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Universally divergent Fourier series

via Landau’s extremal functions

Gerd Herzog, Peer Chr. Kunstmann

Abstract. We prove the existence of functions f ∈ A(D), the Fourier series of
which being universally divergent on countable subsets of T = ∂D. The proof
is based on a uniform estimate of the Taylor polynomials of Landau’s extremal
functions on T \ {1}.
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Classification: 42A16, 30B30, 47B38

1. Introduction

Let D denote the unit disc in C and T = ∂D. For f ∈ L1(T) let

∞∑

k=−∞

f̂(k)ek

denote the corresponding Fourier series, i.e.

ek(t) = exp(ikt), f̂(k) =
1

2π

∫ 2π

0

f(exp(it)) exp(−ikt) dt (k ∈ Z).

There is a tremendous amount of classical convergence and divergence results
on Fourier series [14]. Moreover, several results on universally divergent Fourier
(and trigonometric) series are known, see for example [3], [5], [7], [10], [11] and the
references given there. Roughly speaking, f has a universally divergent Fourier
series if the set of restrictions

{( n∑

k=−n

f̂(k)ek

)∣∣∣
E

: n ∈ N

}

in a function space Y , of functions over a subset E of T, is dense in Y . In [10]
Müller proved that given a countable set E ⊆ T, then the set of functions f ∈ C(T)
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having the property that

{( n∑

k=−n

f̂(k)ek

)∣∣∣
E

: n ∈ N

}
is dense in C

E

is a dense Gδ-subset of C(T). Here CE is the Fréchet space of all functions
w : E → C endowed with the topology of pointwise convergence.

In this paper, we prove that there are even functions f ∈ C(T) with universal

divergent Fourier series in the sense of Müller such that in addition f̂(−k) = 0
(k ∈ N). While Müller’s proof is based on the Localization Principle of Fourier
series we will use Landau’s extremal functions [9, §2].

To formulate our results let H(D) denote the Fréchet space of all analytic
functions on D endowed with the compact open topology, let A(D) = C(D)∩H(D)
denote the disc-algebra endowed with the maximum norm ‖·‖∞, and for f ∈ H(D)
let

Sn(f, z) =

n∑

k=0

f (k)(0)

k!
zk (n ∈ N0).

For a given countable set E ⊆ T consider the continuous linear operators

Ln : A(D) → C
E , Ln(f) = Sn(f, ·)|E .

We will prove

Theorem 1. The set of all f ∈ A(D) with the property

{Ln(f) : n ∈ N0} is dense in C
E

is a dense Gδ-subset of A(D).

Remark. According to a result of Fejér [4], no q-to-one function f ∈ A(D) (q ∈ N)
can share the property in Theorem 1, since for those functions

|Sn(f, 1)| ≤

(
1 +

√
q

2

)
‖f‖∞ (n ∈ N0).

Just as Müller’s Theorem extends to Lp-spaces, we can extend Theorem 1 to
certain Banach spaces of analytic functions, such as the Hardy spaces Hp(D)
(1 ≤ p < ∞), or the little Bloch space

B0 = {f ∈ H(D) : lim
|z|→1−

(1 − |z|2)|f ′(z)| = 0},

‖f‖ = |f(0)| + max
|z|<1

(1 − |z|2)|f ′(z)|

(compare [1]), for example.
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Theorem 2. Let (X, ‖ · ‖) be a Banach space with A(D) ⊆ X ⊆ H(D) such that

(1) A(D) is dense in X ,

(2) ‖ · ‖ is weaker than ‖ · ‖∞ on A(D),
(3) convergence in X implies convergence in H(D).

Let E ⊆ T be countable, and let

L̃n : X → C
E , L̃n(f) = Sn(f, ·)|E .

Then, the set of all f ∈ X with the property

{L̃n(f) : n ∈ N0} is dense in C
E

is a dense Gδ-subset of X .

