(4.12) ‖Fv(m)− Fv(n)‖v 6 p−(l+k).

Thus, by (4.12) and (4.13),

‖m− n‖v 6 q
−l−k+β+2r−2
v .

Now it is enough to choose l ∈ N so that

−l+ β + 2r − 2 6 0 and l > β,

and Lemma 4.5 follows. �

5. Proof of Theorem 1.1

Let S be a finite subset of Pf (k), where k = Q(θ). Then the product

kdA(S) =
∏

v∈P∞∪S

kdv

may be thought of as the “covering space” ofXd. Let P ⊂ P be the set corresponding

to S, i.e., the set of different rational primes {p1, . . . , ps} such that for every p ∈ P

there is a v ∈ S such that v | p. Since X̂d = Rd
S , the characters of X

d are indexed

by vectors b ∈ Rd
S , and are of the form

χb(x +R′
S,d) =

∏

v∈P∞∪S

χb,v(xv), x = (xv)v∈P∞∪Pf
∈ kdA(S),
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where χb,v is given by

χb,v(xv) =





exp(2πiλ ◦ pr ◦Trkv

Qp
(xv)) if v 6∈ P∞,

exp(−2πixv) if v is real,

exp(−4πi Re(xv)) if v is complex,

with functions λ and pr defined as in (2.2). Hence,

χb(x+R′
S,d)

=
∏

v real

e−2πi〈b,xv〉
∏

v complex

e−4πi Re〈b,xv〉
∏

v∈S

χb,v(xv)

s∏

j=1

∏

v|p
e
2πi{TrkvQp

(〈b,xv〉)}pj ,

x = (xv)v∈P∞∪Pf
∈ kdA(S),

where 〈·, ·〉 is the standard real inner product.
For a given non-zero b ∈ Rd

S , let

SN (x) =
1

N

N−1∑

n=0

χb(T
nx)

and

Sτ
N (x) =

1

N

N−1∑

n=0

χb(T
nτx),

where τ is as in Lemma 4.4. Since for every matrix A, 〈x,Ay〉 = 〈Atx, y〉,

Sτ
N (x) =

1

N

N−1∑

n=0

χMnb(x),

where M is the transpose matrix of T τ .

We have

(Sτ
N (x))d =

1

Nd

∑

n∈I(N)

χ∑
d
j=1

Mnj b(x),

where I(N) = {0, 1, . . . , N − 1}d. Let

S̃τ
N (x) =

1

Nd

∑

n∈I(N)∩Λ

χ∑
d
j=1

Mnj b(x),

where Λ is defined in (4.2). Then, for N large enough,

(5.1) |(Sτ
N (x))d − S̃τ

N (x)| 6 εd.
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Lemma 5.1. There exists a constant C > 0 such that for all k > 2l, where l is

from Lemma 4.5, and for all N > qkt, where t = degQ θ,

∫

Ωd
a

|S̃τ
N (x)|2
ϕk(x)

dµ(x) 6 C,

where ϕk is defined in (1.4).

P r o o f. We note that card(Dq,k) = qtdk. Using the orthogonality of characters,

i.e., the fact that for every non-zero element b ∈ Rd
S ,

∑

x∈Dq,k

χb(x) = 0,

we get, in the same way as in [8], §2.3, the following estimate

∫

Ωd
a

|S̃τ
N (x)|2
ϕk(x)

dµ(x)(5.2)

6 qtdk
∑

j∈(RS/qkRS)d

(
1

Nd
card{n ∈ I(N) ∩ Λ :

d∑

i=1

Mnjb = j mod qkRS}
)2

.

By Lemma 4.3,

card((RS/q
kRS)

d) 6 qtkd.

Lemma 4.5 provides a bound for the cardinality of the set in (5.2) of the form5

(Nq2l−k + ql)2d. Hence, since N > qkt and k > 2l, we get the required bound

q2tdkN−2d(Nq2l−k + ql)2d = q2tdk(q2l−kN−1 + qlN−1)2d 6 (q2l−k + ql)2d

with C = (1 + ql)2d. �

P r o o f of Theorem 1.1 (1). By the classical results on uniformly distributed se-

quences in compact groups [11] we have to show that for every non-zero b ∈ Rd
S ,

lim
N→∞

SN (x) = 0 in µ-probability.

