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Abstract. Let G = (V (G), E(G)) be a graph. Gould and Hynds (1999) showed a well-
known characterization of G by its line graph L(G) that has a 2-factor. In this paper, by
defining two operations, we present a characterization for a graph G to have a 2-factor in
its line graph L(G). A graph G is called N2-locally connected if for every vertex x ∈ V (G),
G[{y ∈ V (G) ; 1 6 distG(x, y) 6 2}] is connected. By applying the new characterization,
we prove that every claw-free graph in which every edge lies on a cycle of length at most five
and in which every vertex of degree two that lies on a triangle has two N2-locally connected
adjacent neighbors, has a 2-factor. This result generalizes the previous results in papers:
Li, Liu (1995) and Tian, Xiong, Niu (2012), and is the best possible.

Keywords: 2-factor; claw-free graph; line graph; N2-locally connected

MSC 2010 : 05C35, 05C38, 05C45

1. Introduction

All graphs considered are simple finite undirected graphs and we refer to [1] for

terminology and notation not defined here.

We will use e(G) to denote the number of edges of G. We denote the minimum

degree of G by δ(G), and the set of all vertices of degree k in G by Vk(G).We denote

V>k(G) =
⋃

i>k

Vi(G), and denote by G[E] the subgraph of G induced by the edge set

E of E(G). The distance in G of two vertices x, y ∈ V (G) is denoted by distG(x, y).

The research has been supported by the Natural Science Funds of China (Nos. 11471037,
11171129 and 11001197) and by Specialized Research Fund for the Doctoral Program of
Higher Education (No. 20131101110048).
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The line graph of H, denoted by L(H), is the graph with E(H) as vertex set, in

which two vertices are adjacent if and only if the corresponding edges have a vertex

in common. A graph is called claw-free if it has no induced subgraph isomorphic

to K1,3. A 2-factor of a graph G is a spanning subgraph of G in which every vertex

has the same degree 2.

An even graph is a graph in which every vertex has positive even degree. A con-

nected even subgraph is called a circuit. For m > 2, a star K1,m is a complete

bipartite graph with independent sets A = {c} and B with |B| = m; the vertex c is

called the center and the vertices in B are called the leaves of K1,m.

Let S be a set of edge-disjoint circuits and stars with at least three edges in

a graph H . We call S a system that dominates H or simply a dominating system if

every edge ofH is either contained in one of the circuits or stars ofS or is adjacent to

one of the circuits. Gould and Hynds gave the following characterization of a graph

H with L(H) that has a 2-factor.

Theorem 1 (Gould and Hynds [4]). Let H be a graph. Then L(H) has a 2-factor

if and only if there is a system that dominates H.

Gould and Hynds in [4] also proved that the number of components in a 2-factor

of L(H) is equal to the number of elements in a system that dominates H.

It follows from either [2] or [3] that every claw-free graph G with δ(G) > 4 has

a 2-factor. Yoshimoto [9] showed that a claw-free graph G with δ(G) > 3 has also

a 2-factor if, additionally, G is 2-connected. Recently, by using Theorem 1, Tian,

Xiong and Niu obtained the following result.

Theorem 2 (Tian, Xiong and Niu [8]). Let G be a claw-free graph with δ(G) > 3.

If every edge of G lies on a cycle of length at most 5, then G has a 2-factor.

In the following, we will give another characterization of a graph H for L(H) to

have a 2-factor. We first define two operations as follows.

To split a vertex v in a graph G with NG(v) = {u′, u′′} is to add two new vertices

v′ and v′′, such that v′ is adjacent to u′ and v′′ is adjacent to u′′, see Figure 1.

u
′

v u
′′

(a)

u
′

v
′

v
′′

u
′′

(b)

Figure 1. (a) A graph G with its vertex v of degree 2; (b) splitting the vertex v in G.
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Denote D′(T ) = {v ∈ V3(T ) : N(v) ∩ V1(T ) 6= ∅}.

Operation 1. Let T be a tree and v ∈ V2(T ). Then split the vertex v in T.

Operation 2. Let T be a tree and v ∈ D′(T ). Then delete the vertex v from T.

We call H ′ a reduction of a graph H if it is obtained from H by repeatedly

performing Operations 1 and 2, until this is impossible. Note that a graph may have

different reductions.

