Czechoslovak Mathematical Journal

Yuefang Sun

Generalized 3-edge-connectivity of Cartesian product graphs

Czechoslovak Mathematical Journal, Vol. 65 (2015), No. 1, 107-117

Persistent URL: http://dml.cz/dmlcz/144215

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

GENERALIZED 3-EDGE-CONNECTIVITY OF CARTESIAN PRODUCT GRAPHS

Yuefang Sun, Shaoxing

(Received August 22, 2013)

Abstract

The generalized k-connectivity $\kappa_{k}(G)$ of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as $\lambda_{k}(G)=\min \{\lambda(S): S \subseteq$ $V(G)$ and $|S|=k\}$, where $\lambda(S)$ denotes the maximum number l of pairwise edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{l}$ in G such that $S \subseteq V\left(T_{i}\right)$ for $1 \leqslant i \leqslant l$. In this paper we prove that for any two connected graphs G and H we have $\lambda_{3}(G \square H) \geqslant \lambda_{3}(G)+\lambda_{3}(H)$, where $G \square H$ is the Cartesian product of G and H. Moreover, the bound is sharp. We also obtain the precise values for the generalized 3-edge-connectivity of the Cartesian product of some special graph classes.

Keywords: generalized connectivity; generalized edge-connectivity; Cartesian product
MSC 2010: 05C40, 05C76

1. Introduction

All graphs in this paper are undirected, finite and simple. We follow the notation and terminology of [1] for those not defined in this paper. Connectivity is one of the most important concepts in graph theory and its applications, both in a combinatorial sense and an algorithmic sense. In theoretical computer science, connectivity is a basic measure of reliability of networks. By the well-known Menger's theorem, the (vertex) connectivity of a graph $G=(V(G), E(G))$, denoted $\kappa(G)$, can be defined as the minimum $\kappa(\{u, v\})$ over all 2-subsets $\{u, v\}$ of $V(G)$, where $\kappa(\{u, v\})$ denotes the maximum number of internally disjoint $u-v$ paths in G. In [2], Chartrand et al. introduced the following generalized connectivity. Let G be a graph of order $n \geqslant 2$

[^0]and let k be an integer with $2 \leqslant k \leqslant n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number l of edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{l}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for $1 \leqslant i<j \leqslant l$. (Note that these trees are vertex-disjoint in $G \backslash S$.) A collection $\left\{T_{1}, T_{2}, \ldots, T_{l}\right\}$ of trees in G with this property is called a set of internally disjoint trees connecting S. The generalized k-connectivity of G is then defined as
$$
\kappa_{k}(G)=\min \{\kappa(S) ; S \subseteq V(G) \text { and }|S|=k\}
$$

Thus $\kappa_{2}(G)=\kappa(G)$ and $\kappa_{k}(G)=0$ when G is disconnected. As a natural counterpart of the generalized connectivity, recently Li et al. [9] introduced the following concept of generalized edge-connectivity. Let $\lambda(S)$ denote the maximum number l of pairwise edge-disjoint trees $T_{1}, T_{2}, \ldots, T_{l}$ in G such that $S \subseteq V\left(T_{i}\right)$ for $1 \leqslant i \leqslant l$. The generalized k-edge-connectivity of G is defined as

$$
\lambda_{k}(G)=\min \{\lambda(S) ; S \subseteq V(G) \text { and }|S|=k\}
$$

Thus $\lambda_{2}(G)=\lambda(G)$ is the usual edge-connectivity, and $\lambda_{k}(G)=0$ when G is disconnected. Clearly, we have $\kappa_{k}(G) \leqslant \lambda_{k}(G)$.

The generalized connectivity and edge-connectivity are also called the tree connectivities. In addition to being a natural combinatorial measure, the tree connectivity can be motivated by its interesting interpretation in practice. For example, suppose that G represents a network. If one wants to connect a set S of nodes of G with $|S| \geqslant 3$, then a tree has to be used to connect them. This kind of tree with minimum order for connecting a set of nodes is usually called a Steiner tree, and popularly used in the physical design of VLSI [13]. Usually, one wants to consider how reliable (or tough) a network can be for the connection of a set of vertices. Then the number of totally independent ways to connect them is a measure for this purpose. The tree connectivities can serve for measuring the capability of a network G to connect any k vertices in G. The reader is referred to a recent survey [8] on the state-of-the-art of research on tree connectivities.