In [10] Müller also discusses the problem of replacing pointwise convergence by
uniform convergence for compact subsets E of T. We note here that the general
topological category argument [10, Lemma 2] is also applicable in our setting.
Combined with Theorem 1 it proves that there are many and even uncountable
compact subsets E ⊆ T such that the set of all f ∈ A(D) with the property

{Sn(f, ·)|E : n ∈ N0} is dense in C(E)

is a dense Gδ-subset of A(D). Here C(E) denotes the Banach space of all contin-
uous functions w : E → C endowed with the maximum norm.

It follows from [8, Cor. 3.3] that there are countable compact subsets E ⊆ T

with a single accumulation point such that, for no function f ∈ A(D), the set

{Sn(f, ·)|E : n ∈ N0}

is dense in C(E). On other hand, recent results in [2] show that, for any compact
subset E ⊆ T of arc length measure 0, the set of all f ∈ Hp(D), p ∈ [1,∞), with
the property

{Sn(f, ·)|E : n ∈ N0} is dense in C(E)

is a dense Gδ-subset of Hp(D).

Remark. After submitting this paper Jürgen Müller informed us that he and
George Costakis have independently found Theorem 1. Their proof is based on
Fejér polynomials

Fn(z) =

2n∑

k=0,k 6=n

zk

n − k
,

instead of Landau’s extremal functions and has not been published up to now.
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2. Landau’s extremal functions

In the sequel let

ak := (−1)k

(
−1/2

k

)
(k ∈ N0),

that is

a0 = 1, ak =
1 · 3 · 5 · · · · · (2k − 1)

2 · 4 · 6 · · · · · 2k
(k ∈ N),

and

Kn(z) := a0 + a1z + a2z
2 + · · · + anzn (n ∈ N0).

In [9] Landau proved that 0 /∈ Kn(D), that

γn := sup{|Sn(f, 1)| : f ∈ A(D), ‖f‖∞ ≤ 1} (n ∈ N0)

is a maximum which is attained at

f(z) = Rn(z) :=
znKn(1/z)

Kn(z)
=

an + an−1z + an−2z
2 + · · · + a0z

n

a0 + a1z + a2z2 + · · · + anzn
,

and that

Sn(Rn, 1) = γn =

n∑

k=0

a2
k ∼

log(n)

π
(n → ∞).

In particular we have

Sn(Rn, 1) = γn → ∞ (n → ∞).

Some immediate facts on the rational functions Rn are

|Rn(z)| = 1 (z ∈ T), ‖Rn‖∞ = 1.

To utilize the functions Rn in the proof of Theorem 1 we prove the following
theorem, which seems to us of some interest on its own. It asserts that the
functions Sn(Rn, ·), n ∈ N0, have a common majorant on D \ {1}. We shall use
this on T \ {1}.

Theorem 3. For each z ∈ D \ {1} we have

|Sn(Rn, z)| ≤
4

|1 − z|
(n ∈ N0).

Proof: We fix n ∈ N0, and consider

Sn(Rn, z) =

n∑

k=0

bkzk.

Observe that here bk = bk,n depend on n, but we shall ignore this in notation.
Since the ak are real, it is clear that bk ∈ R, and from ‖Rn‖∞ = 1 we get by
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Cauchy’s formula |bk| ≤ 1 (k = 0, . . . , n). In [13], Wintner proved that in fact
bk ∈ [0, 1] (k = 0, . . . , n). From

(a0 + a1z + a2z
2 + · · · + anzn)Rn(z) = an + an−1z + an−2z

2 + · · · + a0z
n

we obtain (cf. [13])

m∑

k=0

am−kbk = an−m (m = 0, . . . , n).

By setting Pk := diag ([1, . . . , 1],−k) ∈ R
(n+1)×(n+1) (the band matrix with 1’s

in the k-th subdiagonal and 0’s else), b := (b0, b1, . . . , bn)⊤ ∈ Rn+1 and a :=
(an, an−1, . . . , a0)

⊤ ∈ Rn+1, the linear system above can be written as
(

n∑

k=0

akPk

)
b = a.

We claim that
(

n∑

k=0

akPk

)−1

= a0P0 + (a1 − a0)P1 + (a2 − a1)P2 + · · · + (an − an−1)Pn.

