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Abstract. In this paper, we consider the classification of unital extensions of AF -algebras
by their six-term exact sequences inK-theory. Using the classification theory of C∗-algebras
and the universal coefficient theorem for unital extensions, we give a complete characteri-
zation of isomorphisms between unital extensions of AF -algebras by stable Cuntz algebras.
Moreover, we also prove a classification theorem for certain unital extensions of AF -algebras
by stable purely infinite simple C∗-algebras with nontrivial K1-groups up to isomorphism.
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1. Introduction

Great progress has been made in classifying simple C∗-algebras till now (see [4],

[5], [7], [14], [13], [10], [9], [11], [16], etc.). But there are still many non-simple C∗-

algebras in need of classification. Among these algebras, extension algebras are an

important class. The existing results for classification of such algebras mainly focus

on classification of non-unital extensions up to stable isomorphism, for example, [3],

[17], [21].

Naturally, isomorphisms of unital extensions should also be considered. As we

know, classification for unital extensions up to isomorphism is very different from

the non-unital case. In [23], the second-named author considered unital extensions

of AT-algebras and proved that the six-term exact sequence in K-theory together

with the Elliott invariants of the ideal and quotient is a complete invariant.

This work was supported by Shandong Provincial Natural Science Foundations (Grant
No. ZR2011AM003 and BS2012SF031) and National Natural Science Foundations of
China (Grant No. 11171315 and 11271224). It was also supported by the Research
Center for Operator Algebras at ECNU.
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As the succeeding work of [22], [21], [20], [23], [24], the purpose of this note is

to classify unital essential extensions of AF -algebras by stable purely infinite simple

algebras. Using the classification theory of C∗-algebras and the universal coeffi-

cient theorem for unital extensions obtained by the second author ([22], [23]), we

give a complete characterization of isomorphisms between unital extensions of AF -

algebras by stable Cuntz algebras. We also prove a classification theorem for certain

unital extensions of AF -algebras by stable purely infinite simple C∗-algebras with

nontrivial K1 groups up to isomorphism.

2. Preliminaries

First, we recall some notations for C∗-algebra extensions and their K-theory. One

can see [1], [17], [18], [19], [22] for more details.

Let A and B be C∗-algebras. Recall that an extension of A by B is a short exact

sequence 0 → B
α
→ E

β
→ A → 0 of C∗-algebras. Denote this extension by e or

(E,α, β) and denote by Ext(A,B) the set of essential extensions of A by B.

Given an extension (E,α, β), α(B) is an ideal of E. Hence there is a homomor-

phism σ from E into the multiplier algebraM(B) of B. Let π be the quotient map

fromM(B) into the corona algebra Q(B). The Busby invariant of (E,α, β) is a ho-

momorphism τ from A into Q(B) such that τ(a) = π(σ(x)) for a in A, where x is in

E and β(x) = a. Then τ is the only homomorphism making the following diagram

commutative:

0 // B
α //

id

��

E

σ

��

β // A

τ

��

// 0

0 // B // M(B)
π // Q(B) // 0.

The extension (E,α, β) is essential if and only if τ is injective. It is called trivial if

there is a homomorphism γ : A→ E such that β ◦ γ = idA. The extension (E,α, β)

is called unital if A is unital and τ is a unital homomorphism.

Definition 2.1. Suppose that ei : 0 → B
αi→ Ei

βi

→ A → 0 for i = 1, 2 are two

extensions of A by B, with associated Busby invariants τi. We say that (E1, α1, β1)

and (E2, α2, β2) are unitarily equivalent (denoted by e1
s
∼ e2), if there is a unitary

u ∈ M(B) such that τ2(a) = π(u)τ1(a)π(u)
∗ for every a ∈ A.

Denote by Exts(A,B) the set of unitary equivalence classes of extensions of A

by B.
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It is known that e1
s
∼ e2 if and only if there exist a unitary element u ∈ M(B)

and homomorphism ϕ : E1 → E2 such that the following diagram commutes:

0 // B

Adu

��

α1 // E1

ϕ

��

β1 // A

id

��

// 0

0 // B
α2 // E2

β2 // A // 0.

We say (E1, α1, β1) and (E2, α2, β2) are weakly unitarily equivalent (denoted by

e1
w
∼ e2), if there is a unitary v ∈ Q(B) such that τ2(a) = vτ1(a)v

∗ for every a ∈ A.

