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EQUATIONS IN UNBOUNDED DOMAINS OF HALF SPACE TYPE
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Abstract. We consider the theory of very weak solutions of the stationary Stokes system
with nonhomogeneous boundary data and divergence in domains of half space type, such as
R
n
+, bent half spaces whose boundary can be written as the graph of a Lipschitz function,
perturbed half spaces as local but possibly large perturbations of Rn+, and in aperture
domains. The proofs are based on duality arguments and corresponding results for strong
solutions in these domains, which have to be constructed in homogeneous Sobolev spaces.
In addition to very weak solutions we also construct corresponding pressure functions in
negative homogeneous Sobolev spaces.

Keywords: Stokes equation; very weak solution; strong solution; domain of half space
type

MSC 2010 : 76D05, 35Q30, 35J65

1. Introduction

Let us consider the stationary Stokes equations for an incompressible fluid

(1.1) −ν∆u+∇p = f = divF in Ω,

div u = k in Ω,

u = g on ∂Ω,

with unknown velocity u and pressure p in a domain Ω ⊂ R
n, external force density f

and viscosity ν = 1. It will prove to be convenient later on to write the external

force density in divergence form f = divF . Note that we include nonzero diver-

gence data k. The boundary condition u|∂Ω = g generalizes the well-known no-slip

The second author has been supported by the International Research Training Group
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condition. The main goal of this paper is to set up the notion of a special class of

solutions, the very weak solutions, for unbounded domains of half space type.

The concept of very weak solutions was first introduced by Amann [1], [2] for

the nonstationary case and elaborately investigated by Farwig, Galdi, Simader, Sohr

and Kozono [5]–[8], [16] in the case of bounded and exterior domains, and Riechwald

[19], [20] for arbitrary unbounded domains. Very weak solutions are solutions to (1.1)

with data of low regularity, which are not differentiable except for the existence of

divergence and do not have finite kinetic energy in general. The main advantage

of considering very weak solutions is the fact that this concept furnishes us with

unique solvability even of nonlinear Navier-Stokes systems in a bounded or exterior

domain Ω under Serrin’s condition 2/s + 3/q = 1 for the exponents of the solution

u ∈ Ls(0, T ;Lq(Ω)). One problem in the case of unbounded domains is to ensure the

existence of a unique strong solution of an auxiliary Stokes problem, since there is

a duality correspondence between strong and very weak solutions, as pointed out by

Schumacher [21], [22]. Therefore, in this paper we extend a known result on strong

solutions for the half space and prove an analogous result for a bent half space

by using perturbation arguments and for a perturbed half space via a localization

method. Moreover, we consider very weak solutions for aperture domains, where the

flux of the fluid through the aperture must be prescribed to ensure uniqueness.

We will use some common notation and terminology. The definitions of the dif-

ferent types of domains are as follows:

⊲ R
n is the whole space, and Rn+ := {(x1, . . . , xn) ∈ R

n : xn > 0} is the (upper) half

space,

⊲ a bent half space is a domain of the form Hω = {x = (x′, xn) ∈ R
n : xn > ω(x′)},

where ω : R
n−1 → R is a Lipschitz continuous function in W 2,1

loc (R
n−1) such that

the gradient ∇′ω = (∂1, . . . , ∂n−1)ω is bounded in R
n−1,

⊲ a perturbed half space is a domain of class C1,1 such that Ω\B = R
n
+ \B for some

open ball B,

⊲ an aperture domain is a domain of class C1,1 such that Ω∪B = R
n
+ ∪R

n
− ∪B for

some open ball B = BR(0) ⊂ R
n of radius R and center 0, where

R
n
− := {x ∈ R

n : xn < −d}

for some d > 0. Since Ω is connected, we may choose a smooth (n−1)-dimensional

manifold S ∈ Ω∩B such that Ω \ S consists of two disjoint perturbed half spaces

Ω+ and Ω− with S = ∂Ω+ ∩ ∂Ω− and Ω = Ω+ ∪ S ∪ Ω−.

Let Ω ⊂ R
n be one of the unbounded domains considered above. We define the

space of test functions

C2
0,σ(Ω) = {w ∈ C2(Ω): divw = 0, suppw compact in Ω, w|∂Ω = 0},
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and formally test the Stokes system (1.1) with w ∈ C2
0,σ(Ω) to get the identities

(1.2) −(u,∆w) = −〈g,N · ∇w〉∂Ω − (F,∇w) for all w ∈ C2
0,σ(Ω),

div u = k in Ω, u ·N = g ·N on ∂Ω.

Here, N denotes the exterior normal vector on ∂Ω.

This motivates the following definition, giving a precise meaning to all the terms

in (1.2). Note that due to the unboundedness of the domains considered, we have

to work with homogeneous Sobolev spaces and corresponding dual and trace spaces.

In particular, the data on the boundary lie in the space Ẇ−1/q,q(∂Ω) with the corre-

sponding norm ‖·‖−1/q,q,∂Ω. Moreover, in the main results we construct the pressure

in the space Ŵ−1,q(Ω) with the corresponding norm ‖·‖−1,q. For an exact definition

of the functions spaces we refer to Section 2.

Definition 1.1. Let n > 2, Ω ⊂ R
n be a half space, a bent half space, a per-

turbed half space or an aperture domain. Let furthermore 1 < r < q < ∞, r < n,

with 1/n+ 1/q = 1/r. Then for given data

F ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ Ẇ−1/q,q(∂Ω),(1.3)

we call a vector field u ∈ Lq(Ω) a very weak solution to (1.1) if it satisfies the

identities (1.2).

Note that all terms are well defined in their respective sense. In particular,

N · ∇w ∈ Ẇ 1/q,q′(∂Ω) for every q ∈ (1,∞). The two last identities of (1.2) are

obtained by testing the equation div u = k with some scalar-valued ψ ∈ C1
0 (Ω),

yielding the variational problem

−(u,∇ψ) = (k, ψ)− 〈g, ψN〉∂Ω.(1.4)

Since N · ∇w has a vanishing normal component on ∂Ω for functions w from the

(solenoidal) test space C2
0,σ(Ω), we cannot recover the information of the normal

component of g via the term 〈g,N · ∇w〉∂Ω.

With these definitions in mind, the main goal of this paper is to find sufficient

conditions to prove existence and uniqueness of very weak solutions to (1.1) with the

data specified in Definition 1.1. The two main results read as follows.
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Theorem 1.2. Assume that one of the following conditions holds.

(i) Half space: n > 2, n/(n− 1) < q <∞, and Ω = R
n
+.

(ii) Bent half space: n > 3, (n− 1)/(n− 2) < q < ∞, and Ω = Hω such that ω

satisfies the conditions

(1.5) ‖∇′ω‖∞ 6 K and ‖∇′2ω‖Ln−1(Rn−1) 6 K or ‖|·|∇′2ω‖∞ 6 K,

where the constant K = K(n, q) > 0 is determined in Theorem 3.5.

(iii) Perturbed half space: n > 3, n/(n− 2) < q < ∞, and Ω ⊂ R
n is a perturbed

half space.

Let 1 < r < n satisfy 1/n + 1/q = 1/r. Then for given data F , k and g as in

Definition 1.1, there exists a unique very weak solution u ∈ Lq(Ω) to (1.1). This

solution satisfies the estimate

‖u‖q 6 c(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω)(1.6)

with c = c(n,Ω, q) > 0. Moreover, there exists a pressure p ∈ Ŵ−1,q(Ω) such that

−∆u+∇p = f in the sense of distributions and such that (u, p) satisfy the estimate

‖u‖q + ‖p‖−1,q 6 c(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω)(1.7)

with c = c(n,Ω, q) > 0.

The second result deals with aperture domains. In such domains one observes

the interesting effect that the usual boundary condition u|∂Ω = 0 is not sufficient to

guarantee uniqueness of the solution, but has to be completed by the additional flux

condition φ̂(u) = α, see (3.33) below for the definition of φ̂(u).

Theorem 1.3. Let n > 3, n/(n− 2) < q <∞, and let r satisfy 1/n+ 1/q = 1/r.

Let furthermore Ω ⊂ R
n be an aperture domain. Then for all α ∈ C and for

given data F , k and g as in Definition 1.1, there exists a unique very weak solution

u ∈ Lq(Ω) to (1.1) with φ̂(u) = α. This solution satisfies the estimate

‖u‖q 6 c(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω + |α|)(1.8)

with c = c(n,Ω, q) > 0. Moreover, there exists a distribution p such that −∆u+∇p =

f in the sense of distributions.

The proofs of Theorems 1.2 and 1.3 are based on duality arguments. Therefore,

corresponding results for strong solutions in homogeneous Sobolev spaces have to be

established.
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This paper is organized as follows. The function spaces used in this paper are

introduced in Section 2, alongside some of their properties. In particular, we charac-

terize the trace spaces of homogeneous Sobolev spaces in domains of half space type.

The main results of this paper and the corresponding results for strong solutions are

proven in Subsections 3.1, 3.2, 3.3 and 3.4 dealing with the half space, the bent half

space, the perturbed half space and the aperture domain, respectively.

2. Preliminaries

2.1. Function spaces. Let Ω ⊂ R
n be an arbitrary domain. As subspaces of

Ck(Ω), k ∈ N0, we consider the space of k-times differentiable functions with compact

support in Ω denoted by Ck0 (Ω), as well as C
k
0 (Ω) = {u|Ω : u ∈ Ck0 (R

n)} and Ck(Ω) =

{u|Ω : u ∈ Ck(Rn)}. The dual space of the space of test functions C∞
0 (Ω) is the space

of distributions C∞
0 (Ω)′. Duality pairing will be denoted by 〈·, ·〉Ω, where the index

may be omitted if there is no danger of confusion.