We denote by [Y, Z] the set of all the edges with one end in Y and the other end

in Z, and denote by N(X) the set of vertices outside X that have a neighbor in X.

Define

FH(X) = H
[

[X,N(X) ∩ V>3(H)] ∪ E(H − (V (X) ∪ (N(X) ∩ V1(H))))
]

,

which denotes the edge-induced subgraph of H by the edges in [X,N(X)∩V>3(H)],

and by those edges obtained from H by deleting the vertices both in X and in

N(X) ∩ V1(H).

Lemma 3. Let H be a graph and X an even subgraph of H with |E(X)| maxi-

mized. Then FH(X) is a forest.

P r o o f. Suppose that FH(X) has a cycle C. Then X ∪ C is an even subgraph

of H which has more edges than X ; this contradicts the maximality of X. �

The forest FH(X) is illustrated in Figure 2. Let F ∗

H(X) be the forest obtained

from FH(X) by identifying each vertex of V (X) ∩ V (FH(X)) and the center of one

of |V (X) ∩ V (FH(X))| additional K1,3’s, respectively.

X

FH(X)

FH(X)

FH(X)

Figure 2. An even subgraph X and the forest FH(X) in H. The edges of FH(X) in three
rectangular boxes are labeled by the thick lines.

Now we present our characterization.
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Theorem 4. Let H be a graph. Then the line graph L(H) has a 2-factor if and

only if H has a maximal even subgraph C such that F ∗

H(C) has no reduction which

has a component that is an edge.

Applying Theorem 4, we obtain Theorem 5 below, which generalizes Theorem 2.

We first give some definitions. For x ∈ V (G) and an integer k > 1, let Nk
G(x) =

{y ∈ V (G) ; 1 6 distG(x, y) 6 k}. A vertex v of G is locally connected if G[N1
G(v)] is

connected; otherwise, it is locally disconnected. A graph G is N2-locally connected

if, for every vertex x ∈ V (G), G[N2
G(x)] is a connected graph.

Theorem 5. Every claw-free graph in which every edge lies on a cycle of length

at most five and in which every locally connected vertex of degree two has two

N2-locally connected adjacent neighbors, has a 2-factor.

The following result, which was proved by Li and Liu long time ago, is obtained

straightforwardly from Theorem 5.

Corollary 6 (Li and Liu [5]). Every N2-locally connected claw-free graph with

δ(G) > 2 has a 2-factor.

2. Notation and preliminary results

Before we present the proofs of Theorems 4 and 5, we first introduce some addi-

tional terminology and notation.

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G).

The neighborhood and the degree of vertex u in G are denoted by N(u) = {x ∈

V (G) ; xu ∈ E(G)} and dG(u) (or d(u) when no confusion is possible), respectively.

An edge of G is a pendant edge if some of its vertices is of degree 1. The edge degree

of an edge e = uv of G is defined as ξG(e) = d(u) + d(v)− 2 and the minimum edge

degree δe(G) is the minimum value of the edge degrees of all edges in G.

2.1. The closure of a claw-free graph. Let x be a vertex of a claw-free graphG.

If the subgraph induced by N(x) is connected, we add edges joining all pairs of

nonadjacent vertices in N(x). This operation is called local completion of G at x.

The closure cl(G) of G is the graph obtained by recursively repeating the local

completion operation, as long as this is possible. Ryjáček [6] showed that the closure

of G is uniquely determined and G is hamiltonian if and only if cl(G) is hamiltonian.

The latter result was extended to 2-factors as follows.
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Theorem 7 (Ryjáček, Saito and Schelp [7]). If G is a claw-free graph, then G

has a 2-factor if and only if cl(G) has a 2-factor.

Ryjáček [6] also established the following relationship between claw-free graphs

and triangle-free graphs.

Theorem 8 (Ryjáček [6]). If G is a claw-free graph, then there is a triangle-free

graph H such that L(H) = cl(G).

2.2. Some auxiliary results for the proof of Theorem 5. Observing that

every new edge of the closure cl(G) lies on a triangle, we have the following result.

Lemma 9. If every edge of a claw-free graph G lies on a cycle of length at most

five, then every edge of cl(G) also lies on a cycle of length at most five.

By the definitions of a locally disconnected and N2-locally connected vertex, we

obtain the following result.