Denote by Extw(A,B) the set of weakly unitary equivalence classes of extensions of

A by B.

Denote by Ext
u
∗
(A,B) the equivalence classes of unital essential extensions of A

by B for ∗ = s, w.

Definition 2.2. Two extensions (E1, α1, β1) and (E2, α2, β2) are called congru-

ent (denoted by e1 ≡ e2), if there is an isomorphism ϕ : E1 → E2 such that the

following diagram commutes:

0 // B

idB

��

α1 // E1

ϕ

��

β1 // A

idA

��

// 0

0 // B
α2 // E2

β2 // A // 0.

Definition 2.3. Two extensions (E1, α1, β1) and (E2, α2, β2) are called isomor-

phic (denoted by e1 ∼= e2), if there are isomorphisms ϕ, η, ψ such that the following

diagram commutes:

0 // B

ϕ

��

α1 // E1

η

��

β1 // A

ψ

��

// 0

0 // B
α2 // E2

β2 // A // 0.

If B is a stable C∗-algebra, then the sum of two extensions τ1 and τ2 is the exten-

sion whose Busby invariant is τ1 ⊕ τ2 : A → Q(B) ⊕ Q(B) ⊆ M2(Q(B)) ∼= Q(B),

where the last isomorphism is a standard isomorphism. So Ext∗(A,B) is a com-

mutative semigroup with respect to the above addition, and the set of equivalence

classes of essential trivial extensions of A by B is a subsemigroup of Ext∗(A,B).

Define Ext∗(A,B) as the quotient of Ext∗(A,B) by the subsemigroup of essential

trivial extensions of A by B for ∗ = s, w. By ([1], Proposition 15.6.4), Exts(A,B) ∼=
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Extw(A,B). So we write them as Ext(A,B). When e ∈ Ext(A,B), we write [e] for

the equivalence class of e in Ext(A,B).

Let e ∈ Ext(A,B) and let C, D be C∗-algebras. Assume that β : B → C is a sur-

jective homomorphism and α ∈ Hom(D,A). Then there are two induced extensions

unique up to congruence, such that the following diagrams commute:

eα : 0 // B

id

��

// E′

��

// D

α

��

// 0

e : 0 // B // E // A // 0

and
e : 0 // B

β

��

// E

��

// A

id

��

// 0

βe : 0 // C // E′′ // A // 0.

One can see [8], [17] and [15] for details.

Let e : 0 → B → E → A → 0 be an extension of A by B. Denote by K(e) the

six-term exact sequence of e in K-theory:

K0(B) // K0(E) // K0(A)

δ0

��
K1(A)

δ1

OO

K1(E)oo K1(B).oo

Let ei : 0 → Bi → Ei → Ai → 0, i = 1, 2, be two extensions. We say (α∗, β∗, η∗) :

K(e1) → K(e2) a morphism if there are homomorphisms α∗ : K∗(A1) → K∗(A2),

β∗ : K∗(B1) → K∗(B2) and η∗ : K∗(E1) → K∗(E2) such that the obvious diagram

is commutative.

If α∗, β∗, η∗ are isomorphisms, K(e1) and K(e2) are called isomorphic, writ-

ten K(e1) ∼= K(e2). Furthermore, if [p]0 ∈ K0(E1) and [q]0 ∈ K0(E2) such that

η0([p]0) = [q]0, then the isomorphism is written by (K(e1), [p]0) ∼= (K(e2), [q]0).

When A1 = A2 = A, B1 = B2 = B and there is an isomorphism (idK∗(A),

idK∗(B), η∗) : K(e1) → K(e2), then they are called congruent, written K(e1) ≡

K(e2). Similarly, (K(e1), [p]0) ≡ (K(e2), [q]0).

In this paper, we only consider essential extensions.
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3. Extensions by Cuntz algebras

First, we calculate the K-theory of extensions of the AF -algebras by stable Cuntz

algebras. Let A be an AF -algebra. Recall that the Elliott invariant of A is the tuple

(K0(A),K0(A)
+, D(A)),

where D(A) is the scale consisting of the images in K0(A) of projections of A.

We denote it by Ell(A). When A is a unital AF -algebra, we set Ell(A) =

(K0(A),K0(A)
+, [1A]0).