Now let 1 6 q 6 ∞ and let q′ = q/(q − 1) be its Hölder conjugate. Then Lq(Ω)

and Wα,q(Ω), α > 0, are the usual Lebesgue and Sobolev(-Slobodeckij) spaces with

norms ‖·‖Lq(Ω) = ‖·‖q,Ω = ‖·‖q and ‖·‖Wα,q(Ω), respectively. For 1 6 q < ∞ and

α > 0, the spaces Wα,q
0 (Ω) denote the closure of C∞

0 (Ω) with respect to the norm

‖·‖Wα,q(Ω). The dual space of W
α,q
0 (Ω) will be denoted by W−α,q′(Ω). The pairing∫

Ω
uv dx will be referred to by (u, v)Ω, if uv ∈ L1(Ω).

Furthermore, u ∈ Lqloc(Ω) indicates that u ∈ Lq(Ω′) for all bounded domains

Ω′ ⊂⊂ Ω, i.e., for all Ω′ ⊂ Ω′ ⊂ Ω, and u ∈ Lqloc(Ω) specifies that u ∈ Lqloc(Ω ∩ B)

for any ball B. Finally, for a bounded domain Ω′, we define

Lq0(Ω
′) =

{
u ∈ Lq(Ω′) :

∫

Ω′

u dx = 0

}
.

In the context of the Navier-Stokes equations, the concept of homogeneous Sobolev

spaces appears naturally when considering unbounded domains. For m > 0 and

1 6 q <∞, they are defined as

Ẇm,q(Ω) = {u ∈ Lqloc(Ω): D
αu ∈ Lq(Ω), |α| = m}.

Note that by Ehrling’s lemma [12], for each u ∈ Ẇm,q(Ω) it holds that u ∈Wm,q
loc (Ω)

and for locally Lipschitzian domains Ω even u ∈ Wm,q
loc (Ω). We can turn Ẇm,q(Ω)

into a separable (and for 1 < q < ∞ reflexive) Banach space [15], if we identify two

functions differing at most by a polynomial of degree m − 1 and endow the space

with the norm

‖u‖Ẇm,q(Ω) =

( ∑

|α|=m

∫

Ω

|Dαu|q dx

)1/q

.(2.1)
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Consider now the space Ŵm,q(Ω) defined as the completion of C∞
0 (Ω) in the

norm (2.1). Note that Ẇm,q(Ω) and Ŵm,q(Ω) do not coincide in general [10], see

also Lemma 3.11 below for aperture domains. However, they do coincide for a large

class of unbounded domains, including the whole space and the half space, as well

as perturbed and bent half spaces [11].

The dual space of Ŵ 1,q(Ω) is denoted by Ŵ−1,q′(Ω) = (Ŵ 1,q(Ω))∗ and is endowed

with the norm

‖γ‖
Ŵ−1,q′ (Ω)

= sup
06=w∈C∞

0
(Ω)

|〈γ, w〉|

‖∇w‖q
.

We have the following lemma.

Lemma 2.1. Let 1 < q < ∞, n > 2 and let Ω be the half space, a perturbed

half space, an aperture domain or the whole space. Then Ŵ 1,q(Ω) is the closure of

W 1,q(Ω) ∩ Ŵ−1,q(Ω) with respect to the norm ‖∇ · ‖q.

P r o o f. First observe that W 1,q
c (Ω) = {γ ∈ W 1,q(Ω): supp γ compact in Ω} is

a dense subset of Ŵ 1,q(Ω), since C∞
0 (Ω) is a dense subset of Ŵ 1,q(Ω) and C∞

0 (Ω) ⊂

W 1,q
c (Ω) ⊂ Ŵ 1,q(Ω). Unfortunately, W 1,q

c (Ω) is not a subset of the dual space

Ŵ−1,q(Ω), where we identify γ ∈W 1,q
c (Ω) with the functional

〈γ, ·〉 : v 7→

∫

Ω

γv dx, v ∈ C∞
0 (Ω),

and extend it to all v ∈ Ŵ 1,q′(Ω), if 〈γ, ·〉 is continuous with respect to ‖∇ · ‖q′ .

Nevertheless, this continuity is guaranteed for all γ ∈W 1,q
c (Ω) with

∫
Ω
γ dx = 0 due

to the Poincaré inequality.

Thus, it is left to show that the elements of W 1,q
c (Ω) with vanishing mean form

a dense subspace of W 1,q
c (Ω) with respect to the gradient norm. It suffices to

construct a sequence (γ̃k) ⊂ W 1,q
c (Ω) with ‖∇γ̃k‖q → 0 and

∫
Ω
γ̃k dx = 1 for all

k ∈ N, since for every γ ∈W 1,q
c (Ω) with mean

∫
Ω γ dx =:Mγ , the sequence (γk)k∈N,

γk := γ−Mγγ̃k, converges towards γ with respect to ‖∇·‖q and we have
∫
Ω
γk dx = 0

for all k ∈ N. In the case of the half space, a sequence of functions with the desired

properties is given by the cone functions βk : Ω → R defined via βk(x) = 1/knβ(x/k),

where β(r) = n(n+ 1)/κn(1− r)+ and κn = 1/2
∫
∂B1(0)

dσ is the surface of the half

unit sphere ∂B1(0) ∩Ω. In fact, we get

∫

Ω

βk dx =

∫

Ω

β dx = n(n+ 1)

∫ 1

0

(1− r)rn−1 dr = n(n+ 1)
[rn
n

−
rn+1

n+ 1

]1
0
= 1

and for the gradient norm ‖∇βk‖q = k−1−n+n/q‖∇β‖q → 0 as k → ∞, which proves

the assertion. Similarly, one shows the assertion for domains of perturbed half space

type, aperture domains and the whole space. �
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2.2. Traces of homogeneous Sobolev spaces. If Ω is locally Lipschitzian and

∂Ω ∩ B 6= ∅ for an open ball B, then for every u ∈ Ẇ 1,q(Ω) ⊂ W 1,q(Ω ∩ B),

1 < q < ∞, there is a well-defined trace Γ(u) ∈ W 1−1/q,q(∂(Ω ∩ B)) (modulo R).

However, if ∂Ω is noncompact, finiteness of the norm of Γ(u) on the whole of the

boundary cannot be concluded. For an unbounded domain of half space type Ω we

introduce the notion

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) :=

(∫

∂Ω

∫

∂Ω

|Γ(u)(x)− Γ(u)(y)|q

|x− y|n−2+q
dσx dσy

)1/q

,(2.2)

where dσx and dσy are the surface measures with respect to x and y, respectively,

and where we integrate only over those x, y ∈ ∂Ω with |x − y| < d/2 whenever

x ∈ ∂Ω± and y ∈ ∂Ω∓ in the case of an aperture domain. Moreover, we introduce

the space Ẇ 1−1/q,q(∂Ω) = Ẇ 1/q′,q(∂Ω) consisting of all functions for which (2.2) is

finite. Identifying two functions that differ only by a constant, (2.2) even defines

a norm on Ẇ 1/q′,q(∂Ω) and turns this space into a Banach space [15]. Its dual space

will be denoted by Ẇ−1/q′,q′(∂Ω), the corresponding norm by ‖·‖−1/q′,q′,∂Ω.

The following theorem largely due to Kudryavtsev [17], [18] characterizes the space

Ẇ 1/q′,q(∂Ω) as the desired trace space.

Theorem 2.2. Let n > 2, 1 < q < ∞ and let Ω ⊂ R
n be the half space, a bent

half space, a perturbed half space or an aperture domain.

(i) For every u ∈ Ẇ 1,q(Ω), the trace Γ(u) is well defined and belongs to Ẇ 1/q′,q(∂Ω).

Furthermore, the trace estimate

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) 6 c‖u‖Ẇ 1,q(Ω)(2.3)

holds true for a constant c = c(Ω, q) > 0.

(ii) For every u ∈ Ẇ 1/q′,q(∂Ω), there exists u ∈ Ẇ 1,q(Ω) such that Γ(u) = u and

‖u‖Ẇ 1,q(Ω) 6 c‖u‖Ẇ 1/q′,q(∂Ω)(2.4)

with a constant c = c(Ω, q) > 0.

P r o o f. For the assertion concerning the half space, see [17], [18].

For a bent half space Hω where ‖∇′ω‖∞ < ∞ it holds for every measurable

function v on ∂Hω

∫

∂Hω

|v| dσx =

∫

∂Rn
+

v(x′, ω(x′))
√
1 + |∇′ω|2 dx′(2.5)

6 c

∫

∂Rn
+

|v(x′, ω(x′))| dx′ = c

∫

∂Rn
+

|ṽ(x̃′, 0)| dx̃′,
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for some constant c = c(n, q, ω) > 0; here we used the transformation (x′, xn −

ω(x′)) := x̃ = (x̃′, x̃n) and the definition ṽ(x̃) = v(x). Furthermore, since ω is

a Lipschitz function, we have that

|x′ − y′|n−2+q 6 |x′ − y′|n−2+q + |ω(x′)− ω(y′)|n−2+q 6 c|x′ − y′|n−2+q,

with c > 0 depending on the Lipschitz constant of ω. This implies for u ∈ Ẇ 1,q(Hω)

that

c1‖Γ̃(u)‖Ẇ 1/q′,q(∂Rn
+
) 6 ‖Γ(u)‖Ẇ 1/q′,q(∂Hω) 6 c2‖Γ̃(u)‖Ẇ 1/q′,q(∂Rn

+
)

for some constants c1, c2 > 0. Using the notation ∇̃ = (∇̃′, ∂̃n) for the differential

operator acting on the variable x̃ ∈ R
n
+, we obtain ∇w = (∇̃− (∇̃′ω, 0)∂̃n)w̃ and the

estimate

c1‖∇̃ũ‖Lq(Rn
+
) 6 ‖∇u‖Lq(Hω) 6 c2‖∇̃ũ‖Lq(Rn

+
),

cf. also (3.12), (3.13) below. Hence (2.3) and (2.4) hold due to the half space result

and Γ̃(u) = Γ(ũ), and

‖Γ(u)‖Ẇ 1/q′,q(∂Hω) 6 c‖Γ̃(u)‖Ẇ 1/q′,q(∂Rn
+
) = c‖Γ(ũ)‖Ẇ 1/q′,q(∂Rn

+
)(2.6)

6 c‖ũ‖Ẇ 1,q(Rn
+
) 6 c‖u‖Ẇ 1,q(Hω).