Lemma 10. Let G be a claw-free graph. Then a locally disconnected vertex v is

N2-locally connected in G if and only if v lies on an induced cycle of length 4 or 5

in G.

Lemma 11. Let G be a graph and u ∈ V (G). If u is N2-locally connected in G,

then u is N2-locally connected in cl(G).

P r o o f. Suppose that u is locally connected in cl(G). Then u is N2-locally

connected in cl(G). Now suppose that u is locally disconnected in cl(G). Then u is

locally disconnected in G. Since u is N2-locally connected in G, by Lemma 10, u lies

on an induced cycle of length 4 or 5 in G. Notice that u is locally disconnected in

cl(G) and u lies on an induced cycle of length 4 or 5 in cl(G). By Lemma 10, u is

N2-locally connected in cl(G). �

Lemma 12. Let G be a claw-free graph in which every edge of G lies on a cycle

of length at most five. If every locally connected vertex of degree two in G has

two N2-locally connected adjacent neighbors, then every locally connected vertex of

degree two in cl(G) has also two N2-locally connected adjacent neighbors.

P r o o f. Suppose that x is a locally connected vertex in cl(G) with degree 2. Let

N(x) = {z1, z2}. Since dcl(G)(x) = 2 and by the hypothesis that every edge of G lies

on a cycle, dG(x) = 2.

Suppose first that x is locally disconnected in G (i.e., z1z2 /∈ E(G)), let G =

G1, G2, . . . , Gk = cl(G) be the sequence of graphs that yields cl(G) (i.e., Gi+1 is
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obtained from Gi by a local completion at some vertex xi), and let Gi0 be the first

graph in which z1z2 ∈ E(Gi0 ). Then xi0z1z2 is a triangle in Gi0 , but then z1 is locally

connected in Gi0 , hence xxi0 ∈ E(cl(G)), implying dcl(G)(x) > 3, a contradiction.

Hence x is locally connected in G. Then, since dG(x) = 2, z1 and z2 are N
2-locally

connected in G. Thus by Lemma 11, z1 and z2 are N
2-locally connected in cl(G). �

3. Some lemmas

In order to prove Theorem 4, we first present a useful result which was proved

in [8].

Lemma 13 (Tian, Xiong and Niu [8]). Let T be a tree with δe(T ) > 3. If

V2(T ) = ∅, then T has a dominating system.

We also give the following lemmas, which are needed in the proof of Theorem 4.

Lemma 14. Let T be a tree and v ∈ V2(T ). Let T1 and T2 be two trees obtained

from T by performing Operation 1 on the vertex v. Then L(T ) has a 2-factor if and

only if both L(T1) and L(T2) have a 2-factor.

P r o o f. By Theorem 1, L(T ) has a 2-factor if and only if T has a dominating

system S such that S =
⋃

i=1

Si, where Si is the i-th star in S which has at least

three edges. Since the vertex of degree two cannot be the center of a star in S , T

has a dominating system if and only if both T1 and T2 have a dominating system.

Hence the lemma holds by Theorem 1. �

Lemma 15. Let T be a tree other than K1,3. Then for any v ∈ D′(T ), L(T ) has

a 2-factor if and only if L(T − v) has a 2-factor.

P r o o f. Since v ∈ D′(T ), v must be chosen as the center of one of the stars

in a dominating system. Thus T has a dominating system if and only if T − v has

a dominating system. Therefore the lemma holds by Theorem 1. �

Lemma 16. Let T be a tree. Then L(T ) has a 2-factor if and only if T has

a reduction T ′ such that ξT ′(e) > 3 for each edge e ∈ E(T ′).

P r o o f. Sufficiency. Let T ′ be a reduction of T such that ξT ′(e) > 3 for each

edge e ∈ E(T ′). Then we have δe(T
′) > 3 by the assumption, and V2(T

′) = ∅ since

T ′ is a reduction of T. By Lemma 13 and Theorem 1, L(T ′) has a 2-factor. Thus

L(T ) has a 2-factor by Lemmas 14 and 15.
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Conversely, suppose that L(T ) has a 2-factor. Then T has a dominating system by

Theorem 1, and so T ′ has a dominating system by Lemmas 14 and 15. Let e = uv be

an edge of T ′.Without loss of generality, assume that dT ′(u) 6 dT ′(v). If dT ′(u) > 4,

then δe(T
′) > 6 and we are done.