In this section, we write B = O∞ ⊗K or B = On⊗K. It is known that K0(O∞ ⊗

K) = Z, K0(On ⊗K) = Zn−1, K1(O∞ ⊗K) = 0 and K1(On ⊗K) = 0.

Assume that A is a unital separable AF -algebra and 0 → B → E → A→ 0 is an

extension of A by B. Then there exists a six-term exact sequence of K-groups:

K1(B) // K1(E) // K1(A)

δ1

��
K0(A)

δ0

OO

K0(E)oo K0(B).oo

From K1(A) = 0, we have δ1 = δ0 = 0 and K1(E) = 0 too. Moreover, we also get

a short exact sequence

0 // K0(B) // K0(E) // K0(A) // 0 .

Suppose that A is a unital C∗-algebra. Recall that (see [1]) a trivial unital exten-

sion τ is called strongly unital if τ can lift to a unital homomorphism fromA toM(B).

Denote by Extus (A,B) [Extuw(A,B)] the quotient of Ext
u
s (A,B) [Ext

u
w(A,B)] by

strongly unital trivial extensions. Let e be an extension of A by B, e is called ab-

sorbing [unital-absorbing] if e is unitarily equivalent to e⊕σ for any trivial [strongly

unital trivial] extension σ of A by B.

Lemma 3.1 ([22]). Let A be a unital separable amenable C∗-algebra with A ∈ N ,

let B be a purely infinite stable C∗-algebra. Then there is a short exact sequence of

groups

0 // Σ // Extus (A,B) // Γ⊕Hom(K1(A),K0(B)) // 0,

where

Σ = Ext(K0(A), [1A]0,K0(B))⊕ Ext(K1(A),K1(B))

and

Γ = {f ∈ Hom(K0(A),K1(B)) ; f([1A]0) = 0}.
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Lemma 3.2. Assume that A is a unital separable AF -algebra and B = O∞ ⊗K

or B = On ⊗K. Then one has

Extus (A,B) ∼= Ext(K0(A), [1A]0,K0(B)).

P r o o f. It is known that K1(B) = 0, K0(B) = Z or Zn−1 and hence Γ = 0.

Since K1(A) = 0, it shows from Lemma 3.1 that

Extus (A,B) ∼= Ext(K0(A), [1A]0,K0(B)).

�

Lemma 3.3 (see [3], [17]). Let A and B be separable nuclear C∗-algebras in N

with B stable. Suppose x1 and x2 are elements of Ext(A,B). Then K(x1) = K(x2)

in Ext(A,B) if and only if there exist elements a of KK(A,A) and b of KK(B,B)

with K∗(a) = idK∗(A) and K∗(b) = idK∗(B) such that x1b = ax2.

Note that a C∗-algebra B has the corona factorization property if and only if every

full projection p in M(B) is Murray-von Neumann equivalent to 1M(B). By [6], [12],

stable purely infinite simple C∗-algebras have the corona factorization property.

Theorem 3.4. Assume that A is a unital separable AF -algebra and B = O∞⊗K

or B = On ⊗ K. If e1 and e2 in Ext(A,B) are unital essential extensions, then the

following are equivalent:

(1) E1
∼= E2;

(2) e1 ∼= e2;

(3) there exist isomorphisms α : (K0(A),K0(A)
+, [1A]0) → (K0(A),K0(A)

+, [1A]0),

β : K0(B) → K0(B) and η : K0(E1) → K0(E2) with η([1E1 ]0) = [1E2 ]0 such

that the following diagram is commutative:

0 // K0(B)

β

��

// K0(E1)

η

��

// K0(A)

α

��

// 0

0 // K0(B) // K0(E2) // K0(A) // 0.

P r o o f. It is trivial to see that (2) ⇒ (1) by the definition of isomorphism of

extensions. For (1) ⇒ (2), there is an isomorphism η : E1 → E2. It holds that

η(B) = B since e1, e2 are essential extensions and B is simple. One thus get e1 ∼= e2.

