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Abstract. Let R be a prime ring with its Utumi ring of quotients U and extended
centroid C. Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal
of R such that F (u)[F (u), u]n = 0 for all u ∈ L, where n > 1 is a fixed integer. Then one
of the following holds:

(1) there exists λ ∈ C such that F (x) = λx for all x ∈ R;
(2) R satisfies s4 and F (x) = ax+ xb for all x ∈ R, with a, b ∈ U and a− b ∈ C;
(3) char(R) = 2 and R satisfies s4.

As an application we also obtain some range inclusion results of continuous generalized
derivations on Banach algebras.

Keywords: prime ring; derivation; generalized derivation; extended centroid; Utumi quo-
tient ring; Lie ideal; Banach algebra
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1. Introduction

Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator of

x, y is denoted by [x, y] and defined by [x, y] = xy − yx. By d we mean a derivation

of R. An additive mapping F from R to R is called a generalized derivation if there

exists a derivation d from R to R such that F (xy) = F (x)y + xd(y) holds for all

x, y ∈ R.

Throughout this paper, R will always represent a prime ring with center Z(R),

extended centroid C, and U is its Utumi quotient ring. A well known result proved

by Posner [25] states that if the commutators satisfy [d(x), x] ∈ Z(R) for all x ∈ R,

then either d = 0 or R is commutative. Later this result of Posner was generalized

in many directions by a number of authors. Posner’s theorem was extended to Lie

ideals in prime rings by Lee [18] and then by Lanski [16]. In [4], Carini and De
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Filippis studied the situation in more generalized form considering power values.

They proved that if char(R) 6= 2 and [d(x), x]n ∈ Z(R) for all x ∈ L, where L is

a noncentral Lie ideal of R and n > 1 a fixed integer, then d = 0 or R satisfies s4.

De Filippis [6] proved a result replacing d by a generalized derivation F of R. More

precisely, he proved the following result:

Let R be a prime ring of characteristic not equal 2 with right Utumi quotient ring

U and extended centroid C, F 6= 0 a generalized derivation of R, L a noncentral Lie

ideal of R and n > 1. If [F (u), u]n = 0 for all u ∈ L, then there exists an element

a ∈ C such that F (x) = ax for all x ∈ R, unless R satisfies s4 and there exists an

element b ∈ U such that F (x) = bx+ xb for all x ∈ R.

Recently, De Filippis et al. [7] studied the situation [F (u), u]F (u) = 0 for all u in

a noncentral Lie ideal of R. More precisely, they obtained the following result:

Let R be a prime ring of characteristic not equal 2, U the Utumi quotient ring

of R, C = Z(U) the extended centroid of R, L a noncentral Lie ideal of R and F

a non-zero generalized derivation of R. Suppose that [F (u), u]F (u) = 0 for all u ∈ L.

Then one of the following holds:

(1) there exists α ∈ C such that F (x) = αx for all x ∈ R;

(2) R satisfies the standard identity s4 and there exist a ∈ U and α ∈ C, such that

F (x) = ax+ xa+ αx for all x ∈ R.

In the present paper we study the situation F (u)[F (u), u]n = 0 for all u ∈ L, where

n > 1 is a fixed integer and L is a noncentral Lie ideal of R.

More precisely, we prove the following results:

Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U and

extended centroid C. Suppose that F is a generalized derivation of R and L is

a noncentral Lie ideal of R such that F (u)[F (u), u]n = 0 for all u ∈ L, where n > 1

is a fixed integer. Then one of the following holds:

(1) there exists λ ∈ C such that F (x) = λx for all x ∈ R;

(2) R satisfies s4 and F (x) = ax+ xb for all x ∈ R, with a, b ∈ U and a− b ∈ C;

(3) char(R) = 2 and R satisfies s4.

Theorem 1.2. Let R be a noncommutative prime ring with its Utumi ring of

quotients U and extended centroid C. Suppose that F is a generalized derivation of

R such that F (x)[F (x), x]n = 0 for all x ∈ R, where n > 1 is a fixed integer. Then

one of the following holds:

(1) there exists λ ∈ C such that F (x) = λx for all x ∈ R;

(2) char(R) = 2 and R satisfies s4.
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In the last section we apply the above results to Banach algebras. Here A will

denote a complex noncommutative Banach algebra. By a Banach algebra we shall

mean a complex normed algebra A whose underlying vector space is a Banach space.