Products of graphs occur naturally in discrete mathematics as tools in combinatorial constructions, they give rise to important classes of graphs and deep structural problems. The Cartesian product is one of the most important graph products and plays a key role in design and analysis of networks. Many researchers have investigated the (edge) connectivity of the Cartesian product graphs in the past several decades [3], [4], [6], [12], [14], [5], [15]. Specially, the exact formula for $\kappa(G \square H)$ was obtained.

Theorem 1.1 ([11], [14]). Let G and H be graphs on at least two vertices. Then $\kappa(G \square H)=\min \{\kappa(G)|H|, \kappa(H)|G|, \delta(G)+\delta(H)\}$.

This theorem was first stated by Liouville [11]. However, his proof never appeared. In the meantime, several partial results were obtained until Špacapan [14] provided the proof. Theorem 1.1 in particular implies the following result of Sabidussi [12]:

Theorem 1.2 ([12]). Let G and H be connected graphs. Then $\kappa(G \square H) \geqslant$ $\kappa(G)+\kappa(H)$.
Li, Li and $\operatorname{Sun}[7]$ investigated the generalized 3 -connectivity of the Cartesian product graphs and get the following result which could be seen as an extension of Theorem 1.2.

Theorem $1.3([7])$. Let G and H be connected graphs such that $\kappa_{3}(G) \geqslant \kappa_{3}(H)$. Then we have:
(i) If $\kappa_{3}(G)<\kappa(G)$, then $\kappa_{3}(G \square H) \geqslant \kappa_{3}(G)+\kappa_{3}(H)$. Moreover, the bound is sharp.
(ii) If $\kappa_{3}(G)=\kappa(G)$, then $\kappa_{3}(G \square H) \geqslant \kappa_{3}(G)+\kappa_{3}(H)-1$. Moreover, the bound is sharp.

In this paper, we continue the research on the generalized connectivity of the Cartesian product graphs and get the following result for the generalized 3 -edgeconnectivity of Cartesian product.

Theorem 1.4. Let G and H be two connected graphs. Then we have $\lambda_{3}(G$ $H) \geqslant \lambda_{3}(G)+\lambda_{3}(H)$. Moreover, the bound is sharp.

The proof of Theorem 1.4 consists of Lemmas 3.1, 3.2 and 3.3. In order to prove these lemmas we need a few preliminary results that will be given in the next section. In Section 4, we also obtain the precise values for the generalized 3-edge-connectivity of the Cartesian product of some special graph classes (Propositions 4.1 and 4.2).

2. Preliminaries

The Cartesian product of two graphs G and H, denoted $G \square H$, is defined to have the vertex set $V(G) \times V(H)$ such that $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent if and only if either $u=v$ and $u^{\prime} v^{\prime} \in E(H)$, or $u^{\prime}=v^{\prime}$ and $u v \in E(G)$. Note that this product is commutative, that is, $G \square H=H \square G$.

We use the following useful notion which was introduced in [4], [5]. The mappings $p_{G}:(u, v) \mapsto u$ and $p_{H}:(u, v) \mapsto v$ from $V(G \square H)$ into $V(G)$ and $V(H)$ are weak
homomorphisms from $G \square H$ onto the factors G and H, respectively. They are called projections in the literature.

Let G and H be two graphs with $V(G)=\left\{u_{i} ; 1 \leqslant i \leqslant n\right\}$ and $V(H)=\left\{v_{j} ; 1 \leqslant\right.$ $j \leqslant m\}$. We use $G\left(v_{j}\right)$ to denote the subgraph of $G \square H$ induced by the vertex set $\left\{\left(u_{i}, v_{j}\right) ; 1 \leqslant i \leqslant n\right\}$ where $1 \leqslant j \leqslant m$, and use $H\left(u_{i}\right)$ to denote the subgraph of $G \square H$ induced by the vertex set $\left\{\left(u_{i}, v_{j}\right) ; 1 \leqslant j \leqslant m\right\}$ where $1 \leqslant i \leqslant n$. Clearly, we have $G\left(v_{j}\right) \cong G$ and $H\left(u_{i}\right) \cong H$. For example, as shown in Figure $1, G\left(v_{j}\right) \cong G$ for $1 \leqslant j \leqslant 4$ and $H\left(u_{i}\right) \cong H$ for $1 \leqslant i \leqslant 3$. For $1 \leqslant j_{1} \neq j_{2} \leqslant m$, the vertices $\left(u_{i}, v_{j_{1}}\right)$ and $\left(u_{i}, v_{j_{2}}\right)$ belong to the same graph $H\left(u_{i}\right)$ where $u_{i} \in V(G)$, we call $\left(u_{i}, v_{j_{2}}\right)$ the vertex corresponding to $\left(u_{i}, v_{j_{1}}\right)$ in $G\left(v_{j_{2}}\right)$; for $1 \leqslant i_{1} \neq i_{2} \leqslant n$, we call $\left(u_{i_{2}}, v_{j}\right)$ the vertex corresponding to $\left(u_{i_{1}}, v_{j}\right)$ in $H\left(u_{i_{2}}\right)$ [7]. Similarly, we can define the path and the tree corresponding to some path and tree, respectively. For example, in graph (c) of Figure 1, let P_{1} and P_{2} be the paths whose edges are labelled 1 and 2 in $H\left(u_{1}\right)$ and $H\left(u_{2}\right)$, respectively. Then P_{2} is called the path corresponding to P_{1} in $H\left(u_{2}\right)$. Clearly, P_{1} and P_{2} correspond to the path $v_{1}, v_{2}, v_{3}, v_{4}$ in graph H.