In order to see this we start with the Taylor expansion

(1 + x)α =

∞∑

k=0

(
α

k

)
xk (|x| < 1)

for α = − 1
2 and α = 1

2 and take the Cauchy product

1 = (1 + x)−1/2(1 + x)1/2 =

∞∑

k=0

k∑

ν=0

(
−1/2

ν

)(
1/2

k − ν

)
xk.

We conclude that

k∑

ν=0

(
−1/2

ν

)(
1/2

k − ν

)
= δ0k (k ∈ N0).

For k ∈ N we get by a well-known formula

ak − ak−1 = (−1)k

[(
−1/2

k

)
+

(
−1/2

k − 1

)]
= (−1)k

(
1/2

k

)
.

Then

I +

n∑

k=1

(ak − ak−1)Pk = I +

n∑

k=1

(−1)k

(
1/2

k

)
Pk =

n∑

k=0

(−1)k

(
1/2

k

)
Pk
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and
n∑

k=0

akPk = I +

n∑

k=1

(−1)k

(
−1/2

k

)
Pk =

n∑

k=0

(−1)k

(
−1/2

k

)
Pk.

We take the product, respect PkPl = Pl+k (setting Pj = 0 for j > n), and arrive
at

( n∑

k=0

akPk

)(
I +

n∑

k=1

(ak − ak−1)Pk

)

=
( n∑

k=0

(−1)k

(
−1/2

k

)
Pk

)( n∑

k=0

(−1)k

(
1/2

k

)
Pk

)

=
n∑

k,l=0

(−1)k+l

(
−1/2

k

)(
1/2

l

)
Pk+l

=
n∑

k=0

(−1)k
( k∑

ν=0

(
−1/2

ν

)(
1/2

k − ν

))
Pk = I,

and our claim is proved. We now rewrite

(
n∑

k=0

akPk

)−1

= a0P0 + (a1 − a0)P1 + (a2 − a1)P2 + · · · + (an − an−1)Pn

= I −
(a0

2
P1 +

a1

4
P2 + · · · +

an−1

2n
Pn

)
=: I − Q.

Now a is an increasing vector with positive entries, therefore each vector

ak

2k + 2
Pk+1a (k = 0, . . . , n − 1)

is an increasing vector. Thus, with c := Qa we have b = a − c where a and c are
increasing, and from ak, bk ∈ [0, 1], ck ≥ 0 (k = 0, . . . , n) we get that all entries
of c are in [0, 1]. This proves that b has variation

n−1∑

k=0

|bk+1 − bk| ≤ 2.

Next, we consider

(1 − z)Sn(Rn, z) = (1 − z)

n∑

k=0

bkzk =

n∑

k=0

bkzk −
n+1∑

k=1

bk−1z
k

= b0 − bnzn+1 +
n∑

k=1

(bk − bk−1)z
k,
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thus, for each z ∈ D

|(1 − z)Sn(Rn, z)| ≤ b0 + bn +

n∑

k=1

|bk − bk−1| ≤ 1 + 1 + 2 = 4.

�

Remark. We note that the constant 4 in Theorem 3 is most certainly not optimal.
Numerical experiments suggest that the vector b is always convex, and that

|Sn(Rn, z)| ≤
2

|1 − z|
(n ∈ N0, z ∈ D \ {1}).

3. Universality criterion

To prove Theorem 1 we use the universality criterion of Grosse-Erdmann [6,
Theorem 1.57].

Theorem 4. Let X be a complete metric space, Y a separable metric space, and

Tn : X → Y , n ∈ N0, continuous maps. Denoting U = U((Tn)n∈N0
) as the set of

all x ∈ X such that

{Tnx : n ∈ N0} is dense in Y,

the following assertions are equivalent.

(1) The family (Tn)n∈N0
is topologically transitive, i.e. for any pair U ⊆ X ,

V ⊆ Y of nonempty open sets, there is some n ∈ N0 such that

Tn(U) ∩ V 6= ∅.

(2) The set U is a dense Gδ-subset of X .

(3) The set U is dense in X .

In the proof of Theorem 1 we shall apply Theorem 4 to the situation

X = A(D), Y = C
E , Tn = Ln (n ∈ N0)

and check that (1) holds. Here we already observe that the equivalence of (2) and
(3) in Theorem 4 shows that Theorem 1 implies Theorem 2.