By rad(A) we denote the Jacobson radical of A, which is the intersection of all

primitive ideals of A. A is said to be semisimple, if rad(A) = 0.

In 1955, Singer and Wermer [27] gave an interesting result. They proved that every

continuous derivation on a commutative Banach algebra maps the algebra into its

radical. After thirty years, Thomas [28] proved the same result without considering

continuity of derivation. It is clear that the same result does not hold in noncom-

mutative Banach algebras because of inner derivations. It is still an open question

whether the above result of Singer and Wermer is true or not in the noncommutative

Banach algebra. Some partial solutions of this open question have been obtained by

a number of authors under certain conditions for noncommutative Banach algebras.

Let A be a noncommutative Banach algebra and D a continuous derivation on A.

Yood [30] proved that if [D(x), y] lies in rad(A) for all x, y ∈ A, then D maps A into

rad(A). Later, Brešar and Vukman [3] generalized Yood’s result by stating that the

same conclusion holds under the weaker condition [D(x), x] ∈ rad(A) for all x ∈ A.

A similar result was also obtained by Mathieu and Murphy [23] if [D(x), x] ∈ Z(A) for

all x ∈ A. In [22], Mathieu proved the same conclusion if [D(x), x]D(x) ∈ rad(A) for

all x ∈ A. Vukman [29] proved that the same conclusion holds if [D(x), x]3 ∈ rad(A)

for all x ∈ A.

Continuing along this line, in [15] Kim proved that if d is a continuous linear

Jordan derivation in a Banach algebra A, such that [d(x), x]d(x)[d(x), x] ∈ rad(A) for

all x ∈ A, then d maps A into rad(A). In [14] he obtained the same conclusion in the

case d(x)[d(x), x]d(x) ∈ rad(A) for all x ∈ A. More recently in [24], Park proves that

if d is a derivation of a noncommutative Banach algebraA such that [[d(x), x], d(x)] ∈

rad(A) for all x ∈ A, then again d maps A into rad(A). Recently, Kim [13] proved

that if d is a continuous linear Jordan derivation in a Banach algebra A such that

d(x)3[d(x), x] ∈ rad(A) for all x ∈ A, then d maps A into rad(A). In [7], De Filippis

et al. proved the following result:

Let F be a continuous generalized derivation of R such that F (x) = ax + d(x)

for some element a ∈ A, and d a derivation of A. If [F (x), x]F (x) ∈ rad(A) for all

x ∈ R, then d(A) ⊆ rad(A) and [a,A] ⊆ rad(A).

In the last section, finally we provide a result about continuous generalized deriva-

tions on Banach algebras which is as follows:

Theorem 1.3. Let A be a noncommutative Banach algebra, ζ = La+d a contin-

uous generalized derivation of A and n a fixed positive integer. If ζ(x)[ζ(x), x]n ∈

rad(A) for all x ∈ A, then d(A) ⊆ rad(A) and [a,A] ⊆ rad(A).
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2. Results on Lie ideals

First we give the following remarks:

Remark 2.1. Let R be a prime ring and L a noncentral Lie ideal of R. If

char(R) 6= 2, by [2], Lemma 1, there exists a nonzero ideal I of R such that 0 6=

[I, R] ⊆ L. If char(R) = 2 and dimC RC > 4, i.e., char(R) = 2 and R does not

satisfy s4, then by [17], Theorem 13, there exists a nonzero ideal I of R such that

0 6= [I, R] ⊆ L. Thus if either char(R) 6= 2 or char(R) = 2 and R does not satisfy s4,

then we may conclude that there exists a nonzero ideal I of R such that [I, I] ⊆ L.

Remark 2.2. Let R be a prime ring and U the Utumi quotient ring of R, and

C = Z(U) the center of U (see [1] for more details). It is well known that any

derivation of R can be uniquely extended to a derivation of U . In [19], Theorem 3,

Lee proved that every generalized derivation g on a dense right ideal of R can be

uniquely extended to a generalized derivation of U . Furthermore, the extended

generalized derivation g has the form g(x) = ax + d(x) for all x ∈ U , where a ∈ U

and d is a derivation of U .

Now we begin with the following lemmas.

Lemma 2.3. Let R be a prime ring with extended centroid C and a, b ∈ R.