Figure 1. Graphs G, H and their Cartesian product.

Lemma 2.1 ([10]). Let G be a connected graph of order n. If there exist two adjacent vertices of degree $\delta(G)$, then $\lambda_{k}(G) \leqslant \delta(G)-1$ for every integer k with $3 \leqslant k \leqslant n$, and, moreover, the bound is sharp.

Theorem 2.2 ([9]). For every two integers n and k with $2 \leqslant k \leqslant n, \lambda_{k}\left(K_{n}\right)=$ $n-\lceil k / 2\rceil$.

Note that in the sequel we assume that every tree T which connects S is minimal, that is, the subgraph which is obtained by deleting any set of vertices or edges of T will not connect S. This assumption will not affect our results.

3. Proof of Theorem 1.4

For a set S, we use $|S|$ to denote its size. Let $\lambda_{3}(G)=k, \lambda_{3}(H)=l$. Without loss of generality, we assume that $k \geqslant l$. For any set $S=\{x, y, z\}$ of three vertices in $V(G \square H)$ where $x \in V\left(G\left(v_{i}\right)\right), y \in V\left(G\left(v_{j}\right)\right), z \in V\left(G\left(v_{k}\right)\right)$, we need to find at least $k+l$ edge-disjoint trees connecting S.

Lemma 3.1. In the case that i, j, k are distinct, we can construct at least $k+l$ edge-disjoint trees connecting S.

Proof. Without loss of generality, we assume that $x \in V\left(G\left(v_{1}\right)\right) \cap V\left(H\left(u_{1}\right)\right)$, $y \in V\left(G\left(v_{2}\right)\right), z \in V\left(G\left(v_{3}\right)\right)$. Furthermore, let y^{\prime}, z^{\prime} be the vertices corresponding to y, z in $G\left(v_{1}\right), x^{\prime}, z^{\prime \prime}$ be the vertices corresponding to x, z in $G\left(v_{2}\right)$ and $x^{\prime \prime}, y^{\prime \prime}$ be the vertices corresponding to x, y in $G\left(v_{3}\right)$.

Case 1. $\left|\left\{p_{G}(x), p_{G}(y), p_{G}(z)\right\}\right|=1$. Now we know that $x, y^{\prime}, z^{\prime}$ are the same vertex in $G\left(v_{1}\right)$. Let x_{1} be a neighbor of x in $G\left(v_{1}\right)$. Without loss of generality, we assume that $x_{1} \in H\left(u_{2}\right)$. Let x_{1}^{\prime} and $x_{1}^{\prime \prime}$ be the corresponding vertices of x_{1} in $G\left(v_{2}\right)$ and $G\left(v_{3}\right)$, respectively. Clearly, $y x_{1}^{\prime} \in E\left(G\left(v_{2}\right)\right), z x_{1}^{\prime \prime} \in E\left(G\left(v_{3}\right)\right)$. Let T_{1} be the tree obtained from T_{1}^{\prime} and edges $x x_{1}, y x_{1}^{\prime}, z x_{1}^{\prime \prime}$, where T_{1}^{\prime} is a tree connecting $\left\{x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}$ in $H\left(u_{2}\right)$ (see Figure 2). Since x has at least k neighbors in $G\left(v_{1}\right)$, we can find k such trees. Thus, we get at least $k+l$ trees connecting S since there are l edge-disjoint trees connecting S in $H\left(u_{1}\right)$. It is easy to show that any two of these trees are edge-disjoint.