By analogy, for u ∈ Ẇ 1,q(Hω)

‖u‖Ẇ 1,q(Hω) 6 c‖ũ‖Ẇ 1,q(Rn
+
)(2.7)

6 c‖Γ(ũ)‖Ẇ 1/q′,q(∂Rn
+
) = c‖ũ‖Ẇ 1/q′,q(∂Rn

+
)

= c‖ũ‖Ẇ 1/q′,q(∂Rn
+
) 6 c‖u‖Ẇ 1/q′,q(∂Hω).

To show the assertion concerning the perturbed half space and aperture domain let

us first sharpen the result in the case of a bent half space Hω. Let u ∈ Ẇ 1/q′,q(∂Hω)

have compact support in ∂Hω. Then for every δ > 0 there is an extension uδ ∈

Ẇ 1,q(Hω) with Γ(uδ) = u that vanishes outside of a layer of width δ and satisfies the

estimate (2.4) with a constant c = c(Hω, q, δ) > 0. This may be seen by the following

consideration. Take a cut-off function ϕδ ∈ C∞
0 (Rn) with ϕδ|Σ = 1 for Σ ⊂ ∂Hω

containing suppu and ϕδ(x) = 0 for dist(x, ∂Hω) > δ. Denote by u ∈ Ẇ 1,q(Hω) an

extension of u as in (ii) satisfying (2.4). Then uδ = uϕδ has compact support, fulfils

Γ(uδ) = u and satisfies the estimate

‖uδ‖Ẇ 1,q(Hω) 6 ‖ϕδ∇u‖q,Hω + ‖u∇ϕδ‖q,G 6 c(‖u‖Ẇ 1,q(Hω) + ‖u‖q,G),(2.8)
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where G ⊂ Hω is an open, bounded domain containing suppuδ. But since u = 0 on

a subset Λ ⊂ ∂Hω∩G with positive measure, ‖u‖q,G 6 c‖u‖Ẇ 1,q(Hω) by the Poincaré

inequality and thus

(2.9) ‖uδ‖Ẇ 1,q(Hω) 6 c‖u‖Ẇ 1,q(Hω) 6 c‖u‖Ẇ 1/q′,q(∂Hω).

Now we turn our focus to the perturbed half space Ω. Let B = B0 be a ball

with center 0 such that Ω \ B = R
n
+ \ B. Then choose open balls B1, . . . , Bm ⊂ R

n

satisfying

(2.10) Ω ⊂ (Rn+ \B) ∪
m⋃

j=1

Bj ,

and cut-off functions ϕ0, . . . , ϕm ∈ C∞(Rn) defining a partition of unity such that

ϕ0 = 1 outside of some open ball B′ with B ⊂ B′, ϕ0 = 0 in a neighbourhood of

B, suppϕj ⊂ Bj for 1 6 j 6 m and
m∑
j=0

ϕj = 1 in Ω. Since Γ(ϕju) = ϕj |∂Ω · Γ(u)

for u ∈ Ẇ 1,q(Ω), we have to control only those ϕj with Bj ∩ ∂Ω 6= ∅, say, for

j = 1, . . . ,m′. Furthermore, due to the regularity of the boundary of Ω, we find for

each 1 6 j 6 m′ with Bj ∩ ∂Ω 6= ∅ a function ωj ∈ C1,1(Rn−1) of compact support

such that with the bent half space Hj = Hωj

(2.11) Bj ∩ Ω ⊂ Hj , Bj ∩ ∂Ω ⊂ ∂Hj ;

we have tacitly rotated and translated the coordinate system depending on j. Finally,

let H0 = R
n
+. It should be understood that if Bj ∩∂Ω is empty, then we may assume

Bj ⊂ Ω. Given u ∈ Ẇ 1/q′,q(∂Ω) and ϕ ∈ C∞(Rn) such that either ϕ or 1 − ϕ has

compact support, we have

‖ϕu‖Ẇ 1/q′,q(∂Ω) 6 c(‖u‖Ẇ 1/q′,q(∂Ω) + ‖u‖q,Σ)(2.12)

with an open and bounded Σ ⊂ ∂Ω containing suppϕu or supp(u−ϕu), respectively.

This follows easily from ‖u‖Ẇ 1/q′,q(∂Ω) 6 c‖u‖Ẇ 1/q′,q(Σ) for functions with compact

support in Σ and a truncation lemma, see [3], Lemmata 5.1, 5.3, as well as from the

triangle inequality applied to ϕu = u− (1−ϕ)u in Ẇ 1/q′,q(∂Ω). But then, with the

partition of unity considered above, denote for u ∈ Ẇ 1/q′,q(∂Ω) the extension of ϕju

to the bent half space Hj by uj . Now, if one chooses the extensions to vanish in

a δ-neighborhood of Hj , it follows due to the smoothness of the boundary of Ω that
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u =
m∑
j=0

uj is an extension of u satisfying

‖u‖Ẇ 1,q(Ω) 6

m′∑

j=0

‖uj‖Ẇ 1,q(Hj)

(2.9)

6 c

m′∑

j=0

‖Γ(uj)‖Ẇ 1/q′ ,q(∂Hj)
= c

m′∑

j=0

‖ϕju‖Ẇ 1/q′,q(∂Hj)

(2.12)

6 c(‖u‖Ẇ 1/q′,q(∂Ω) + ‖u‖q,∂G),

where G ⊂ Ω is a bounded domain as above such that ϕ0 = 1 outside of G. Since u ∈

Ẇ 1/q′,q(∂Ω) is defined only up to a constant, we assume that
∫
∂G

udσ = 0. Then, by

the Poincaré inequality for Sobolev-Slobodeckij spaces (see e.g. [13], Theorem 2.6) we

have ‖u‖q,∂G 6 c‖u‖Ẇ 1/q′,q(∂G) 6 c‖u‖Ẇ 1/q′,q(∂Ω) with a constant c = c(G,Ω, q) > 0.

For the converse direction, we immediately see by (2.12) and the Poincaré inequal-

ity that

‖ϕjΓ(u)‖Ẇ 1/q′,q(∂Ω) 6 c‖Γ(ϕju)‖Ẇ 1/q′,q(∂G) 6 c‖Γ(ϕju)‖Ẇ 1/q′,q(∂Hj)

and thus by (2.6)

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) 6 c
m′∑

j=0

‖Γ(ϕju)‖Ẇ 1/q′,q(∂Hj)
(2.13)

6 c
m′∑

j=0

‖ϕju‖Ẇ 1,q(Hj)

6 c(‖u‖Ẇ 1,q(Ω) + ‖u‖q,B′∩Ω)

with c = c(n, q,Ω) > 0. Since u ∈ Ẇ 1,q(Ω) is defined only up to a constant, we can

assume that
∫
B′∩Ω u dx = 0. This gives ‖u‖q,B′∩Ω 6 c‖u‖Ẇ 1,q(Ω) for some constant

c > 0.

A similar procedure as the one used for the perturbed half space yields the assertion

for the aperture domain, if one chooses open balls B = B0, B1, . . . , Bm ⊂ R such

that

Ω ∪B = R
n
+ ∪ R

n
− ∪B, Ω ⊂ ((Rn+ ∪ R

n
−) \B) ∪

m⋃

j=1

Bj ,

and cut-off functions ϕ+, ϕ−, ϕ1, . . . , ϕm ∈ C∞(Rn) defining a partition of unity

with suppϕj ⊂ Bj for 1 6 j 6 m and ϕ± = 1 in Ω± \B′ for some open ball B′ with

B ⊂ B′, ϕ± = 0 in a neighborhood of B and in Ω∓. The condition |x − y| < d/2 in
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the integral norm is crucial in our context to exclude mixed terms coming from the

upper and lower part of the boundary far away from the origin. In fact, without this

condition one cannot expect (2.12) to be valid for ϕ±, since neither ϕ± nor 1 − ϕ±

has compact support. But if we do impose the condition, we may write

‖ϕ±u‖Ẇ 1/q′,q(∂Ω) = ‖ϕ±u‖Ẇ 1/q′,q(Σ) +

∫

Σ

∫

(∂Ω\Σ)∩{|x−y|<d/2}

|ϕ±(x)u(x)|q

|x− y|n−2+q
dy dx,

with Σ ⊂ ∂Ω containing the support of ϕ±. Because 0 < δ 6 |x − y| < d/2,

the second term of the right-hand side can be estimated by c‖ϕ±u‖q,Σ. Since

ϕ±u = 0 on a subset Λ ⊂ Σ of positive measure, we get by Poincaré’s inequal-

ity ‖ϕ±u‖Ẇ 1/q′,q(∂Ω) 6 ‖ϕ±u‖Ẇ 1/q′,q(Σ) and a cut-off argument on Σ yields (2.12).

It should be noted that these results do not depend on the choice of the partition

of unity. This is because the norms ϕ‖·‖Ẇ 1/q′,q(∂Ω) and ψ‖·‖Ẇ 1/q′,q(∂Ω) corresponding

to different partitions of unity (ϕj)06j6m and (ψk)06k6l are equivalent, which can

be seen by considering for every j

‖ϕju‖Ẇ 1/q′,q(∂Ω) =

∥∥∥∥
l∑

k=0

ψkϕju

∥∥∥∥
Ẇ 1/q′,q(∂Ω)

(2.14)

6

l∑

k=0

‖ψkϕju‖Ẇ 1/q′,q(∂Ω) =

l∑

k=0

‖ϕj(ψku)‖Ẇ 1/q′,q(∂Ω)

6 c

l∑

k=0

‖ψku‖Ẇ 1/q′,q(∂Ω).

This proves Theorem 2.2. �

The considerations above motivate the notation u|∂Ω := Γ(u), ‖u‖Ẇ 1/q′,q(∂Ω) :=

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) and Ẇ
1,q
0 (Ω) := {u ∈ Ẇ 1,q(Ω): u|∂Ω = 0}.