It remains to consider the case when dT ′(u) 6 3.We distinguish the following two

cases.

Case 1. dT ′(u) = 1. Then dT ′(v) > 1. If dT ′(v) = 1, then e is an isolated edge in T ′.

This is impossible since T ′ has a dominating system. If dT ′(v) = 2 or dT ′(v) = 3,

then we can perform Operation 1 or Operation 2 on v in T ′, a contradiction. If

dT ′(v) > 4, then ξT ′(e) > 3.

Case 2. 2 6 dT ′(u) 6 3. Then dT ′(v) > 2. Since T ′ is a reduction of T, dT ′(v) 6= 2.

So dT ′(v) > 3. Thus ξT ′(e) > 3. �

Lemma 17. Let T be a tree. Then L(T ) has a 2-factor if and only if T has no

reduction T ′ such that T ′ has a component that is an edge.

P r o o f. Suppose first that L(T ) has a 2-factor. Then T has a dominating

system by Theorem 1. Thus by Lemmas 14 and 15, T ′ has a dominating system,

where T ′ is a reduction of T. So T ′ has no component that is an edge.

Conversely, by Lemma 16, we only need to prove that ξT ′(e) > 3 for each edge

e ∈ E(T ′). Let e = uv be an edge of T ′. Since T ′ has no component that is an edge,

ξT ′(e) 6= 0. We claim that ξT ′(e) 6= 1: Otherwise, if ξT ′(e) = 1, then dT ′(u) = 2

or dT ′(v) = 2, which contradicts the definition of reduction. We also claim that

ξT ′(e) 6= 2: Otherwise, (dT ′(u), dT ′(v)) ∈ {(2, 2), (1, 3), (3, 1)}, which is impossible

since T ′ is a reduction. Therefore, ξT ′(e) > 3 for each edge e ∈ E(T ′). �

The following lemma follows directly from Lemma 17 and Theorem 1.

Lemma 18. Let T be a tree. Then T has a dominating system if and only if T

has no reduction T ′ such that T ′ has a component that is an edge.

4. Proof of Theorem 4

Suppose that C is a maximal even subgraph in H. For convenience, denote F ∗

H(C)

and FH(C) by F1 and F2, respectively. Let F
(1)
1 be composed of all the components

of F1 such that V (F
(1)
1 ) ∩ N(C) ⊆ V2(H), and let F

(2)
1 be composed of all the

components of F1 such that V (F
(2)
1 )∩N(C) ⊆ V>3(H). Evidently, H = F

(1)
1 ∪ (H −

V (F
(1)
1 )) ∪ [V (C), N(C) ∩ V2(H)] and F1 = F

(1)
1 ∪ F

(2)
1 .

Claim 1. (H −V (F
(1)
1 ))∪ [V (C), N(C)∩ V2(H)] has a dominating system if and

only if F
(2)
1 has a dominating system.
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P r o o f. To show sufficiency, suppose that F
(2)
1 has a dominating system S . Let

T be the set of all the stars in S with centers in V (F
(2)
1 ) ∩ C. Then

(S \ T ) ∪ {all the circuits in C}

is a dominating system of (H − V (F
(1)
1 )) ∪ [V (C), N(C) ∩ V2(H)].

Conversely, suppose that (H−V (F
(1)
1 ))∪ [V (C), N(C)∩V2(H)] has a dominating

system S ′. Let T ′ be the set of all the stars in S ′ with centers in V (F
(2)
1 )∩C. Then

(S ′ \ {all the circuits in C}) ∪ T ′

is a dominating system of F
(2)
1 . �

By the definition of F
(1)
1 , F

(1)
1 has a dominating system in H if and only if it has

a dominating system in F1. Hence by Claim 1, we conclude that

(4.1) H has a dominating system if and only if F1 has a dominating system.

To prove sufficiency, suppose that F1 has no reduction which has a component

that is an edge. By Lemma 18, F1 has a dominating system. Thus by (4.1), H has

a dominating system. So by Theorem 1, L(H) has a 2-factor.

We prove necessity. Suppose, to the contrary, that H has a maximal even sub-

graph X such that X1 has a reduction which has a component that is an edge, where

X1 = F ∗

H(X). Thus by Lemma 18, X1 has no dominating system. Hence by (4.1),

H has no dominating system. Therefore L(H) has no 2-factor by Theorem 1, a con-

tradiction. �

5. Proof of Theorem 5

In this section, we apply Theorem 4 to prove Theorem 5. The following lemma

will be needed in our arguments.