Figure 2. Graph of Case 1.

Case 2. $\left|\left\{p_{G}(x), p_{G}(y), p_{G}(z)\right\}\right|=3$. Now we know that $x, y^{\prime}, z^{\prime}$ are three distinct vertices in $G\left(v_{1}\right)$. Without loss of generality, we assume that $y^{\prime} \in V\left(H\left(u_{2}\right)\right), z^{\prime} \in$ $V\left(H\left(u_{3}\right)\right)$. As $\lambda_{3}\left(G\left(v_{1}\right)\right)=k$, there are k edge-disjoint trees connecting $\left\{x, y^{\prime}, z^{\prime}\right\}$ in $G\left(v_{1}\right)$, say T_{j}^{\prime} where $1 \leqslant j \leqslant k$. Let $\left\{T_{i} ; 1 \leqslant i \leqslant l\right\}$ be a set of l edge-disjoint trees connecting $\left\{v_{1}, v_{2}, v_{3}\right\}$ in H since $\lambda_{3}(H)=l$. Let $k_{0}, k_{1}, \ldots, k_{l}$ be integers such that $0=k_{0}<k_{1}<\ldots<k_{l}=k$ since $k \geqslant l$.

Subcase 2.1. $x y^{\prime}, x z^{\prime} \notin E\left(G\left(v_{1}\right)\right)$. We need the following claim.

Figure 3. Graphs in the proof of Claim 1.

Claim 1. If $x y^{\prime}, x z^{\prime} \notin E\left(G\left(v_{1}\right)\right)$, then there are $k_{i}-k_{i-1}+1$ edge-disjoint trees connecting S in $\left(\bigcup_{j=k_{i-1}+1}^{k_{i}} T_{j}^{\prime}\right) \square T_{i}$ for each $1 \leqslant i \leqslant l$.

Proof of Claim 1. For each $1 \leqslant i \leqslant l$ and $k_{i-1}+1 \leqslant j \leqslant k_{i}-1$, we can construct a tree connecting S in the graph $T_{j}^{\prime} \square T_{i}$ as shown in graph (a) of Figure 3. Note that $x_{1} \in V\left(T_{j}^{\prime}\right)$ is a neighbor of x in $G\left(v_{1}\right)$, and $x_{1}^{\prime}, x_{1}^{\prime \prime}$ are vertices corresponding to x_{1} in $G\left(v_{2}\right), G\left(v_{3}\right)$, respectively. For simplicity, we also use T_{i} and T_{j}^{\prime} to denote the tree connecting $\left\{x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}$ and $\left\{x, y^{\prime}, z^{\prime}\right\}$, respectively, (see graph (a) of Figure 3). For the case $j=k_{i}$, in the graph $T_{k_{i}}^{\prime} \square T_{i}$ we can construct two trees connecting S as shown in graph (b) of Figure 3. Thus, for each $1 \leqslant i \leqslant l$, in the graph $\left(\bigcup_{j=k_{i-1}+1}^{k_{i}} T_{j}^{\prime}\right) \square$ T_{i} we can get $k_{i}-k_{i-1}+1$ trees and it is not hard to show that any two of these trees are edge-disjoint so that the claim holds.
Now for the case that $x y^{\prime}, x z^{\prime} \notin E\left(G\left(v_{1}\right)\right)$, we can find $\sum_{i=1}^{l}\left(k_{i}-k_{i-1}+1\right)=k+l$ trees by Claim 1 and any two of these trees are edge-disjoint by the definition of the Cartesian product.

Subcase 2.2. $x y^{\prime}, x z^{\prime} \in E\left(G\left(v_{1}\right)\right)$. If both $x y^{\prime}$ and $x z^{\prime}$ belong to the same tree, named $\bar{T} \in\left\{T_{j}^{\prime} ; 1 \leqslant j \leqslant k\right\}$, then we reorder these trees so that $T_{k_{1}}^{\prime}=\bar{T}$. With an argument similar to that of Subcase 2.1, we can construct $k+l$ edge-disjoint trees connecting S.