3. Very weak solutions

3.1. Very weak solutions in the half space. In order to prove Theorem 1.2

in the case of the half space, we introduce a generalization of Definition 1.1 of very

weak solutions. Therefore, we generalize a result by Farwig and Sohr [11] concerning

the strong Stokes system

(3.1) −∆w −∇ψ = v in Ω,

∇ divw = ∇γ in Ω,

w|∂Ω = 0 on ∂Ω,

91



where Ω = R
n
+ or Ω = R

n, and the boundary condition is not needed when Ω = R
n.

The latter case will be of interest in the proof of Theorem 3.8.

Theorem 3.1. Let n > 2, 1 < q <∞ and let Ω = R
n
+ or Ω = R

n. Then for every

v ∈ Lq(Ω), γ ∈ Ŵ 1,q(Ω), there exists a solution (w,ψ) ∈ Ŵ 2,q(Ω)×Ŵ 1,q(Ω) of (3.1)

satisfying

(3.2) ‖∇2w‖q + ‖∇ψ‖q 6 c(‖v‖q + ‖∇γ‖q)

with c = c(n, q) > 0. The pressure ψ is unique up to a constant and the velocity

field w is

(i) unique up to a linear polynomial a+Ax, where a ∈ C
n and A ∈ C

n,n, if Ω = R
n,

and

(ii) unique up to a linear term bxn, where b ∈ C
n, if Ω = R

n
+.

If 1 < q < n and 1/n+ 1/r = 1/q, then we may single out a special solution by

the condition ∇w ∈ Lr(Ω) (and up to the additive constant a ∈ C
n if Ω = R

n).

P r o o f. The proof for data v ∈ Lq(Ω) and γ ∈W 1,q(Ω)∩Ŵ−1,q(Ω) in [11] uses an

approximation procedure of the generalized resolvent problem, where the equation

−∆w − ∇ψ = v in (3.1) is replaced by λw − ∆w − ∇ψ = v with λ → 0+. Now

let v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω). In view of Lemma 2.1, there exists a sequence

(γi) ⊂ W 1,q(Ω) ∩ Ŵ−1,q(Ω) such that ‖∇(γ − γi)‖q → 0 as i → ∞. To each (v, γi)

corresponds a solution (wi, ψi) ∈ Ŵ 2,q(Ω) × Ŵ 1,q(Ω) satisfying the estimate (3.2).

This ensures that both (wi) and (ψi) are Cauchy sequences in their respective spaces

and hence converge to some w ∈ Ŵ 2,q(Ω) and ψ ∈ Ŵ 1,q(Ω). The pair (w,ψ) actually

solves the system (3.1), because

‖−∆w +∇ψ − v‖q 6 ‖−∆(w − wi)‖q + ‖∇(ψ − ψi)‖q + ‖−∆wi +∇ψi − v‖q

6 ‖∇2(w − wi)‖q + ‖∇(ψ − ψi)‖q → 0

as i → ∞; by analogy, we get ∇ divw = ∇γ. Furthermore, (w,ψ) is easily seen to

satisfy the a priori estimate (3.2).

Concerning uniqueness, it suffices to consider a solution (w,ψ) ∈ Ŵ 2,q(Ω) ×

Ŵ 1,q(Ω) to (3.1) with data v = 0 ∈ Lq(Ω) and γ = 0 ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω).

Since this case has already been investigated in [11], the proof is complete. �

Now we introduce homogeneous Sobolev spaces Ŷ 2,q(Ω) and Ŷ 2,q
σ (Ω) related to the

domain of the Laplacian and the Stokes operator for the system (3.1), respectively,

i.e., the spaces of solutions

(3.3) Ŷ 2,q(Ω) = {w ∈ Ŵ 2,q(Ω): w = 0 on ∂Ω}
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and

(3.4) Ŷ 2,q
σ (Ω) := {w ∈ Ŵ 2,q(Ω): ∇ divw = 0, w = 0 on ∂Ω}.

If 1 < q < n, we include the condition ∇u ∈ Lr(Ω), 1/n+ 1/r = 1/q, to single out

a unique function, e.g.,

(3.5) Ŷ 2,q(Ω) = {w ∈ Ŵ 2,q(Ω): ∇w ∈ Lr(Ω), w = 0 on ∂Ω}.

All the spaces are endowed with the norm ‖∇2 ·‖q. Their dual spaces will be denoted

by

Ŷ −2,q′(Ω) := Ŷ 2,q(Ω)∗ and Ŷ −2,q′

σ (Ω) := Ŷ 2,q
σ (Ω)∗,

respectively. Evidently, analogous spaces are well defined Banach spaces when a sub-

set Ω ⊂ R
n is a bent or perturbed half space. In the case of an aperture domain Ω

and 1 < q < n, we will have to add the no-flux condition φ̂(w) = 0 in the definition

of Ŷ 2,q
σ (Ω) (see Subsection 3.4 below).

The following definition follows a generalization of the concept of very weak solu-

tions due to Schumacher [21], [22], see also [9].

Definition 3.2. Let n > 2, 1 < q < ∞, let Ω = R
n
+ be the half space and

let F ∈ Ŷ −2,q
σ (Ω), K ∈ Ŵ−1,q(Ω) be given. Then u ∈ Lq(Ω) is called a very weak

solution of the Stokes problem with data F , K if

−(u,∆w) = 〈F , w〉, w ∈ Ŷ 2,q′

σ (Ω),(3.6)

−(u,∇ψ) = 〈K, ψ〉, ψ ∈ Ŵ 1,q′(Ω).

R em a r k 3.3. (i) Given u ∈ Lq(Ω) and setting 〈F , w〉 := −(u,∆w) and 〈K, ψ〉 :=

−(u,∇ψ), one readily sees that any vector field u ∈ Lq(Ω) is a very weak solution of

the Stokes problem with suitable data. Thus, one cannot define boundary values of

solutions in this abstract setting.

(ii) For n/(n− 1) < q <∞ and given data F , k and g as in Definition 1.1, F and

K defined via

〈F , w〉 := −(F,∇w) − 〈g,N · ∇w〉∂Ω, w ∈ Ŷ 2,q′

σ (Ω),(3.7)

〈K, ψ〉 := (k, ψ)− 〈g, ψN〉∂Ω, ψ ∈ Ŵ 1,q′(Ω)

yield elements in Ŷ −2,q
σ (Ω) and Ŵ−1,q(Ω), respectively. This can be seen easily by

the embeddings Ŵ 1,q′(Ω) ⊂ Lr
′

(Ω), Ŷ 2,q′

σ (Ω) ⊂ Ŵ 1,r′(Ω) and the estimate

‖ψN‖
Ŵ 1/q,q′ (∂Ω)

6 c‖ψ‖
Ŵ 1/q,q′ (∂Ω)

6 c‖∇ψ‖q′ ,
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which is due to Theorem 2.2; note that 1 < q′ < n and 1/n + 1/r′ = 1/q′. Conse-

quently

|〈F , w〉| 6 ‖F‖r‖∇w‖r′ + ‖g‖
Ŵ−1/q,q(∂Ω)

‖N · ∇w‖
Ŵ 1/q,q′ (∂Ω)

6 c(‖F‖r + ‖g‖
Ŵ−1/q,q(∂Ω))‖∇

2w‖q′

and
|〈K, ψ〉| 6 ‖k‖r‖ψ‖r′ + ‖g‖

Ŵ−1/q,q(∂Ω)
‖ψN‖

Ŵ 1/q,q′ (∂Ω)

6 c(‖k‖r + ‖g‖
Ŵ−1/q,q(∂Ω)

)‖∇ψ‖q′

with constants c = c(n, q) > 0. Thus, the norms may be estimated by

(3.8) ‖F‖Ŷ −2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)
6 c(‖F‖r + ‖k‖r + ‖g‖

Ŵ−1/q,q(∂Ω)
).

Theorem 3.4. Let Ω = R
n
+ be the half space, 1 < q < ∞ and F ∈ Ŷ −2,q

σ (Ω),

K ∈ Ŵ−1,q(Ω). Then the problem (3.6) has a unique very weak solution u ∈ Lq(Ω)

satisfying

(3.9) ‖u‖q 6 c(‖F‖Ŷ −2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)),

where c = c(n, q) > 0 is a constant.

P r o o f. Let v ∈ Lq
′

(Ω) be a vector field. Then in view of Theorem 3.1, there

exists a unique solution w ∈ Ŷ 2,q′

σ (Ω), ψ ∈ Ŵ 1,q′(Ω) of the system

(3.10) −∆w −∇ψ = v, divw = 0 in Ω, w = 0 on ∂Ω,

depending linearly on v and satisfying the estimate

‖∇2w‖q′ + ‖∇ψ‖q′ 6 c‖v‖q′ ,

where c = c(n, q) > 0 is a constant. Therefore, and due to the duality of Lebesgue

spaces, an element u ∈ Lq(Ω) is uniquely defined via the relation

(u, v) = 〈F , w〉 + 〈K, ψ〉 ∀v ∈ Lq
′

(Ω),

satisfying

|(u, v)| 6 ‖F‖Ŷ−2,q
σ (Ω)‖∇

2w‖q′ + ‖K‖
Ŵ−1,q(Ω)

‖∇ψ‖q′

6 c(‖F‖Ŷ −2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)
)‖v‖q′ ,
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and thus verifying the estimate (3.9). Indeed, u is a very weak solution of the

system (3.6): Let w ∈ Ŷ 2,q′

σ (Ω) and ψ ∈ Ŵ 1,q′(Ω) be arbitrary test functions and

define v = −∆w −∇ψ. Then, by definition of u,

−(u,∆w)− (u,∇ψ) = (u, v) = 〈F , w〉 + 〈K, ψ〉.

Thus, u satisfies (3.6).

Now let u ∈ Lq(Ω) be a very weak solution corresponding to the data F = 0, K = 0.

Then for all v ∈ Lq
′

(Ω), v = −∆w −∇ψ, where w ∈ Ŷ 2,q′

σ (Ω) and ψ ∈ Ŵ 1,q′(Ω) are

the unique solution of (3.10),

(u, v) = −(u,∆w)− (u,∇ψ) = 〈F , w〉 + 〈K, ψ〉 = 0.

Consequently u = 0. This completes the proof. �

We are now in the position to prove Theorem 1.2.