Lemma 19 (Lemma 12, [8]). Let H be a subgraph of a graph G. If C is a cycle

of G such that |E(C) ∩ E(H)| > e(C)− 1, then V (C) ⊆ V (H).

P r o o f of Theorem 5. Suppose that G satisfies the conditions of Theorem 5.

Then by Lemmas 9 and 12, cl(G) also satisfies the conditions of Theorem 5. Thus

by Theorem 8, we may assume that cl(G) = L(H), where H is triangle-free.

Let Y be a maximal even subgraph of H such that any even subgraph Y ′ of H

satisfies e(Y ′) 6 e(Y ). For convenience, denote F ∗

H(Y ) and FH(Y ) by F 1 and F 2,

respectively.
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Claim 2 (Claim 3, [8]). Let C be a cycle of H. Then |E(C) ∩ E(Y )| > e(C)/2.

Claim 3 (Claim 4, [8]). For v ∈ V2(H), either v ∈ V (Y ), or v ∈ V0(H − Y ).

Claim 4. If x ∈ V3(H) and y ∈ N(x)∩ V1(H), then either x ∈ V (Y ) or e = xy is

an edge of a claw which is a component of F 2.

P r o o f. We may assume that x /∈ V (Y ). Since dH(x) = 3, suppose that

NH(x) \ {y} = {w1, w2}. Let e1 = xw1 and e2 = xw2. Since ee1e2e is a triangle in

cl(G), e is locally connected in cl(G).Moreover, since dcl(G)(e) = 2, e1 and e2 are N
2-

locally connected in cl(G). Note that, since cl(G) is claw-free, e1, e2 ∈ V (cl(G)) lie on

a common induced cycle of length at most 5 in cl(G). Thus, since H is triangle-free,

e1, e2 ∈ E(H) lie on a common induced cycle C of length 4 or 5 in H.

First suppose that e(C) = 4. Then by Claim 2, |E(C) ∩ E(Y )| > 2. If |E(C) ∩

E(Y )| > e(C) − 1 = 3, then x ∈ V (Y ) by Lemma 19, a contradiction. There-

fore, |E(C) ∩ E(Y )| = 2. Since x /∈ V (Y ), we have E(C) \ E(Y ) = {e1, e2}. Thus

H [{e, e1, e2}] is a component of F 2. Noting that H [{e, e1, e2}] is also a claw, we are

done.

Next suppose that e(C) = 5. Then by Claim 2, |E(C) ∩ E(Y )| > 3. If |E(C) ∩

E(Y )| > e(C) − 1 = 4, then by Lemma 19, x ∈ V (Y ), a contradiction. Therefore,

|E(C) ∩ E(Y )| = 3. Since x /∈ V (Y ), E(C) \ E(Y ) = {e1, e2}. Thus H [{e, e1, e2}] is

a component of F 2. Noting that H [{e, e1, e2}] is also a claw, we are done. �

If T is a component of F 1, then, by Claims 3 and 4, T is of one of the following

two types: (i) T is a tree obtained from a claw by identifying two of its leaves with

the centers of 2 additional K1,3’s, (ii) T is a tree which has no vertex of degree 2 and

has no vertex of degree 3 which is adjacent to a vertex of degree 1. In the former case,

T has a unique reduction which is edgeless, and in the latter, T equals its reduction.

Thus, F 1 has a unique reduction, each component of which satisfies (ii). By Claim 3,

no component in case (ii) is an edge. Hence, the reduction of F 1 has no component

that is an edge. Thus L(H) has a 2-factor by Theorem 4. �

6. Sharpness of Theorem 5

We give an example to show that 5 cannot be weakened to an integer l > 6 in

Theorem 5. The graph H0 in Figure 3 is obtained from K2,3 by subdividing the three

edges that are incident with exactly one vertex of degree three in K2,3 and attaching

some pendant edges to every vertex of degree three. The line graph L(H0) of H0 is

a claw-free graph in which there exists an edge that lies on a cycle of length exactly

six and in which there is no locally connected vertex of degree two. However, H0 has

no dominating system, hence L(H0) has no 2-factor.
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Figure 3. The graph H0.
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