If $x y^{\prime}$ and $x z^{\prime}$ belong to distinct trees, say \bar{T} and \widetilde{T}, respectively. Clearly, both of them are paths by the assumption of the note in the end of Section 2. If $l \geqslant 2$, then we reorder the elements of $\left\{T_{j}^{\prime} ; 1 \leqslant j \leqslant k\right\}$ so that $T_{k_{1}}^{\prime}=\bar{T}$ and $T_{k_{2}}^{\prime}=\widetilde{T}$. With an argument similar to that of Subcase 2.1, we can get $k+l$ edge-disjoint trees connecting S. Otherwise, we have $l=1$ and reorder the elements of $\left\{T_{j}^{\prime} ; 1 \leqslant j \leqslant k\right\}$ so that $T_{k-1}^{\prime}=\bar{T}$ and $T_{k}^{\prime}=\widetilde{T}$. For $1 \leqslant j \leqslant k-2$, we can construct $k-2$ trees connecting S by a method similar to that of graph (a) in Figure 3. For $j=k-1$, we can use T_{k-1}^{\prime} and T_{1} to construct two trees connecting S by a method similar to that of graph (b) in Figure 3. If $\operatorname{deg}_{G\left(v_{1}\right)}(x)=\operatorname{deg}_{G\left(v_{1}\right)}\left(z^{\prime}\right)=\delta(G)$, we know $\operatorname{deg}_{G\left(v_{1}\right)}(x)=\operatorname{deg}_{G\left(v_{1}\right)}\left(z^{\prime}\right) \geqslant k+1$ by Lemma 2.1; otherwise, we have $\operatorname{deg}_{G\left(v_{1}\right)}(x)$ or $\operatorname{deg}_{G\left(v_{1}\right)}\left(z^{\prime}\right) \geqslant \delta(G)+1 \geqslant \lambda_{3}(G)+1=k+1$. Without loss of generality, we assume that $\operatorname{deg}_{G\left(v_{1}\right)}(x) \geqslant k+1$, which means that there exists a vertex, say x_{k+1}, such that $x x_{k+1} \notin E\left(T_{j}^{\prime}\right)$ for $1 \leqslant j \leqslant k$. Then we can use $x x_{k+1}, T_{k}^{\prime}$ and T_{1} to construct a new tree connecting S as shown in Figure 4. Thus, we get $k+l$ trees in total for the case $l=1$ and it is not hard to show that any two of these trees are edge-disjoint.

Figure 4. The tree constructed from $x x_{k+1}, T_{k}^{\prime}$ and T_{1}.
The remaining subcase is that exactly one of $x y^{\prime}, x z^{\prime}$ belongs to $E\left(G\left(v_{1}\right)\right)$. Without loss of generality, we assume $x y^{\prime} \in E\left(G\left(v_{1}\right)\right)$.

Subcase 2.3. $x y^{\prime} \in E\left(G\left(v_{1}\right)\right)$. Let $x y^{\prime}$ belong to the tree $\bar{T} \in\left\{T_{j}^{\prime} ; 1 \leqslant j \leqslant k\right\}$, then we reorder these trees so that $T_{k_{1}}^{\prime}=\bar{T}$. By an argument similar to that of Subcase 2.1, we can construct $k+l$ edge-disjoint trees connecting S.

Case 3. $\left|\left\{p_{G}(x), p_{G}(y), p_{G}(z)\right\}\right|=2$. Now we have that two of $x, y^{\prime}, z^{\prime}$ are the same vertex in $G\left(v_{1}\right)$. Since $\lambda\left(G\left(v_{1}\right)\right) \geqslant k$, there exist k edge-disjoint $x-y^{\prime}$ paths P_{i} in $G\left(v_{1}\right)$ where $1 \leqslant i \leqslant k$. By an argument similar to that of Case 2, we can construct at least $k+l$ edge-disjoint trees connecting S.

Lemma 3.2. In the case that exactly two of i, j, k are the same, we can construct at least $k+l$ edge-disjoint trees connecting S.

Proof. Without loss of generality, we assume that $i=j=1$ and $k=2$. Furthermore, we assume that $x \in V\left(G\left(v_{1}\right)\right) \cap V\left(H\left(u_{1}\right)\right)$ and $y \in V\left(G\left(v_{1}\right)\right) \cap V\left(H\left(u_{2}\right)\right)$. In the case that $z \in V\left(G\left(v_{2}\right)\right) \cap V\left(H\left(u_{i}\right)\right)$ where $i \neq 1,2$, we can construct $k+l$ edge-disjoint trees connecting S since it is similar to Case 3 of Lemma 3.1. So it suffices to consider the case $i=1$ (the case $i=2$ is similar).