It is obvious that (2) ⇒ (3), so we only need to show (3) ⇒ (2).
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By the classification theorems for AF -algebras and purely infinite simple C∗-

algebras, there are automorphisms ϕ : A→ A and ψ : B → B such that K0(ϕ) = α

and K0(ψ) = β. We have that e1ϕ
−1 ∼= e1 and ψ

−1e2 ∼= e2 from ([17], Proposi-

tion 1.2) and the following commutative diagram:

K(e1ϕ
−1) : 0 // K0(B)

idK0(B)

��

// K0(E1)

idK0(E1)

��

// K0(A)

K0(ϕ
−1)

��

// 0

K(e1) : 0 // K0(B)

β

��

// K0(E1)

η

��

// K0(A)

α

��

// 0

K(e2) : 0 // K0(B)

K0(ψ
−1)

��

// K0(E2)

idK0(E2)

��

// K0(A)

idK0(A)

��

// 0

K(ψ−1e2) : 0 // K0(B) // K0(E2) // K0(A) // 0.

Therefore, one has

(K(e1ϕ
−1), [1E1 ]0) ≡ (K(ψ−1e2), [1E2 ]0)

from K0(ϕ) = α and K0(ψ) = β. According to Lemma 3.2, it follows that [τe1ϕ−1 ] =

[τψ−1e2 ] in Extus (A,B). Since B has the corona factorization property, every unital

full extension by B is unital-absorbing. It follows that τe1ϕ−1 and τψ−1e2 are unitarily

equivalent. Therefore, e1ϕ
−1 and ψ−1e2 are isomorphic and so e1 ∼= e2. �

Theorem 3.5. Assume that A is a unital separable AF -algebra and B = O∞⊗K

or B = On ⊗ K. Suppose ei : 0 → B
ϕi

→ Ei
ψi

→ A → 0 are two unital essential

extensions. Then E1
∼= E2 if and only if there exists an isomorphism

η : (K0(E1),K0(E1)
+, [1E1]0) → (K0(E2),K0(E2)

+, [1E2 ]0).

P r o o f. We only need to prove the “if” part. Because K0(A) is torsion-free

group, the two extensions in K-theory

0 // K0(B)
K0(ϕi)// K0(Ei)

K0(ψi) // K0(A) // 0, i = 1, 2

are pure extensions. It is well-known that K0(B) = K0(B)+ since B is purely

infinite simple C∗-algebra. Moreover, one has K0(B) ⊂ K0(Ei)
+, i = 1, 2, and

K0(ψi)(K0(Ei)
+) ⊆ K0(A)

+, i = 1, 2.
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Suppose that

η : (K0(E1),K0(E1)
+, [1E1 ]0) → (K0(E2),K0(E2)

+, [1E2]0)

is an isomorphism. For any x ∈ K0(ϕ1)(K0(B)), K0(ψ2)(η(x)) and K0(ψ2)(η(−x))

are all in K0(A)
+ since K0(B) is a group. As A is unital and finite, (K0(A),K0(A)

+)

is an ordered abelian group. Hence K0(ψ2)(η(x)) = 0 and η(x) ∈ K0(ϕ2)(K0(B)).

It thus follows that η(K0(ϕ1)(K0(B))) ⊂ K0(ϕ2)(K0(B)). Conversely, considering

the isomorphism η−1 and arguing similarly, one can get η−1(K0(ϕ2)(K0(B))) ⊂

K0(ϕ1)(K0(B)). Hence η(K0(ϕ1)(K0(B))) = K0(ϕ2)(K0(B)). Therefore, there ex-

ist two isomorphisms α : K0(A) → K0(A) and β : K0(B) → K0(B) such that the

following diagram commutes:

0 // K0(B)

β

��

K0(ϕ1)// K0(E1)

η

��

K0(ψ1) // K0(A)

α

��

// 0

0 // K0(B)
K0(ϕ2)// K0(E2)

K0(ψ2) // K0(A) // 0.

We next prove that α is an order isomorphism and α([1A]0) = [1A]0. It is

easy to check that α([1A]0) = [1A]0 since ei (i = 1, 2) are unital extensions and

η([1E1 ]0) = [1E2]0. As A and B are of real rank zero and K1(B) = 0, this shows

that K0(ψi)(K0(Ei)
+) = K0(A)

+, i = 1, 2. So we have α(K0(A)
+) = K0(A)

+ and

it thus follows that E1
∼= E2 by Theorem 3.4. �

When A is non-unital separable AF -algebra, by using the UCT instead of

Lemma 3.2 one can similarly obtain the following corollary which is contained

in [3].