P r o o f of Theorem 1.2 (i). Given data as in Definition 1.1 and functionals F and

K as in Remark 3.3 (ii), one may apply Theorem 3.4 to receive a unique very weak

solution u ∈ Lq(Ω). The estimate (1.6) follows from (3.8) and (3.9).

In order to show that there exists a pressure p ∈ Ŵ−1,q(Ω), let γ ∈ Ŵ 1,q′(Ω).

Then by Theorem 3.1, there exists w ∈ Ŷ 2,q′(Ω) with divw = γ in Ŵ 1,q′(Ω) and we

have the estimate ‖∇2w‖q′ 6 c‖∇γ‖q′ . Define p ∈ Ŵ−1,q(Ω) via

〈p, γ〉 = 〈p, divw〉 := −(u,∆w) + (F,∇w) + 〈g,N · ∇w〉∂Ω, γ ∈ Ŵ 1,q′(Ω).

Note that p is well-defined: For w1, w2 ∈ Ŷ 2,q′(Ω) with divw1 = divw1, we have that

w1−w2 ∈ Ŷ 2,q′

σ (Ω) is solenoidal and consequently 〈p, divw1〉 = 〈p, divw2〉, because u

is a very weak solution corresponding to the data F and g. Obviously, estimate (1.7)

is fulfilled and −∆u+∇p = divF in the sense of distributions. �

3.2. Very weak solutions in a bent half space. The main result concerning

very weak solutions in bent half spaces follows as in the case of the half space, once

one is able to ensure existence and uniqueness of strong solutions.

Theorem 3.5. Let n > 3, 1 < q < n − 1 and ω ∈ C0,1(Rn−1) ∩W 2,1
loc (R

n−1)

such that for simplicity ω(0′) = 0. Then there exists a constant K = K(n, q) > 0

such that if ω satisfies (1.5), then for all v ∈ Lq(Hω) and γ ∈ Ŵ 1,q(Hω) there exists

a strong solution (w,ψ) ∈ Ŷ 2,q(Hω)× Ŵ 1,q(Hω) of (3.1) satisfying the estimate

(3.11) ‖∇2w‖q + ‖∇ψ‖q 6 c(‖v‖q + ‖∇γ‖q)

with a constant c = c(ω, n, q) > 0.
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The pressure is unique up to a constant. Furthermore, the velocity field w is unique

up to a linear term Ax, where A ∈ C
n,n and A(x′, ω(x′)) = 0. In particular, if ω is

nonlinear, the velocity field w is unique. If, however, ω is a linear transformation,

say, ω(x′) = d′T · x′ with d′ ∈ R
n−1, then w is unique up to a vector field of the

form Ax, where A = an⊗ (−d′T, 1) with a column vector an ∈ C
n. By the condition

‖∇w‖r <∞, where 1/n+ 1/r = 1/q, we may single out a special solution.

P r o o f. We will transform the problem into a problem on Rn+ and use a classical

perturbation argument. Let the transformation φ : Hω → R
n
+ be defined via x =

(x′, xn) 7→ x̃ = (x̃′, x̃n) := φ(x) = (x′, xn − ω(x′)). Note that φ is a bijection and

that

Dφ =




1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

−∂ω/∂x1 −∂ω/∂x2 . . . 1


 ,

ensuring that the Jacobian of φ is equal to 1. Define for a function w onHω a function

w̃ on R
n
+ via w̃(x̃) = w(x). Using the notations ∂̃i, ∇̃ = (∇̃′, ∂̃n), ∆̃ and d̃iv for

the respective differential operators acting on the variables x̃ ∈ R
n
+, we obtain the

relations

(3.12) ∂iw = (∂̃i − (∂iω)∂̃n)w̃, i = 1, . . . , n− 1,

∆w(x) = (∆̃ + |∇′ω|2∂̃2n − 2(∇′ω, 0) · (∇̃∂̃n)− (∆′ω)∂̃n)w̃(x̃),

∇ψ(x) = (∇̃ − (∇′ω, 0)∂̃n)ψ̃(x̃),

divw(x) = (d̃iv − (∇′ω, 0) · ∂̃n)w̃(x̃).

Therefore, the norm estimates

(3.13) ‖w‖Lq(Hω) = ‖w̃‖Lq(Rn
+
),

‖∇w‖Lq(Hω) 6 (1 + ‖∇′ω‖∞)‖∇̃w̃‖Lq(Rn
+
),

‖∇2w‖Lq(Hω) 6 c(1 + ‖∇′ω‖∞)2‖∇̃2w̃‖Lq(Rn
+
) + c‖(∇′2ω)∂̃nw̃‖Lq(Rn

+
)

hold with a constant c > 0. In (3.13)3 we still need an estimate of the term

‖(∇′2ω)∂̃nw̃‖q by second order derivatives of w̃. For simplicity, let u = ∂nw̃, so

that u ∈ Ŵ 1,q(Rn+). Since C
∞
0 (Rn+) is dense in Ŵ

1,q(Rn+), it suffices to consider

u ∈ C∞
0 (Rn+). By the Sobolev embedding theorem, there exists a constant c > 0,

such that for all x̃n > 0

‖u(·, x̃n)‖Ls(Rn−1) 6 c‖∇̃′u(·, x̃n)‖Lq(Rn−1),

96



where s > q is defined via 1/(n− 1)+ 1/s = 1/q. If ‖∇′2ω‖Ln−1(Rn−1) 6 K, then we

get by Hölder’s inequality

‖(∇′2ω)u‖qLq(Rn
+
) 6 c

∫ ∞

0

dx̃n

∫

Rn−1

|∇′2ω|q|u(·, x̃n)|
q dx′(3.14)

6 c‖∇′2ω‖qLn−1(Rn−1)

∫ ∞

0

‖u(·, x̃n)‖
q
Ls(Rn−1) dx̃n

6 cK‖∇̃′u‖qLq(Rn
+
).

On the other hand, consider the weighted inequality

‖|·|−1ϕ‖q 6
q

(n− 1)− q
‖∇ϕ‖q

for ϕ ∈ C∞
0 (Rn−1), see [15], Section II.5, formula (5.3). Then, with the second

condition ‖|·|∇′2ω‖∞ 6 K, we get for u ∈ C∞
0 (Rn+) and for each x̃n > 0

‖|·|−1u(·, x̃n)‖Lq(Rn−1) 6 c‖∇̃′u(·, x̃n)‖Lq(Rn−1),

which yields the estimate

‖(∇′2ω)u‖qLq(Rn
+
) 6 c

∫ ∞

0

dx̃n

∫

Rn−1

|(|·|∇′2ω)|q||·|−1u(·, x̃n)|
q dx′(3.15)

6 c‖|·|∇̃′2ω‖q∞

∫ ∞

0

‖∇̃′u(·, x̃n)‖
q
Lq(Rn−1) dx̃n

6 cK‖∇̃′u‖qLq(Rn
+
).

Hence in both cases we get in (3.13)3 the estimate

(3.16) ‖(∇′2ω)∂nw̃‖
q
Lq(Rn

+
) 6 cK‖∇̃′∂nw̃‖

q
Lq(Rn

+
).

Consider now the spaces

X := Ŷ 2,q(Hω)× Ŵ 1,q(Hω), X̃ := Ŷ 2,q(Rn+)× Ŵ 1,q(Rn+),

Y := Lq(Hω)× Ŵ 1,q(Hω), Ỹ := Lq(Rn+)× Ŵ 1,q(Rn+).

These spaces, if equipped with the norms

‖(w,ψ)‖X = ‖∇2w‖q + ‖∇ψ‖q, ‖(v, γ)‖Y = ‖(v,∇γ)‖q,

and by analogy, X̃ , Ỹ equipped with similar norms ‖·‖X̃ , ‖·‖Ỹ , are obviously Banach

spaces. In view of Theorem 3.1, we know that the operator

S̃q : X̃ → Ỹ , S̃q(w̃, ψ̃) = (−∆̃w̃ − ∇̃ψ̃,−d̃iv w̃)
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is an isomorphism. Consider now the analogously defined operator Sq : X → Y. By

the relations (3.12), this operator decomposes into

Sq(w,ψ)(x) = S̃q(w̃, ψ̃)(x̃) + R̃q(w̃, ψ̃)(x̃)

with a remainder R̃q : X̃ → Ỹ defined via

R̃q(w̃, ψ̃) = (−|∇′ω|2∂̃2nw̃ + 2∇′ω · ∇̃′∂̃nw̃) + (∆′ω)∂̃nw̃ + (∇′ω, 0)∂̃nψ̃,∇
′ω · ∂̃nw̃

′).

Employing the estimate (3.16) and the isomorphism property of S̃q, we get that

‖R̃q(w̃, ψ̃)‖Ỹ 6 k‖S̃q(w̃, ψ̃)‖Ỹ

with a constant k = k(n, q,K), where we can choose the bound K of ∇′ω and of

∇′2ω or |·|∇′2ω for given n and q in (3.14) or (3.15), respectively, small enough so

that

k <
1

‖S̃−1‖L(Ỹ,X̃ )‖S̃‖L(X̃ ,Ỹ)

.