Proof of Theorem 2: Assumption (3) of Theorem 2 implies that L̃n : X →
CE is continuous (n ∈ N0). By Theorem 1, the set U((Ln)n∈N0

) is dense in
A(D). Since A(D) is densely and continuously embedded in X , we obtain that

U((Ln)n∈N0
) is dense in X . Hence also the superset U((L̃n)n∈N0

) is dense in X ,
and is a dense Gδ-subset of X by Theorem 4. �

Open Problem. It would be interesting to know whether U((L̃n)n∈N0
) is a dense

Gδ-set also in case X = H∞(D). Clearly U((Ln)n∈N0
) ⊆ H∞(D), but assumption

(1) of Theorem 2 is not satisfied.
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We prepare the proof of Theorem 1 and note that if, in the situation of The-
orem 4, D is a dense subset of X , and if d and ρ are the metrics on X and Y ,
respectively, then topological transitivity of (Tn)n∈N0

is equivalent to the following
condition:

∀ε > 0 ∀(x, y) ∈ D × Y ∃(n, z) ∈ N0 × X : d(x, z) < ε ∧ ρ(Tnz, y) < ε.

In our situation, we let D denote the set of all polynomials, which is known to be
a dense subset of X = A(D), [12, p. 366]. Moreover, let E = {zk : k ∈ N} with
zk 6= zj (k 6= j) and let Y = CE be endowed with the usual Fréchet metric

ρ(v, w) =

∞∑

k=1

1

2k

|v(zk) − w(zk)|

1 + |v(zk) − w(zk)|
.

4. Proof of Theorem 1

Let ε > 0, p ∈ D, n0 := grad p and w ∈ CE . Let m ∈ N be such that

∞∑

k=m+1

1

2k
< ε.

It is sufficient to find a function f ∈ A(D) and some n ≥ n0 such that

‖f‖∞ < ε ∧ Ln(f)(zk) = Sn(f, zk) = w(zk) − p(zk) =: ζk (k = 1, . . . , m).

Once such n and f are known we set g := f + p and obtain ‖p− g‖∞ < ε and

ρ(Ln(g), w) = ρ((Sn(f, ·) + p)|E , w)

= ρ(Sn(f, ·)|E , w − p|E) ≤
∞∑

k=m+1

1

2k
< ε.

To construct f and n we set ζ = (ζ1, . . . , ζm)⊤ and we make the ansatz

f(z) = λ1Rn(z1z) + · · · + λmRn(zmz)

where λ1, . . . , λm ∈ C have to be chosen. Recalling that ‖Rn(zk ·)‖∞ = 1 (k =
1, . . . , m) we already find

‖f‖∞ ≤ ‖λ‖1

where ‖ · ‖1 denotes the l1-norm on Cm.
Now we consider the m × m-matrix Qn with entries

q
(n)
kj = Sn(Rn(zj ·), zk) (k, j ∈ {1, . . . , m}).

Note that if λ = (λ1, . . . , λm)⊤ solves Qnλ = ζ, then

Sn(f, zk) = ζk (k = 1, . . . , m).
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Moreover

q
(n)
kk = Sn(Rn(zk ·), zk) = Sn(Rn, 1) = γn, (k = 1, . . . , m),

and according to Theorem 3 we have, for k 6= j,

|q
(n)
kj | = |Sn(Rn(zj ·), zk)| ≤

4

|1 − zjzk|
=

4

|zk − zj |
≤ c,

where

c := max

{
4

|zk − zj |
: j, k = 1, . . . , m, k 6= j

}

does not depend on n.
Since γn → ∞ (n → ∞) we thus find

I −
Qn

γn
→ 0 (n → ∞).

So for large n we have by Neumann’s series

Q−1
n =

1

γn

(
I −

(
I −

Qn

γn

))−1

=
1

γn

∞∑

r=0

(
I −

Qn

γn

)r

,

and we conclude that Q−1
n → 0 as n → ∞. In particular, we can choose n ∈ N

such that

‖λ‖1 = ‖Q−1
n ζ‖1 < ε.

This ends the proof. �
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