Corollary 3.6. Assume that A is a separable non-unital AF -algebra and B =

O∞⊗K or B = On⊗K. If e1 and e2 in Ext(A,B) are non-unital essential extensions,

then the following are equivalent:

(1) E1
∼= E2;

(2) e1 ∼= e2;

(3) there exist isomorphisms α : (K0(A),K0(A)
+, D(A)) → (K0(A),K0(A)

+,

D(A)), β : K0(B) → K0(B) and η : K0(E1) → K0(E2) such that the following

diagram is commutative:

0 // K0(B)

β

��

// K0(E1)

η

��

// K0(A)

α

��

// 0

0 // K0(B) // K0(E2) // K0(A) // 0;

(4) (K0(E1),K0(E1)
+, D(E1)) ∼= (K0(E2),K0(E2)

+, D(E2)).

996



Remark 3.7. We mention that Corollary 3.6 also holds whenever A is unital

separable AF -algebra and ei, i = 1, 2, are non-unital essential extensions. Moreover,

it is clear that Theorem 3.4, Theorem 3.5 and Corollary 3.6 also hold whenever the

Cuntz algebras are replaced by separable purely infinite simple nuclear C∗-algebras

satisfying the UCT and having trivial K1-groups.

4. Extensions by purely infinite simple C∗-algebras

Next we consider the case of separable purely infinite simple nuclear C∗-algebras

(which are also called Kirchberg algebras) with nontrivial K1-group.

For Kirchberg algebras B satisfying the UCT, the Elliott invariant Ell(B) is

(K0(B),K1(B)) [or (K0(B), [1B]0,K1(B)) when B is unital].

The following result (Theorem 4.1) concerning non-unital extensions is contained

in [3], so we omit the proof.

Theorem 4.1. Assume that A is a separable AF -algebra, B is a non-unital

separable purely infinite simple nuclear C∗-algebra satisfying the UCT and ei : 0 →

B → Ei → A→ 0 are non-unital essential extensions of A by B. Then the following

are equivalent:

(1) E1
∼= E2;

(2) e1 ∼= e2;

(3) there exist isomorphisms α♯ : Ell(A) → Ell(A), β♯ : Ell(B) → Ell(B) and η♯ :

Ell(E1) → Ell(E2) such that the following diagram is commutative:

0 // K0(B)

β0

��

// K0(E1)

η0

��

// K0(A)

α

��

// K1(B)

β1

��

// K1(E1)

η1

��

// 0

0 // K0(B) // K0(E2) // K0(A) // K1(B) // K1(E2) // 0.

Lemma 4.2 ([23]). Let A be a separable nuclear C∗-algebra with unit. Then the

natural homomorphism Extuw(A,B) → Ext(A,B) is injective.

Lemma 4.3 ([23]). Let ei : 0 → B → Ei → A → 0 be an essential unital exten-

sion with Busby invariant τi for i = 1, 2. Suppose e1 is weakly unitarily equivalent

to e2 by a unitary u ∈ Q(B). Then

(K(e1), [1]0) ≡ (K(e2), [1]0)
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if and only if π([u]1) is in G
′ = {f([1A]0) ; f ∈ Hom(Ker δ0,Coker δ1)}, where π :

K1(Q(B)) ∼= K0(B) → Coker δ1 is the quotient map and δi is the index map from

Ki(A) to K1−i(B).

Lemma 4.4 ([22], Theorem 3.10). Let A be a unital separable nuclear C∗-algebra

with A ∈ N . Then there is a short exact sequence of groups

0 → K1(Q(B))/G→ Extus (A,B) → Extuw(A,B) → 0,

where G = {f([1]0) ; f ∈ Hom(K0(A),K0(B))}.

Theorem 4.5. Assume that A is a unital separable AF -algebra, B is a non-

unital separable purely infinite simple nuclear C∗-algebra satisfying the UCT and

ei : 0 → B → Ei → A→ 0 is a unital essential extension of A by B such that Ker δ0ei
is a direct summand of K0(A), where δ

0
ei
is the exponential map of ei for i = 1, 2.