Now, for arbitrary ṽ ∈ Lq(Rn+) and γ̃ ∈ Ŵ 1,q(Rn+), we want to apply the Banach

fixed point theorem to the map N : X̃ → X̃ defined via

N(w̃, ψ̃) = S̃−1
q (ṽ, γ̃)− S̃−1

q (R̃q(w̃, ψ̃)),

because a fixed point (w̃, ψ̃) of the map N satisfies S̃q(w̃, ψ̃) + R̃(w̃, ψ̃) = (ṽ, γ̃), i.e.,

(w̃, ψ̃) is a solution to (3.1). Actually, N is a contraction map, since

‖N(w̃1, ψ̃1)−N(w̃2, ψ̃2)‖X̃ = ‖S̃−1
q (R̃q(w̃1 − w̃2, ψ̃1 − ψ̃2))‖X̃

6 ‖S̃−1
q ‖L(Ỹ,X̃ )‖R̃q(w̃1 − w̃2, ψ̃1 − ψ̃2)‖Ỹ

6 k‖S̃−1
q ‖L(Ỹ),X̃ ‖S̃q(w̃1 − w̃2, ψ̃1 − ψ̃2)‖Ỹ

6 k‖S̃−1
q ‖L(Ỹ,X̃ )‖S̃q‖L(X̃ ,Ỹ)‖(w̃1 − w̃2, ψ̃1 − ψ̃2)‖X̃

and k‖S̃−1
q ‖L(Ỹ,X̃ )‖S̃q‖L(X̃ ,Ỹ) < 1. Thus, S̃q + R̃q is an isomorphism from X̃ to Ỹ

and hence Sq is an isomorphism from X to Y. Finally,

‖(w,ψ)‖X 6 c1‖(w̃, ψ̃)‖X̃ 6 c2‖S̃q(w̃, ψ̃)‖Ỹ(3.17)

6 c3‖(S̃q + R̃q)(w̃, ψ̃)‖Ỹ 6 c4‖Sq(w,ψ)‖Y ,

with constants c1, c2, c3, c4 > 0 depending on ω, n, q.
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To prove the assertion about uniqueness, let (w,ψ) ∈ Ŷ 2,q(Hω) × Ŵ 1,q(Hω) be

a solution of (3.1) with data v = 0 and γ = 0. By the above consideration, (w,ψ) =

S−1
q (0, 0) = (0, 0) ∈ Ŷ 2,q(Hω)× Ŵ 1,q(Hω) and thus ∇ψ = 0, whereas ∇2w = 0 and

hence w = Ax + b with A = (ai,j) ∈ C
n,n, b ∈ C

n. By the boundary condition and

ω(0′) = 0 we get b = 0 and A(x′, ω(x′)) = 0 for all x′ ∈ R
n−1, which is equivalent to

(3.18)



a1,1 . . . a1,n−1

...
. . .

...

an,1 . . . an,n−1







x1
...

xn−1


 = −



a1,n
...

an,n


ω(x′), x′ ∈ R

n−1.

If ω is a nonlinear map, so is −ai,nω for each i = 1, . . . , n with ai,n 6= 0, which

contradicts the linear left-hand side. Hence, for every i = 1, . . . , n we have ai,n = 0,

and the i-th line of (3.18) gives us ai,j = 0 for all j = 1, . . . , n− 1. Thus A = 0.

Now let ω be a linear transformation, i.e., ω(x′) = d′T · x′ with some d′ ∈ R
n−1.

Then (3.18) implies that A = an⊗(−d′T, 1), where an ∈ C
n denotes the n-th column

vector of A. Finally, since 1 < q < n− 1, we define q < r <∞ via 1/n+ 1/r = 1/q,

and by Sobolev’s imbedding theorem there exists a constant matrix W0 ∈ R
n,n such

that ‖∇w −W0‖r <∞. This completes the proof. �

R em a r k 3.6. (i) In Theorem 3.5 with a linear ω, there always exists a unique

solution whose gradient has finite norm in Lr, 1/n+ 1/r = 1/q. This assertion also

holds true for the unique solutions in the case of a nonlinear ω. Actually, revising

the proof and substituting the spaces Ŷ 2,q by Ŷ 2,q ∩ Ẇ 1,r in the definition of X

and X̃ , we obtain for given data v ∈ Lq(Hω) and γ ∈ Ŵ 1,q(Hω) a unique solution

wr ∈ Ŷ 2,q(Hω)∩Ẇ 1,r(Hω) ⊂ Ŷ 2,q(Hω). Then by the uniqueness of w, we get wr = w

and thus ‖∇w‖r <∞.

(ii) If in Theorem 3.5 additionally f ∈ Ls(Hω) and g ∈ Ŵ 1,s(Hω) for some 1 < s <

n− 1 and K 6 min{K(n, q),K(n, s)}, then ‖∇2w‖s <∞ and ‖∇ψ‖s <∞. Indeed,

the same procedure as in the proof of the theorem yields a solution (ws, ψs) ∈

(Ẇ 2,q(Hω) ∩ Ẇ 2,s(Hω) × (Ŵ 1,q(Hω) ∩ Ŵ 1,s(Hω)) and by the uniqueness of the

solution (w,ψ) we get w = ws up to a linear polynomial and ψ = ψs up to a constant.

(iii) An interesting special case of a bent half space is a “smooth” cone. In this

case ω(x′) = α(1 + |x′|2)1/2 − α, and it is readily seen that for |α| 6 K, i.e., for

smooth cones with aperture angle close to π, Theorem 3.5 may be applied with the

condition ‖|·|∇′2ω‖∞ 6 K. Since ω is a nonlinear map, we get a unique solution in

the case of a cone.

The results about the strong solutions on a bent half space enable us to prove

existence and uniqueness of very weak solutions in an analogous way as in the half

space case, that is, the same argument as in the proof of Theorem 3.4 furnishes us

with the following result.
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Theorem 3.7. Let n > 3, (n− 1)/(n− 2) < q < ∞ and F ∈ Ŷ −2,q
σ (Ω), K ∈

Ŵ−1,q(Ω), where Ω = Hω is a bent half space. Then there exists a constant K =

K(n, q) > 0 such that if ‖∇′ω‖∞ 6 K and if ‖∇′2ω‖Ln−1(Rn−1) 6 K or ‖|·|∇′2ω‖∞ 6

K, the problem (3.6) has a unique very weak solution u ∈ Lq(Ω) satisfying

(3.19) ‖u‖q 6 c(‖F‖Ŷ −2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)
),

where c = c(Ω, q) > 0 is a constant.

The part of Theorem 1.2 concerning bent half spaces now follows easily.

3.3. Very weak solutions in a perturbed half space. Again, due to the du-

ality arguments already pointed out in the previous sections, it suffices to investigate

the corresponding strong solutions. In order to prove the result on strong solutions

in a perturbed half space, we want to use the localization method as described in

Subsection 2.2. We choose open balls B1, . . . , Bm ⊂ R
n satisfying (2.10) and non-

negative functions ϕ0, . . . , ϕm ∈ C∞(Rn) such that ϕ0 = 1 outside of some ball B′

with B ⊂ B′, ϕ0 = 0 in a neighbourhood of B, suppϕj ⊂ Bj for 1 6 j 6 m and
m∑
j=0

ϕj = 1 in Ω. Finally, due to the regularity of the boundary of Ω, we find for

each 1 6 j 6 m with Bj ∩ ∂Ω 6= ∅ a function ωj ∈ C1,1(Rn−1) of compact support

and a corresponding bent half space Hj = Hωj satisfying (2.11). By choosing a suf-

ficiently large number of balls Bj , such that the support of the corresponding ωj is

sufficiently small, we get that

(3.20) ‖∇′ωj‖∞ 6 min{K(n, q),K(n, s1), . . . ,K(n, sk(q))},

‖|·|∇′2ω‖∞ 6 min{K(n, q),K(n, s1), . . . ,K(n, sk(q))},

for a finite number of parameters q, sk, 1 6 k 6 k(q), to be determined in the proof

of Theorem 3.8 below.

Theorem 3.8. Let n > 3, 1 < q < n/2. Then for all v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω)

there exists a solution (w,ψ) ∈ Ẇ 2,q(Ω)× Ŵ 1,q(Ω) of (3.1) satisfying the estimate

(3.21) ‖∇2w‖q + ‖∇ψ‖q 6 c(‖v‖q + ‖∇γ‖q)

with a constant c = c(Ω, n, q) > 0. The pressure is unique up to a constant. Fur-

thermore, the velocity field w is unique up to a linear term Ax, where A ∈ C
n,n. In

particular, if Ω 6= R
n
+, the velocity field w is unique.

P r o o f. We will first prove the assertion about the uniqueness. Therefore, let

(w,ψ) ∈ Ẇ 2,q(Ω) × Ŵ 1,q(Ω) solve (3.1) for homogeneous data v = 0, γ = 0. Now
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let 0 6 j 6 m, where ϕj is a cut-off function of type Hj , cf. (2.11) (in the case of

cut-off functions of type Rn and R
n
+ we proceed in an analogous way). Then, with

a suitable constant cj ∈ R to be determined below, (ϕjw,ϕj(ψ − cj)) satisfies the

local equations

(3.22) −∆(ϕjw)−∇(ϕj(ψ − cj)) = vj ,

∇ div(ϕjw) = ∇γj ,

where

(3.23) vj = −(∇ϕj)(ψ − cj)− 2(∇ϕj)∇w − (∆ϕj)w,

∇γj = (∇ϕj)(∇w) + (∇2ϕj) · w.

Since all terms on the right-hand side of (3.23) have compact support, vj ∈ Ls(Hj)

and γj ∈ Ŵ 1,s(Hj) for each s ∈ (1, q]. Hence, by the regularity results in Remark 3.6

and the compactness of the supports of ∇ϕj , every (ϕjw,ϕjψ) ∈ Ŵ 2,s(Hj) ×

Ŵ 1,s(Hj) and summation over j yields (w,ψ) ∈ Ẇ 2,s(Ω) × Ŵ 1,s(Ω), 1 < s 6 q.

Moreover, by Sobolev’s embedding theorem, ∇w,ψ ∈ Lr(Ω) for all sufficiently small

r > n/(n− 1) and w ∈ L̺(Ω) for all sufficiently small ̺ > n/(n− 2).