As $\lambda(G) \geqslant \lambda_{3}(G)=k$ and $\lambda(H) \geqslant \lambda_{3}(H)=l$, there are at least k paths $P_{i}: x=$ $a_{i, 0}, a_{i, 1}, \ldots, a_{i, t_{i}}=y$ connecting x and y in graph $G\left(v_{1}\right)$ and l paths $Q_{j}: x=b_{j, 0}$, $b_{j, 1}, \ldots, b_{j, t_{j}}=z$ connecting x and z in graph $H\left(u_{1}\right)$ where $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l$. We set $P_{k}:=x, y$ if $x y \in E\left(G\left(v_{1}\right)\right)$ and $Q_{l}:=x, z$ if $x z \in E\left(H\left(u_{1}\right)\right)$. For $1 \leqslant i \leqslant k-1$, we could construct a tree $T_{i}:=P_{i} \cup Q_{1}^{i} \cup\left\{a_{i, 1}^{\prime}, z\right\}$ where $a_{i, 1}^{\prime}$ is the vertex corresponding to $a_{i, 1}$ in graph $G\left(v_{2}\right)$ and Q_{1}^{i} is the $a_{i, 1}-a_{i, 1}^{\prime}$ path corresponding to Q_{1} in graph $H\left(a_{i, 1}\right)$ (see the lines labelled by T_{i} in Figure 5). Similarly, for $1 \leqslant j \leqslant l-1$, we construct a tree $T_{j}^{\prime}:=Q_{j} \cup P_{1}^{j} \cup\left\{b_{j, 1}^{\prime}, y\right\}$ where $b_{j, 1}^{\prime}$ is the vertex corresponding to $b_{j, 1}$ in the graph $H\left(u_{2}\right)$ and P_{1}^{j} is the $b_{j, 1}-b_{j, 1}^{\prime}$ path corresponding to P_{1} in the graph $G\left(b_{j, 1}\right)$ (see the lines labelled by T_{j}^{\prime} in Figure 5).

If $x y \notin E\left(G\left(v_{1}\right)\right)$, we can construct a tree T_{k} from P_{k} which is similar to T_{i} where $1 \leqslant i \leqslant k-1$. In the case that $x z \notin E\left(H\left(u_{1}\right)\right)$, we can also construct a tree T_{l}^{\prime} from Q_{l} which is similar to T_{j}^{\prime} where $1 \leqslant j \leqslant l-1$. Thus, we find $k+l$ edge-disjoint trees connecting S in total. In the case that $x z \in E\left(H\left(u_{1}\right)\right)$, if $\operatorname{deg}_{H\left(u_{1}\right)}(x)=\operatorname{deg}_{H\left(u_{1}\right)}(z)=\delta\left(H\left(u_{1}\right)\right)$, then we have $l=\lambda_{3}\left(H\left(u_{1}\right)\right) \leqslant \delta\left(H\left(u_{1}\right)\right)-1$ by Lemma 2.1, it means that x has a neighbor, say $b_{l+1,1}$, which is distinct from $b_{j, 1}$ in the graph $H\left(u_{1}\right)$, where $1 \leqslant j \leqslant l$. We can construct a tree $T_{l}^{\prime}:=\{x z\} \cup\left\{x b_{l+1,1}\right\} \cup$ $P_{1}^{l+1} \cup\left\{y b_{l+1,1}^{\prime}\right\}$, where $b_{l+1,1}^{\prime}$ is the vertex corresponding to $b_{l+1,1}$ in the graph $H\left(u_{2}\right)$ and P_{1}^{l+1} is the path corresponding to P_{1} in $G\left(b_{l+1,1}\right)$ (see the lines labelled by T_{l}^{\prime} in Figure 5). Thus, there are $k+l$ edge-disjoint trees connecting S in total. Otherwise, we have $\operatorname{deg}_{H\left(u_{1}\right)}(x)>\delta\left(H\left(u_{1}\right)\right)$ or $\operatorname{deg}_{H\left(u_{1}\right)}(z)>\delta\left(H\left(u_{1}\right)\right)$, then using a similar argument, we can also construct a tree T_{l}^{\prime}.

Figure 5. Trees in the graph.

In the case $x y \in E\left(G\left(v_{1}\right)\right)$, using an argument similar to the above, we can construct $k+l$ edge-disjoint trees connecting S.

The final case that i, j, k are the same is similar to Case 1 of Lemma 3.1, so the following result holds.