If (a[x1, x2] + [x1, x2]b)(a[x1, x2]
2 + [x1, x2](b − a)[x1, x2] − [x1, x2]

2b)n = 0 for all

x1, x2 ∈ R, where n > 1 is a fixed integer, then either R satisfies a nontrivial

generalized polynomial identity (GPI) or a, b ∈ C.

P r o o f. Assume that R does not satisfy any nontrivial GPI. Let T = U ∗C
C{x1, x2}, the free product of U and C{x1, x2}, the free C-algebra in noncommuting

indeterminates x1 and x2. If R is commutative, then R satisfies trivially a nontrivial

GPI, a contradiction. So, R must be noncommutative.

Then,

(2.1) (a[x1, x2] + [x1, x2]b)(a[x1, x2]
2 + [x1, x2](b − a)[x1, x2]− [x1, x2]

2b)n = 0

in T = U ∗C C{x1, x2}. If b /∈ C, then b and 1 are linearly independent over C.

Thus, (2.1) implies

(a[x1, x2]+[x1, x2]b)(a[x1, x2]
2+[x1, x2](b−a)[x1, x2]−[x1, x2]

2b)n−1(−[x1, x2]
2b) = 0

and so

([x1, x2]b)(−[x1, x2]
2b)n = 0
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in T , implying b = 0, a contradiction. Therefore, we conclude that b ∈ C and hence

(2.1) reduces to

(2.2) (a+ b)[x1, x2][a[x1, x2], [x1, x2]]
n = 0

in T . If a /∈ C, then in (2.2), (a+ b)[x1, x2](a[x1, x2]
2)n appears nontrivially, a con-

tradiction. Therefore, we have a ∈ C. �

Lemma 2.4. Let R = M2(F ) be the set of all 2 × 2 matrices over a field F of

characteristic different from 2 and a, b ∈ R. If (a[x1, x2] + [x1, x2]b)(a[x1, x2]
2 +

[x1, x2](b − a)[x1, x2] − [x1, x2]
2b)n = 0 for all x1, x2 ∈ R, where n > 1 is a fixed

integer, then (a− b) ∈ F · I2.

P r o o f. Since [x1, x2]
2 ∈ Z(M2(F )) for all x1, x2 ∈ M2(F ), the identity reduces

to

(2.3) (a[x1, x2] + [x1, x2]b)([(a− b), [x1, x2]][x1, x2])
n = 0

for all x1, x2 ∈ R. Again for all x1, x2 ∈ M2(F ) since [x1, x2]
2 ∈ Z(M2(F )), we have

0 = [(a− b), [x1, x2]
2] = [(a− b), [x1, x2]][x1, x2] + [x1, x2][(a− b), [x1, x2]] and hence

[(a− b), [x1, x2]][x1, x2] = −[x1, x2][(a− b), [x1, x2]]. Thus (2.3) reduces to

(2.4) (−1)n(n+1)/2(a[x1, x2] + [x1, x2]b)[x1, x2]
n[(a− b), [x1, x2]]

n = 0,

that is

(2.5) (a[x1, x2] + [x1, x2]b)[x1, x2]
n[(a− b), [x1, x2]]

n = 0

for all x1, x2 ∈ R.

Choose x1, x2 ∈ R such that [x1, x2]
2 6= 0. Now [(a − b), [x1, x2]]

2 ∈ Z(R). If

[(a− b), [x1, x2]]
2 6= 0, then [(a− b), [x1, x2]]

2 is invertible in R. We multiply in (2.5)

from the right by ([(a − b), [x1, x2]]
n)−1 or [(a − b), [x1, x2]]([(a − b), [x1, x2]]

n+1)−1

according as n is even or odd and then get

(2.6) (a[x1, x2] + [x1, x2]b)[x1, x2]
n = 0.

Right multiplying (2.6) by ([x1, x2]
n)−1 or [x1, x2]([x1, x2]

n+1)−1 according as n is

even or odd we obtain that

(2.7) a[x1, x2] + [x1, x2]b = 0.
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Right multiplying by [x1, x2] in (2.7) we have

(2.8) a[x1, x2]
2 + [x1, x2]b[x1, x2] = 0.

By using the fact [x1, x2]
2 ∈ Z(R), we conclude

(2.9) [x1, x2]
2a+ [x1, x2]b[x1, x2] = 0.