Then the following are equivalent:

(1) E1
∼= E2;

(2) e1 ∼= e2;

(3) there are isomorphisms β∗ : K∗(B) → K∗(B), η∗ : (K∗(E), [1]0) → (K∗(E), [1]0)

and α∗ : (K0(A),K0(A)
+, [1]0) → (K0(A),K0(A)

+, [1]0) such that

(β∗, η∗, α∗) : (K(e1), [1E1 ]0) → (K(e2), [1E2 ]0)

is an isomorphism.

P r o o f. We only need to show (3) ⇒ (2). Similarly to Theorem 3.4, there are

isomorphisms ϕ : A → A and ψ : B → B such that ϕ∗ = α∗ and ψ∗ = β∗. Hence,

we have an extension isomorphism

(idK∗(B2), η∗, idK∗(A1)) : (K(ψe1), [1]0) −→ (K(e2ϕ), [1]0).

Therefore, (K(ψe1), [1]0) ≡ (K(e2ϕ), [1]0).

Similarly, there are isomorphisms h : A → A and g : B → B such that K∗(h) =

idK∗(A), K∗(g) = idK∗(B) and

[e1]KK(ψ)KK(g) = KK(h)KK(ϕ)[e2]

in Ext(A,B). Set σ1 = (gψ)e1 and σ2 = e2(ϕh) with Busby invariants τ1 and τ2,

respectively. So there are two commutative diagrams

e1 : 0 // B

gψ

��

// E1
// A // 0

σ1 : 0 // B // E1
// A // 0

998



and

σ2 : 0 // B // E2
// A

ϕh

��

// 0

e2 : 0 // B // E2
// A // 0.

Furthermore,

(K(σ1), [1]0) ≡ (K(ψe1), [1]0), (K(σ2), [1]0) ≡ (K(e1ϕ), [1]0).

Then (K(σ1), [1]0) ≡ (K(σ2), [1]0). So we have the following commutative diagram

in K-theory

K(σ1) : // K0(B)

β−1
0

��

// K0(E1) // K0(A)
δ0
σ1 // K1(B)

β−1
1

��

//

K(e1) : // K0(B)

β0

��

// K0(E1)

η0

��

// K0(A)

α0

��

δ0
e1 // K1(B)

β1

��

//

K(e2) : // K0(B) // K0(E2) // K0(A)

α−1
0

��

δ0
e2 // K1(B) //

K(σ2) : // K0(B) // K0(E2) // K0(A)
δ0
σ2 // K1(B) //

Note that δ0σ1
= K1(gψ)δ

0
e1

= β1δ
0
e1
, δ0σ2

= δ0e2K0(ϕh) = δ0e2α0 and δ
0
σ1

= δ0σ2
.

Since β1 is an isomorphism, it follows thatKer δ0σ1
= Ker δ0e1 . HenceKer δ0σ1

is a direct

summand of K0(A). Since δ
1
σ1

= 0 = δ1σ2
, we have Coker δ1σ1

= Coker δ1σ2
= K0(B)

and the quotient map π from K0(B) to Coker δ1σ1
is the identity map.

By the fact [σ1] = [σ2] in Ext(A,B) and Lemma 4.2, we have [σ1] = [σ2] in

Extuw(A,B). Since B has corona factorization property, every unital full extension by

B is unital-absorbing. Hence there is a unitary u ∈ Q(B) such that τ2 = Adu◦τ1. By

Lemma 4.3 we have [u]1 ∈ G′. Hence there exists a homomorphism ̺ from Ker δ0σ1
to

K0(B) such that ̺([1A]0) = [u]1. Since Ker δ0σ1
is a direct summand of K0(A), there

exists a homomorphism ˜̺ from K0(A) to K0(B) such that ˜̺|Ker δ0
σ1

= ̺. Therefore,

[u]1 is in G. By Lemma 4.4, σ1 is strongly unitarily equivalent to σ2. It follows that

e1 ∼= σ1 ∼ σ2 ∼= e2.

�
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Remark 4.6. If Ei (i = 1, 2) in Theorem 4.5 are of real rank zero, the expo-

nential maps δ0ei , i = 1, 2, will be trivial and so the kernel observation holds true

automatically. This special case is contained in [2] and [3] which deal with the class

of extensions with real rank zero where the exponential maps δ0ei , i = 1, 2, are trivial.

This is very different from the case we consider here.

Acknowledgement. The authors are very grateful to the referee for his or her
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