Clearly, it is enough to prove that

lim
N→∞

Sτ
N (x) = 0 in µ-probability.

We will need the following

5 We divide the set I(N) into ql equivalence classes modulo ql, and count the points

n ∈ I(N) ∩ Λ in each equivalence class which have the same value of Fv(n) mod qk,

getting at most Nql−k + 1 elements in each equivalence class.
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Lemma 5.2. A probability measure µ on Xd is Dq-conservative if and only if

ϕk(x) → 0 µ-a.e. as k tends to ∞.

P r o o f. Is the same as the proof of the corresponding result for the 1-dimensional

torus [9], Lemma 2. �

Now we proceed as in [8]. By Lemma 5.2 for every ε > 0, there exists a Borel

subset E ⊂ Xd with µ(E) > 1− ε and k > 0 such that ϕk(x) < ε2d+1 for all x ∈ E.

By Lemma 5.1 we have, for N sufficiently large,

∫

E

|S̃τ
N (x)|2 dµ(x) 6 ε2d+1

∫

E

|S̃τ
N (x)|2
ϕk(x)

dµ(x) 6 ε2d+1C.

Hence, by (5.1),

µ{x : |Sτ
N (x)| > 2ε} 6 µ{x : |S̃τ

N (x)| > εd}

6 ε+ ε−2d

∫

E

|S̃τ
N(x)|2 dµ(x)

6 (1 + C)ε,

for N sufficiently large, and part (1) of Theorem 1.1 is proved. �

P r o o f of Theorem 1.1 (2). We have to show that

lim
N→∞

Sτ
N (x) = 0 for µ-a.e. x.

The proof given in [8] works in this case again. We include here the main steps for

the convenience of the reader.

The measure µ is Dq-conservative with exponential decay. Hence, for every ε > 0,

we can find η > 0 and the set F with µ(F ) > 1− ε/2, such that

lim inf
k→∞

− 1

k
logϕk(x) > η for x ∈ F.

Hence, there is a set E with µ(E) > 1 − ε and K ∈ N, K > 2l, where l is from

Lemma 4.5, such that

ϕk(x) < e−kη for x ∈ E and k > K.

Using Lemma 5.1, similarly as in the proof of part (1) above, we get

∫

E

|S̃N (x)|2 6 Ce−kη for k > K and N > qk,
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and consequently, taking k = [logN/ log q],

∫

E

|S̃N (x)|2 6 CeηN−η/ log q for N sufficiently large.

This shows that if mη/ log q > 1 then lim
N→∞

S̃Nm = 0 a.e. on E. This implies, in

a standard way, that

lim sup
N→∞

|SN (x)| 6 ε for µ-a.e. x ∈ E,

and the result follows. �

6. Examples

Example 6.1. If k = Q and S = {p1, . . . , ps} ⊂ P is a subset of different rational

primes then RS = Z[1/a], where a = p1 . . . ps, and

Xd = Rd ×Qd
p1

× . . .×Qd
ps
/Bd,

where

Bd = {(b, b, . . . , b︸ ︷︷ ︸
s times

) : b ∈ Z[1/a]d}.

Let q = qα1

1 . . . qαm
m > 1, where qi ∈ P, αi > 1. In this case Xd is the so called

a-adic solenoid (see [1], [7]). The analogue of Theorem 1.1 in this case was proved

in [18]. In this particular case condition (iii) of Theorem 1.1 reads | det T |qj = 1 for

j = 1, . . . ,m.

Example 6.2. Consider k = Q(
√
2). Let P = {3, 5} ⊂ P be a subset of different

prime numbers, and set a = 3 · 5. Take q = 7 and d = 2. Consider the set of finite

places

S = {v ∈ Pf (k) : ∃p ∈ P such that v | p}.

In this case

RS = Z[1/a] + Z[1/a]
√
2 = Z[1/a,

√
2].

Let

T =

[ √
2
3 5

1−
√
2

5 3
√
2

]
.

Then the conditions of Theorem 1.1 are satisfied.
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