Left multiplying (2.7) by [x1, x2], we get

(2.10) [x1, x2]a[x1, x2] + [x1, x2]
2b = 0.

Subtracting (2.9) from (2.10) results in

(2.11) [x1, x2](a− b)[x1, x2]− [x1, x2]
2(a− b) = 0,

that is

(2.12) [x1, x2][a− b, [x1, x2]] = 0.

Left multiplying the above relation by [x1, x2], we have [a− b, [x1, x2]] = 0 and hence

[a− b, [x1, x2]]
2 = 0.

Thus up to now we have proved that if for some x1, x2 ∈ R, [x1, x2]
2 6= 0, then

[p, [x1, x2]]
2 = 0, where p = a − b. We choose x1 = e12, x2 = e21. Then we get

[x1, x2] = e11 − e22 and [x1, x2]
2 = I2 6= 0. Hence 0 = [p, [x1, x2]]

2 = [p, [e12, e21]]
2 =

−4p12p21I2. This implies that either p12 = 0 or p21 = 0. Without loss of generality

we assume that p12 = 0. Now we choose x1 = e11 and x2 = e12 − e21. Then

we have [x1, x2]
2 = I2 6= 0 and hence 0 = [p, [x1, x2]]

2 = [p, [e11, e12 − e21]]
2 =

{p221 − (p11 − p22)
2}I2. This implies that p

2
21 − (p11 − p22)

2 = 0. Similarly, by

choosing x1 = e11 and x2 = e12 + e21, we can show that p
2
21 + (p11 − p22)

2 = 0.

Addition and substraction of p221− (p11−p22)
2 = 0 and p221+(p11−p22)

2 = 0 implies

p21 = 0 and p11 = p22. So p = (a− b) ∈ F · I2. �

Lemma 2.5. Let R be a prime ring with extended centroid C and a, b ∈ R.

If (a[x1, x2] + [x1, x2]b)(a[x1, x2]
2 + [x1, x2](b − a)[x1, x2] − [x1, x2]

2b)n = 0 for all

x1, x2 ∈ R, where n > 1 is a fixed integer, then one of the following holds:

(1) a, b ∈ C;

(2) R satisfies s4 and a, b ∈ U with (a− b) ∈ C;

(3) char(R) = 2 and R satisfies s4.
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P r o o f. We have that R satisfies the generalized polynomial identity

f(x1, x2) = (a[x1, x2] + [x1, x2]b)(a[x1, x2]
2(2.13)

+ [x1, x2](b− a)[x1, x2]− [x1, x2]
2b)n.

If R does not satisfy any nontrivial GPI, by Lemma 2.3 we obtain a, b ∈ C which

gives the conclusion. So, we assume that R satisfies a nontrivial GPI. Since R and U

satisfy the same generalized polynomial identities (see [5]), U satisfies f(x1, x2). In

case C is infinite, we have f(x1, x2) = 0 for all x1, x2 ∈ U ⊗C C, where C is the

algebraic closure of C. Moreover, both U and U ⊗C C are prime and centrally closed

algebras [9]. Hence, replacingR by U or U⊗CC according to C being finite or infinite,

without loss of generality we may assume that C = Z(R) and R is C-algebra centrally

closed. By Martindale’s theorem [21], R is then a primitive ring having nonzero socle

soc(R) with C as the associated division ring. Hence, by Jacobson’s theorem [11],

page 75, R is isomorphic to a dense ring of linear transformations of a vector space

V over C.

If dimCV = 2, then R ∼= M2(C), that is, R satisfies s4. In this case if char(R) 6= 2,

then by Lemma 2.4 we obtain conclusion (2), otherwise conclusion (3) holds.

Next we assume that dimCV > 3.

We show that for any v ∈ V , v and bv are linearly C-dependent. Suppose that

v and bv are linearly independent for some v ∈ V . Since dimCV > 3, there exists

w ∈ V such that v, bv, w are a linearly C-independent set of vectors. By density,

there exist x1, x2 ∈ R such that

x1v = v, x1bv = −bv, x1w = 0, x2v = 0, x2bv = w, x2w = v.