Lemma 3.3. For the case that i, j, k are the same, we can construct at least $k+l$ edge-disjoint trees connecting S.

Proof of Theorem 1.4. By Lemmas 3.1, 3.2 and 3.3, we have $\lambda_{3}(G \square H) \geqslant$ $\lambda_{3}(G)+\lambda_{3}(H)$. The following example and Proposition 4.1 imply that the bound is sharp.

We use the graph of Example 3.1 in [7]: Let $K_{2 n}(n \geqslant 2)$ be a complete graph with vertex set $V\left(K_{2 n}\right)=\left\{u_{i} ; 1 \leqslant i \leqslant 2 n\right\}$ and G a graph obtained from $K_{2 n}$ by adding a new vertex u and edge set $\left\{u u_{i} ; 1 \leqslant i \leqslant n\right\}$.

For any vertex set $S=\{x, y, z\} \subseteq V(G)$, if $u \notin S$, we clearly get at least $2 n-\left\lceil\frac{3}{2}\right\rceil=$ $2 n-2 \geqslant n$ edge-disjoint trees connecting S by Theorem 2.2.

Otherwise, we have $u \in S$ and assume $x=u$. If $y, z \in\left\{u_{i} ; 1 \leqslant i \leqslant n\right\}$, without loss of generality we assume that $y=u_{1}, z=u_{2}$. Let T_{1} and T_{2} be the paths u, u_{1}, u_{n+1}, u_{2} and u, u_{2}, u_{n+2}, u_{1}, respectively, and let T_{i} be the tree obtained from $u u_{i}$ and the path u_{1}, u_{i}, u_{2}, where $3 \leqslant i \leqslant n$. If $y, z \in\left\{u_{i} ; n+1 \leqslant i \leqslant 2 n\right\}$, without loss of generality we assume that $y=u_{n+1}, z=u_{n+2}$. Let T_{i} be the tree obtained from the edges $u u_{i}, u_{i} u_{n+1}, u_{i} u_{n+2}$ for $n+1 \leqslant i \leqslant 2 n$. If $y \in\left\{u_{i} ; 1 \leqslant i \leqslant n\right\}$ and $z \in\left\{u_{i} ; n+1 \leqslant i \leqslant 2 n\right\}$, without loss of generality we assume that $y=u_{1}$, $z=u_{n+1}$. Let T_{1} be the path u, u_{1}, u_{n+1} and T_{i} the tree obtained from the edges $u u_{i}$, $u_{i} u_{1}, u_{i} u_{n+1}$ for $2 \leqslant i \leqslant n$. It is easy to show that any two trees are edge-disjoint in each case.

Thus, we have $\lambda_{3}(G) \geqslant n$. Since $\lambda_{3}(G) \leqslant \delta(G)=n$, we have $\lambda_{3}(G)=n$. So $\lambda_{3}\left(G \square C_{m}\right) \geqslant \lambda_{3}(G)+\lambda_{3}\left(C_{m}\right)=n+1$. As there are two adjacent vertices with minimum degree $n+2$ in the graph $G \square C_{m}$, we have $\lambda_{3}\left(G \square C_{m}\right) \leqslant \delta\left(G \square C_{m}\right)-1=$ $n+1$ by Lemma 2.1. Thus, $\lambda_{3}\left(G \square C_{m}\right)=\lambda_{3}(G)+\lambda_{3}\left(C_{m}\right)$.

4. Results on special graph classes

For $m \geqslant 3$, the wheel graph W_{n} is defined as a graph constructed by joining a new vertex to every vertex of a cycle C_{m}. The following result concerns the Cartesian products of connected graphs with $\delta(G)=1$ and some special graph classes.

Proposition 4.1. Let G be a connected graph with $\delta(G)=1$ and order $n \geqslant 3$.
(a) If H is a connected graph with $\delta(G)=1$ and order $m \geqslant 3$, then $\lambda_{3}(G \square H)=2$.
(b) If H is a cycle, then $\lambda_{3}(G \square H)=2$.
(c) If H is a wheel graph, then $\lambda_{3}(G \square H)=3$.
(d) If H is a complete graph with order $m \geqslant 3$, then $\lambda_{3}(G \square H)=m-1$.

Proof. We first verify (a). If H is a connected graph with $\delta(G)=1$ and order $m \geqslant 3$, then $\lambda_{3}(G \square H) \leqslant \delta(G \square H)=2$. By Theorem 1.4, we have $\lambda_{3}(G \square H)=2$.