We need to extend the interval of admissible exponents s from (1, s0], s0 = q, to

(1, n − 1). Therefore, define s1 > q by 1/n + 1/s1 = 1/q, which is possible, since

q < n/2 < n. Then Sobolev’s imbedding theorem yields for a bounded C1,1-domain

Gj containing Ω ∩ supp∇ϕj (and G0 ⊃ (G \B) ∩R
n
+, see Subsection 2.2)

(3.24) ‖(∇ϕj)∇w‖s1,Hj 6 c‖∇w‖s1,Gj 6 c‖∇w‖1,q,Gj <∞,

‖(∆ϕj)w‖s1,Hj 6 c‖∇w‖q,Gj 6 c‖∇w‖1,q,Gj <∞,

‖(∇ϕj)(ψj − cj)‖s1,Hj 6 c‖ψj − cj‖s1,Gj 6 c‖∇ψ‖1,q,Gj <∞,

where cj = |Gj |−1
∫
Gj
ψ dx. Hence vj ∈ Ls1(Hj), and a similar argument shows

that γj ∈ Ŵ 1,s1(Hj). Now, if s1 < n − 1, Remark 3.6 together with (3.20) yields

(ϕjw,ϕjψ) ∈ Ŵ 2,s1(Hj) × Ŵ 1,s1(Hj), and summation over j gives us (w,ψ) ∈

Ŵ 2,s1(Ω)×Ŵ 1,s1(Ω). If, however, s1 > n−1, we may replace s1 by any s1 ∈ (s0, n−1)

and apply Remark 3.6 and (3.20) to obtain (ϕjw,ϕjψ) ∈ Ŵ 2,s1(Hj)×Ŵ 1,s1(Hj) and

thus (w,ψ) ∈ Ŵ 2,s1(Ω) × Ŵ 1,s1(Ω). In any case, repeating this procedure a finite

number of times we receive exponents q < s1 < . . . < sk < n − 1 such that sk is

arbitrarily close to n−1. Summarizing, we get (w,ψ) ∈ Ŵ 2,s(Ω)×Ŵ 1,s(Ω) for every

1 < s < n− 1 and by Sobolev’s imbedding theorem

∇w,ψ ∈ Lr(Ω) for all
n

n− 1
< r < n(n−1), w ∈ L̺(Ω) for all

n

n− 2
< ̺ <∞.
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Unfortunately, this argument needs the smallness assumption (3.20) for s arbi-

trarily close to n− 1. But actually, we do need this argument only for s < 2 defined

by 1/n+1/2 = 1/s and for s close to n/3, where ∇2w ∈ Ls(Ω) implies w ∈ Ln+ε(Ω)

for ε > 0 sufficiently small. In the first case, when 1/n + 1/2 = 1/s, we have

∆w ∈ Ls(Ω), ∇w ∈ L2(Ω) and w ∈ Ls
′

(Ω), because of 2/n+ 1/s′ = 1/s. Therefore,

we may test (3.1) with w and write

0 = −

∫

ΩR

∆w · w dx−

∫

ΩR

∇ψ · w dx(3.25)

=

∫

ΩR

|∇w|2 dx−

∫

∂Ω′

R

(
w ·

∂w

∂n
+ ψw · n

)
dσ,

where ΩR = Ω∩BR and ∂Ω′
R = ∂ΩR \∂Ω, because w|∂Ω = 0. Moreover, the integral

over ψ divw vanishes, since ∇ divw = 0 and the constant divw lies in L2(Ω).

Next we want to show that the boundary integrals in (3.25) vanish, if a suitable

sequence of radii (Ri)i∈N tends to infinity. First observe that for any function f ∈

L1(Ω) there exists a sequence of radii (Ri)i∈N with Ri → ∞ for i→ ∞ such that

(3.26)

∫

∂Ω′

Ri

|f | dσ 6 cR−1
i → 0.

Due to the regularity of w and ψ already shown, we know that w ∈ Ln+ε(Ω) and

∇w,ψ ∈ Ln/n−1+ε(Ω) for any small ε > 0. Hence for sufficiently small ε > 0 we find

θε > n such that 1/(n+ ε) + 1/(n/(n− 1) + ε) + 1/θε = 1. By Hölder’s inequality

we thus get

∫

∂Ω′

R

∣∣∣∣w ·
∂w

∂n

∣∣∣∣ dσ 6 cR(n−1)/θε‖w‖n+ε,∂Ω′

R
‖∇w‖n/(n−1)+ε,∂Ω′

R
,(3.27)

where c1/θε = 1/2|∂B1(0)|; an analogous estimate holds for
∫
∂Ω′

R
|ψw · n| dσ. But

since |w|n+ε + |∇w|n/(n−1)+ε + |ψ|n/(n−1)+ε ∈ L1(Ω), we find by (3.26) a sequence

of radii (Ri)i∈N with Ri → ∞ for i→ ∞ such that

‖w‖n+ε,∂Ω′

Ri
6 cR

−1/(n+ε)
i ,

‖∇w‖n/(n−1)+ε,∂Ω′

Ri
+ ‖ψ‖n/(n−1)+ε,∂Ω′

Ri
6 cR

−1/(n/(n−1)+ε)
i .

Now it follows that due to θε > n the right-hand side of (3.27) tends to zero as

Ri → ∞. An analogous result holds for
∫
∂Ω′

R
|ψw · n| dσ.

Summing up, we get in virtue of (3.25) by Lebesgue’s theorem that
∫
Ω
|∇w|2 dx = 0

for all n > 3 and thus by the boundary condition w = 0. This leads immediately to

∇ψ = 0. The uniqueness part is proven.
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The existence of the solution and the estimate follow by the unique solvability

of the corresponding resolvent problem [11], Theorem 1.2, via an approximation

procedure for the resolvent parameter λ → 0+. Therefore, let v ∈ Lq(Ω) and for

the moment γ ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω). Let (λi)i∈N ⊂ R+ be a sequence with λi → 0

as i → ∞. By virtue of the unique solvability of the resolvent problem, we receive

corresponding solutions (wi, ψi) ∈ (W 2,q(Ω) ∩W 1,q
0 (Ω))× Ŵ 1,q(Ω) with

sup
i∈N

‖(λiwi,∇
2wi,∇ψi)‖q 6 c(‖v‖q + ‖∇γ‖q + sup

i∈N

|λi|‖γ‖Ŵ−1,q(Ω)
) <∞.

Therefore there exists a subsequence (which we will denote with index i again), such

that we have weak convergences

λiwi ⇀ Φ in Lq(Ω),(3.28)

∇2wi ⇀ w̃ in Lq(Ω),

∇ψi ⇀ ψ̃ in Lq(Ω).

Moreover, by the compact embedding Ŵ 1,q(Ω′) ⊂ Lq0(Ω
′) for any compact Ω′ ⊂

Ω of class C0,1, we find constants ci and linear polynomials ai + Aix such that

wi − (ai + Aix) converges in W
1,q
loc (Ω) to some w ∈ W 1,q

loc (Ω) with ∇2w = w̃ and

ψi − ci converges locally in L
q(Ω) to some ψ ∈ Lqloc(Ω) with ∇ψ = ψ̃. Then for any

smooth ϕ ∈ C∞
0 (Ω)

∫

Ω

(λiwi) · ∇
2ϕdx = λi

∫

Ω

(∇2wi)ϕdx→ 0 ·

∫

Ω

w̃ϕdx = 0, i→ ∞

by (3.28). This ensures that ∇2Φ = 0 and also Φ = 0, since Φ ∈ Lq(Ω). But

then, the weak convergences (3.28) assure that −∆w −∇ψ = v and ∇ divw = ∇γ.

Moreover, we get by (3.21)

‖∇2w‖q + ‖∇ψ‖q 6 lim inf
i→∞

(‖λiwi‖q + ‖∇2wi‖q + ‖∇ψi‖q)(3.29)

6 lim
i→∞

c(‖v‖q + ‖∇γ‖q + |λi|‖γ‖−1,q)

6 c(‖v‖q + ‖∇γ‖q).

Concerning the trace w|∂Ω, we know that wi|∂Ω = 0 for all i ∈ N and thus ai+Aix|∂Ω
converges in W

1−1/q,q
loc (∂Ω) – and therefore componentwise – to some a + Ax|∂Ω.

Now consider w̃ := w − (a+Ax) ∈ W 2,q
loc (Ω). Then ‖∇2w̃‖q = ‖∇2w‖q and (w̃, ψ) ∈

W 2,q
loc (Ω)×Ŵ

1,q(Ω) is a solution of (3.1) with the desired properties for γ ∈W 1,q(Ω)∩

Ŵ−1,q(Ω).

Now let v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω). In view of Lemma 2.1 there exists a sequence

(γi) ⊂ W 1,q(Ω) ∩ Ŵ−1,q(Ω) such that ‖∇(γ − γi)‖q → 0 as i → ∞. To each (v, γi)
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corresponds a solution (wi, ψi) ∈ Ẇ 2,q(Ω) × Ŵ 1,q(Ω) satisfying the estimate (3.21).

This ensures that both (wi) and (ψi) are Cauchy sequences in their respective spaces

and hence converge to some w ∈ Ẇ 2,q(Ω) and ψ ∈ Ŵ 1,q(Ω). The pair (w,ψ)

actually solves the system (3.1) and satisfies the a priori estimate (3.21). The proof

is complete. �

R em a r k 3.9. If in the situation of Theorem 3.8 we have additionally v ∈ Ls(Ω)

and γ ∈ Ŵ 1,s(Ω) for some 1 < s < n/2, then ‖∇2w‖s < ∞ and ‖∇ψ‖s < ∞. The

construction of a solution (ws, ψs) ∈ (Ŵ 2,q(Ω) ∩ Ŵ 2,s(Ω)) × (Ŵ 1,q(Ω) ∩ Ŵ 1,s(Ω))

follows analogously to the construction in the proof. Then the uniqueness assertion

of Theorem 3.8 yields (ws, ψs) = (w,ψ).

From Theorem 3.8 we deduce analogously to the proof of Theorem 3.4 the result

on very weak solutions in a perturbed half space in the abstract setting.

Theorem 3.10. Let n > 3, n/(n− 2) < q < ∞ and F ∈ Ŷ −2,q
σ (Ω), K ∈

Ŵ−1,q(Ω), where Ω is a perturbed half space. Then the problem (3.6) has a unique

very weak solution u ∈ Lq(Ω) satisfying

(3.30) ‖u‖q 6 c(‖F‖Ŷ −2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)),

where c = c(Ω, q) > 0 is a constant.

This directly implies the assertion of Theorem 1.2 in the case of a perturbed half

space.

3.4. Very weak solutions in an aperture domain. In the case of an aperture

domain, the two function spaces Ẇ 1,q(Ω) and Ŵ 1,q(Ω) do not necessarily coincide.