Then 0 = (a[x1, x2] + [x1, x2]b)(a[x1, x2]
2+ [x1, x2](b− a)[x1, x2]− [x1, x2]

2b)nv = w,

a contradiction. Hence, v and bv are linearly C-dependent for all v ∈ V . Thus

for each v ∈ V , bv = αvv for some αv ∈ C. It is very easy to prove that αv is

independent of the choice of v ∈ V . Thus we can write bv = αv for all v ∈ V and

α ∈ C fixed. Now let r ∈ R, v ∈ V . Since bv = αv,

[b, r]v = (br)v − (rb)v = b(rv) − r(bv) = α(rv) − r(αv) = 0.

Thus [b, r]v = 0 for all v ∈ V , i.e., [b, r]V = 0. Since [b, r] acts faithfully as a linear

transformation on the vector space V , [b, r] = 0 for all r ∈ R. Therefore, b ∈ C.

Thus our identity reduces to

(a+ b)[x1, x2]([a, [x1, x2]][x1, x2])
n = 0

for all x1, x2 ∈ R. Then either a + b = 0 or a ∈ C (see the proof of Theorem 2.2

for inner derivation case in [8]). Both cases lead to a ∈ C. Thus conclusion (1) is

obtained. �
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P r o o f of Theorem 1.1. If char(R) = 2 and R satisfies s4, we obtain our conclu-

sion (3). So we assume that either char(R) 6= 2 or R does not satisfy s4. Since L is

a noncentral Lie ideal of R, by Remark 2.1 there exists a nonzero ideal I of R such

that [I, I] ⊆ L. Hence, by our assumption we have

F ([x1, x2])[F ([x1, x2]), [x1, x2]]
n = 0

for all x1, x2 ∈ I. Since I, R and U satisfy the same generalized polynomial identities

(see [5]) as well as the same differential identities (see [20]), they also satisfy the same

generalized differential identities by Remark 2.2. Hence,

F ([x1, x2])[F ([x1, x2]), [x1, x2]]
n = 0

for all x1, x2 ∈ U , where F (x) = ax+ d(x) for some a ∈ U and a derivation d of U .

Hence, U satisfies

(2.14) (a[x1, x2] + d([x1, x2]))[a[x1, x2] + d([x1, x2]), [x1, x2]]
n = 0.

Now we divide the proof into two cases:

Case I : Let d(x) = [b, x] for all x ∈ U and for some b ∈ U , i.e., d is an inner

derivation of U . Then from (2.14), we obtain that U satisfies

(2.15) ((a+ b)[x1, x2]− [x1, x2]b)[(a+ b)[x1, x2]− [x1, x2]b, [x1, x2]]
n = 0.

By Lemma 2.5, one of the following holds:

(1) a+ b, b ∈ C. In this case F (x) = ax + [b, x] = ax for all x ∈ U and so for all

x ∈ R, where a ∈ C. Thus conclusion (1) is obtained.

(2) R satisfies s4 and a+2b ∈ C. By assumption in this case char(R) must be 6= 2.

Thus F (x) = ax + [b, x] = (a + b)x − xb for all x ∈ U and so for all x ∈ R. This is

our conclusion (2).

Case II : Next we assume that d is not an inner derivation of U . From (2.14), we

have that U satisfies

(a[x1, x2] + [d(x1), x2] + [x1, d(x2)])[a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]]
n = 0.

This gives by Kharchenko’s theorem [12] that U satisfies

(2.16) (a[x1, x2] + [y1, x2] + [x1, y2])[a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]]
n = 0.

If U does not satisfy s4, we replace y1 by [q, x1] and y2 by [q, x2] for some q /∈ C in

the above relation and then applying Lemma 2.5, we get a+q, q ∈ C, a contradiction.
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If U satisfies s4, then char(R) 6= 2. In this case, for y1 = 0 and y2 = 0 we have

from (2.16) that U satisfies

(2.17) a[x1, x2]([a, [x1, x2]][x1, x2])
n = 0.

By Lemma 2.5, a ∈ C. Then from (2.16) we have a contradiction for x1 = e11,

x2 = e12, y2 = −e21, y1 = 0 that 0 = (a[x1, x2] + [y1, x2] + [x1, y2])[a[x1, x2] +

[y1, x2] + [x1, y2], [x1, x2]]
n = (ae12 + e21)[e21, e12]

n = (ae12 + e21)(e22 + (−1)ne11) =

ae12 + (−1)ne21.