We then verify (b). If H is a cycle, we have $\lambda_{3}(G \square H) \geqslant \lambda_{3}(G)+\lambda_{3}(H)=2$ by Theorem 1.4. Since $\delta(G \square H)=3$ and there are two adjacent vertices of degree 3 in $G \square C_{m}$, we have $\lambda_{3}\left(G \square C_{m}\right) \leqslant 2$ by Lemma 2.1. Thus, (b) holds.

It is easy to show that $\lambda_{3}(H)=2$ if H is a wheel graph. If H is a complete graph with order $m \geqslant 3$, then $\lambda_{3}(H)=m-2$ by Theorem 2.2. By an argument similar to that of (b), we can prove (c) and (d).

Note that since any nontrivial tree is a connected graph with minimum degree 1 , Proposition 4.1 also determines the precise value for $\lambda_{3}(G \square H)$, where G is a tree of order at least 3 and H is a tree, a cycle, a wheel graph or a complete graph of order at least 3.

We know $Q_{r} \cong K_{2} \square K_{2} \square \ldots \square K_{2}$ is the r-hypercube, where r is the number of K_{2}. In [7], Li, Li and Sun derive that the precise value of $\kappa_{3}\left(Q_{r}\right)$ equals $r-1$. In fact, we can get a similar result for $\lambda_{3}\left(Q_{r}\right)$.

Proposition 4.2. $\lambda_{3}\left(Q_{r}\right)=r-1$.
Proof. Since Q_{r} is a r-regular graph, by Lemma 2.1 we have $\lambda_{3}\left(Q_{r}\right) \leqslant r-1$. We also have $\lambda_{3}\left(Q_{r}\right) \geqslant \kappa_{3}\left(Q_{r}\right)=r-1$. Thus, the result holds.

Acknowledgement. We thank the anonymous referee for her/his careful reading of our work and helpful suggestions.

References

[1] J. A. Bondy, U.S. R. Murty: Graph Theory. Graduate Texts in Mathematics 244, Springer, Berlin, 2008.
zbl MR
[2] G. Chartrand, S. F. Kappor, L. Lesniak, D. R. Lick: Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 2 (1984), 1-6.
[3] W.-S. Chiue, B.-S. Shieh: On connectivity of the Cartesian product of two graphs. Appl. Math. Comput. 102 (1999), 129-137.
zbl MR
[4] W. Imrich, S. Klavžar: Product Graphs. Structure and Recognition. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, 2000.
[5] W. Imrich, S. Klavžar, D. F. Rall: Topics in Graph Theory. Graphs and Their Cartesian Product. A K Peters, Wellesley, 2008.
[6] S. Klavžar, S. Špacapan: On the edge-connectivity of Cartesian product graphs. AsianEur. J. Math. 1 (2008), 93-98.

Zbl MR
[7] H. Li, X. Li, Y. Sun: The generalized 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. (electronic only) 14 (2012), 43-54.
zbl MR
[8] X. Li, Y. Mao: A survey on the generalized connectivity of graphs. ArXiv:1207.1838v2 [math.CO].
[9] X. Li, Y. Mao, Y. Sun: On the generalized (edge-)connectivity of graphs. Australas. J. Comb. (electronic only) 58 (2014), 304-319.
[10] X. Li, Y. Mao, L. Wang: Graphs with large generalized 3-edge-connectivity. ArXiv:1201. 3699v1 [math.CO].
[11] B. Liouville: Sur la connectivité des produits de graphes. C. R. Acad. Sci., Paris, Sér. A 286 (1978), 363-365. (In French.)
zbl MR
[12] G. Sabidussi: Graphs with given group and given graph-theoretical properties. Can. J. Math. 9 (1957), 515-525.

Zbl MR

[13] N. A. Sherwani: Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers, Boston, 1999.
[14] S. Špacapan: Connectivity of Cartesian products of graphs. Appl. Math. Lett. 21 (2008), 682-685.

Zbl MR
[15] J.-M. Xu, C. Yang: Connectivity of Cartesian product graphs. Discrete Math. 306 (2006), 159-165.
zbl MR
Author's address: Yuefang Sun, Zhonghe Building A502, Department of Mathematics, Shaoxing University, Chengnan Road No. 900, Yucheng, Shaoxing, Zhejiang, China, e-mail: yfsun2013@gmail.com.

[^0]: We acknowledge the support from National Natural Foundation of China through Project NSFC No. 11401389.