In fact, we have the following characterization [10], Lemma 3.1.

Lemma 3.11. Let Ω ⊂ R
n, n > 2, be an aperture domain.

(i) Suppose 1 < q < n and let r ∈ (n/(n− 1),∞) be defined via 1/n+ 1/r = 1/q.

Then for every ψ ∈ Ẇ 1,q(Ω) there are constants ψ± ∈ C such that ψ − ψ± ∈

Lr(Ω±) and

‖ψ − ψ+‖Lr(Ω+) + ‖ψ − ψ−‖Lr(Ω−) + |ψ+ − ψ−| 6 c‖∇ψ‖q.

Thus, the map [·] : Ẇ 1,q(Ω) → C, [ψ] = ψ+−ψ− is a continuous linear functional

and

Ŵ 1,q(Ω) = {ψ ∈ Ẇ 1,q(Ω): [ψ] = 0}.
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Suppose ϕ0 is a smooth funtion with ϕ0 = 1 on Ω+ \B and ϕ0 = 0 on Ω− \B.

Then each ψ ∈ Ẇ 1,q(Ω) has a unique decomposition ψ = ψ0 + [ψ]ϕ0 with

ψ0 ∈ Ŵ 1,q(Ω), ‖∇ψ0‖q 6 c‖∇ψ‖q and

Ẇ 1,q(Ω) = Ŵ 1,q(Ω)⊕ {Kϕ0 : K ∈ C}

is a direct sum.

(ii) Suppose q > n. Then Ẇ 1,q(Ω) = Ŵ 1,q(Ω).

It is convenient to think of ϕ0 ∈ C∞(Ω) as a function satisfying

ϕ0(x) =

{
1 for x ∈ Ω+,

0 for x ∈ Ω− \B,
and

∫

B∩Ω−

ϕ0 dx = 0.(3.31)

Then ϕ0 ∈ Ẇ 1,q′(Ω) for all 1 < q′ <∞. Moreover, for all u ∈ Lq(Ω) with u·N |∂Ω = 0

and div u = 0, we have for the flux φ(u) through the aperture of Ω

φ(u) :=

∫

S

u ·N dσ = −

∫

Ω

u · ∇ϕ0 dx.(3.32)

Here, u ·N |∂Ω can only be defined locally as an element of W
−1/q,q(Σ) with Σ ⊂ Ω

bounded. The flux integral
∫
S
u · N dσ thus has to be understood in the sense

of the evaluation of the functional u · N |S at 1 ∈ W 1/q,q′(S), see [10] for details.

Identity (3.32) motivates the definition of the generalized flux

φ̂(u) := −

∫

Ω

u · ∇ϕ0 dx, u ∈ Lq(Ω).(3.33)

We have the following result on the strong solutions, which is mainly due to Farwig

and Sohr [4], [10].

Theorem 3.12. Let Ω ⊂ R
n, n > 3, be an aperture domain and let v ∈ Lq(Ω),

γ ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω), 1 < q < n/2. Furthermore, let r, ̺ be defined via

1/n+ 1/r = 1/q and 2/n+ 1/̺ = 1/q, respectively.

(i) For every α ∈ C there is a unique solution (w,ψ) ∈ Lqloc(Ω) × Ẇ 1,q(Ω) with

‖∇2w‖q + ‖∇w‖r + ‖w‖̺ <∞ of (3.1) and φ̂(w) = α. Moreover,

‖w‖̺ + ‖∇w‖r + ‖∇2w‖q + ‖∇ψ‖q 6 c(‖v‖q + ‖∇γ‖q + |α|)(3.34)

for some c = c(n, q,Ω), where the term |〈γ, ϕ0〉| must be added to the right-hand

side of (3.34) if 1 < q 6 n/(n− 1). Moreover, [ψ] is a linear functional of v, γ

and α.
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(ii) For every β ∈ C there is a unique strong solution (w,ψ) of (3.1) with [ψ] = β.

Moreover,

(3.35) ‖w‖̺ + ‖∇w‖r + ‖∇2w‖q + ‖∇ψ‖q 6 c(‖v‖q + ‖∇γ‖q + ‖γ‖
Ŵ−1,q(Ω)

+ |β|),

where c = c(n, q,Ω) > 0, and φ̂(w) is a linear functional of v, γ and β.

R em a r k 3.13. (i) Since w ∈ L̺(Ω), ∇w ∈ Lr(Ω), we get by Lemma 3.11

‖w‖̺ 6 c‖∇2w‖q and thus w ∈ Ŷ 2,q(Ω).

(ii) The estimate (3.35) may be improved. As shown by Franzke [14], the term

‖γ‖
Ŵ−1,q(Ω)

on the right-hand side is not needed.

(iii) Denote by w0 the solution corresponding to the data v = 0, γ = 0 and α = 1.

Then w0 ∈ Lq(Ω) for all n/(n− 1) < q < ∞, see [4], Lemma 3.3. This lower bound

is sharp: Assume w0 ∈ Lq(Ω) for some 1 < q 6 n/(n− 1) and choose ϕk ∈ C∞
0 (Ω)

with ‖∇ϕk‖q′ → ‖∇ϕ0‖q′ as k → ∞, which is possible in virtue of Lemma 3.11 (ii).

Then we get the contradiction

0 = 〈γ, ϕ0〉 = lim
k→∞

〈γ, ϕk〉 = lim
k→∞

−

∫

Ω

w0 · ∇ϕk dx = φ̂(w0) = 1.

P r o o f of Theorem 3.12. If one neglects the statement about the regularity of

w ∈ L̺(Ω) itself, the interval of admissible exponents can be extended to 1 < q < n.

In this formulation, the theorem has been proven in [10], Corollary 2.4, for the

case n/(n− 1) < q < n and in [4], Theorem 1.4, for the case 1 < q 6 n/(n− 1).

The proofs rely on the unique solvability of the corresponding resolvent problem [4],

Theorem 1.2, via an approximation procedure of the resolvent parameter λ → 0+.

However, if we restrict ourselves to 1 < q < n/2, we get by Sobolev’s embedding

theorem wλ ∈ L̺(Ω) for each λ > 0, where wλ is the corresponding solution to

the resolvent problem with parameter λ. This regularity then carries over to the

solution w, being the weak limit of a subsequence of the wλ. �

Theorem 3.14. Let Ω ⊂ R
n
+ be an aperture domain, q > n/(n− 2) and F ∈

Ŷ −2,q
σ (Ω), K ∈ Ŵ−1,q(Ω), α ∈ C. Then the problem (3.6) has a unique very weak

solution u ∈ Lq(Ω) satisfying φ̂(u) = α. This solution satisfies the estimate

‖u‖q 6 c(‖F‖Ŷ−2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)
+ |α|),(3.36)

where c = c(n, q) > 0 is a constant.

P r o o f. The arguments follow the proof of Theorem 3.4. Define u ∈ Lq(Ω) via

(u, v) = 〈F , w〉+ 〈K, ψ0〉+ α[ψ] for v ∈ Lq
′

(Ω),
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where w ∈ Ŷ 2,q′

σ (Ω), ψ ∈ Ẇ 1,q′(Ω) is the unique solution to (3.10) with φ̂(w) = 0,

and ψ0 = ψ − [ψ]ϕ0. Then Lemma 3.11 and (3.34) yield the estimate

|(u, v)| 6 ‖F‖Ŷ −2,q
σ (Ω)‖∇

2w‖q′ + ‖K‖
Ŵ−1,q(Ω)

‖∇ψ0‖q′ + |α|‖∇ψ‖q′

6 c(‖F‖Ŷ −2,q
σ (Ω) + ‖K‖

Ŵ−1,q(Ω)
+ |α|)‖v‖q′ ,

for some constant c = c(Ω, q) > 0. Since ∇ϕ0 ∈ Lq
′

(Ω) decomposes in the above

sense with w = 0, ψ0 = 0 and ψ = −ϕ0, the flux condition φ̂(u) = −(u,∇ϕ0) = α

is automatically fulfilled. Furthermore, u actually solves the problem (3.6), since for

test functions w ∈ Ŷ 2,q′

σ (Ω), ψ ∈ Ŵ 1,q′(Ω), we have [ψ] = 0 and thus

−(u,∆w)− (u,∇ψ) = 〈F , w〉+ 〈K, ψ〉.

Uniqueness may be seen by considering a very weak solution u ∈ Lq(Ω) corresponding

to the data F = 0, K = 0 and α = 0. Then (u, v) = −(u,∆w) − (u,∇ψ0) −

(u, [ψ]∇ϕ0) = 〈F , w〉 + 〈K, ψ0〉 + α[ψ] = 0 for all v ∈ Lq
′

(Ω) and thus u = 0. The

proof is complete. �

Now, we may prove Theorem 1.3.

P r o o f of Theorem 1.3. It still remains to prove the assertion about the pressure.

Consider test functions w ∈ C∞
0,σ(Ω). In the sense of distributions we thus have

〈divF + ∆u,w〉 = 0. Then de Rham’s argument [23], Chapter I, Proposition 1.1,

yields a distribution p ∈ C∞
0 (Ω)′ with divF +∆u = ∇p. �

R em a r k 3.15. (i) Note that a similar construction as in the proof of Theorem 1.2

for the functional p fails here, as we cannot derive from Theorem 3.12 that each

γ ∈ Ŵ 1,q′(Ω) can be written in the form

γ = divw, w ∈ Ŷ 2,q′(Ω) with φ̂(w) = 0.(3.37)

The no-flux condition is crucial here, as otherwise the pressure p would not be well-

defined. However, this problem may be resolved for n > 4, n/(n− 1) < q′ < n/2. In

that case, estimate (3.34) may be used without the term |〈γ, ϕ0〉| on the right-hand

side, and thus (3.37) is ensured due to Lemma 2.1. So for n/(n− 2) < q < n, it still

holds true that p ∈ Ŵ−1,q(Ω).

(ii) Defining a concept similar to the pressure drop in the situation of strong solu-

tions seems out of reach, as p itself is not contained in any function space anymore.

Thus our setting is too coarse to reflect local phenomena.
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