Thus Theorem 1.1 is proved. �

P r o o f of Theorem 1.2. By Theorem 1.1, we have only to consider the case when

R satisfies s4. If char(R) = 2, we have the conclusion (2). Let char(R) 6= 2. Then

F (x) = ax + xb for all x ∈ R with a − b ∈ C, that is F (x) = ax + xa + λx for all

x ∈ R and for some λ ∈ C. In this case R ⊆ M2(F ) for some field F , and M2(F )

satisfies

(ax+ xa+ λx)[ax + xa, x]n = 0,

that is

(2.18) (ax+ xa+ λx)[a, x2]n = 0.

We may assume n is even; if not so, we multiply by [a, x2] from the right to make it

even. Since we know that [x, y]2 ∈ Z(M2(F )) for all x, y ∈ M2(F ), we get by right

and left multiplying by x in (2.18) that for all x ∈ M2(F ),

(2.19) (ax+ xa+ λx)x[a, x2]n = 0

and

(2.20) x(ax + xa+ λx)[a, x2]n = 0.

Subtracting one from the other, we have [a, x2]n+1 = 0 and so [a, x2]n+2 = 0. Since

n + 2 is even, it yields that [a, x2]2 = 0 for all x ∈ M2(F ). Replacing x by e11,

we have 0 = e22[a, e11]
2e22 = −a21a12e22, that is a21a12 = 0. Let ϕ and χ be two

inner automorphisms defined by ϕ(x) = (1 + e21)x(1− e21) and χ(x) = (1− e21)x×

(1 + e21). Since ϕ(a) and χ(a) possess the same properties as a does, we conclude

that ϕ(a)12ϕ(a)21 = 0 and χ(a)12χ(a)21 = 0. Both these cases give a12(−a22+a11−

a12) = 0 and a12(a22 − a11 − a12) = 0. Adding these two relations yields 2a212 = 0,

implying a12 = 0. Similarly, we can prove a21 = 0. Thus a is diagonal. Therefore,

ϕ(a) = (1 + e21)a(1 − e21) = a + (a11 − a22)e21 is diagonal, which implies that

a11 = a22. Hence, a is central. Thus F (x) = (2a + λ)x for all x ∈ R, which is our

conclusion (1). �
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3. Results on Banach algebras

Here A will denote a complex noncommutative Banach algebra. Our final result in

this paper is about continuous generalized derivations on noncommutative Banach

algebras.

We need the following results to prove our theorem.

Remark 3.1 (see [26]). Any continuous derivation of a Banach algebra leaves the

primitive ideals invariant.

Remark 3.2 (see [27]). Any continuous linear derivation on a commutative Ba-

nach algebra maps the algebra into its radical.

Remark 3.3 (see [10]). Any linear derivation on a semisimple Banach algebra is

continuous.

P r o o f of Theorem 1.3. By the hypothesis, ζ is continuous. Again, since La, the

left multiplication by some element a ∈ A, is continuous, we find that the derivation

d is also continuous. By Remark 3.1, for any primitive ideal P of A we have ζ(P ) ⊆

aP + d(P ) ⊆ P . It means that the continuous generalized derivation ζ leaves the

primitive ideal invariant. Denote Ā = A/P for any primitive ideal P . Thus we can

define the generalized derivation ζP : Ā → Ā by ζP (x̄) = ζP (x + P ) = ζ(x) + P for

all x̄ ∈ Ā, where A/P = Ā. Since P is a primitive ideal, Ā is primitive and so it is

prime. The hypothesis ζ(x)[ζ(x), x]n ∈ rad(A) yields that ζP (x̄)[ζP (x̄), x̄]
n = 0̄ for

all x̄ ∈ Ā. Now from Theorem 1.2, it is immediate that d = 0̄ and ā ∈ Z(Ā), that is,

d(A) ⊆ P and [a,A] ⊆ P . Since the radical of A is the intersection of all primitive

ideals, we arrive at the required conclusions. �

From the above we have the following concluding result:

Corollary 3.4. Let A be a noncommutative semisimple Banach algebra, ζ =

La + d a continuous generalized derivation of A and n a fixed positive integer. If

ζ(x)[ζ(x), x]n = 0 for all x ∈ A, then ζ(x) = αx for some α ∈ Z(A).
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