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Abstract. Let G be an undirected connected graph with n, n > 3, vertices and m
edges with Laplacian eigenvalues µ1 > µ2 > . . . > µn−1 > µn = 0. Denote by µI =
µr1 +µr2 + . . .+µrk , 1 6 k 6 n− 2, 1 6 r1 < r2 < . . . < rk 6 n− 1, the sum of k arbitrary
Laplacian eigenvalues, with µI1

= µ1 +µ2 + . . .+µk and µIn
= µn−k + . . .+ µn−1. Lower

bounds of graph invariants µI1
− µIn

and µI1
/µIn

are obtained. Some known inequalities
follow as a special case.
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1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be an undirected connected graph with n,

n > 3, vertices and m edges. Further, let µ1 > µ2 > . . . > µn−1 > µn = 0 and

d1 > d2 > . . . > dn, di = d(vi), i = 1, 2, . . . , n, be the Laplacian eigenvalues and

the vertex degree sequence of G, respectively. Denote by S = {1, 2, . . . , n − 1} an

index set, and by J = {I = (r1, r2, . . . , rk); 1 6 r1 < r2 < . . . < rk 6 n − 1}

the set of all subsets of S of cardinality k, 1 6 k 6 n − 2. In addition, denote

by µI = µr1 + µr2 + . . . + µrk
, 1 6 k 6 n − 2, 1 6 r1 < r2 < . . . < rk 6 n − 1

the sum of k arbitrary Laplacian eigenvalues, where µI1 = µ1 + µ2 + . . . + µk and

µIn = µn−k + . . .+ µn−1. It is easy to verify that µIn 6 µI 6 µI1 for each I, I ∈ J .

Many results have been obtained for invariants µI1 and µIn (see for example [2], [4],

The research has been supported by the Serbian Ministry of Education, Science and
Technological development, under grant No TR32012 and TR32009.

529



[5], [7], [11], [12], [15], [18]). In [15] the following inequalities were proved

µI1 6
2mk +

√

k(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

n− 1

and

µIn >
2mk −

√

k(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

n− 1

where M1 =
n
∑

i=1

d2
i
is the first Zagreb index (see [9], [10]). From these inequalities,

the following inequalities that determine upper bounds for µI1 − µIn and µI1/µIn

can be derived

(1.1) µI1 − µIn 6
2
√

k(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

n− 1

and

(1.2)
µI1

µIn

6
2mk +

√

k(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

2mk −
√

k(n− k − 1)(n− 1)(M1 + 2m)− 4m2)
.

In this paper we are going to prove inequalities which are reverse to (1.1) and

(1.2), i.e., which set lower bounds for invariants µI1 −µIn and µI1/µIn . We will also

point out some inequalities, known the literature, which are obtained as a special

case of inequalities proved in the current paper.

2. Main result

We first prove an auxiliary result that will be needed in the subsequent consider-

ations.

Lemma 2.1. Let G be an undirected connected graph with n, n > 3, vertices

and m edges. Then for each k, 1 6 k 6 n− 2, the following is valid

(2.1)
∑

I∈J

1 =

(

n− 1

k

)

,

∑

I∈J

µI = 2m

(

n− 2

k − 1

)

,

∑

I∈J

µ2

I =

(

n−2

k−1

)

n− 2
((n− k − 1)(M1 + 2m) + 4m2(k − 1)).
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P r o o f. The first two inequalities in (2.1) are obvious, so we prove only the last

one.

∑

I∈J

µ2

I
=

(

n− 2

k − 1

)

(µ2

1
+ . . .+ µ2

n−1
) +

(

n− 3

k − 2

)

(2µ1µ2 + . . .+ 2µn−2µn−1)

=

(

n− 2

k − 1

)

(µ2

1
+ . . .+ µ2

n−1
) +

(

n− 3

k − 2

)

(µ1 + . . .+ µn−1)
2

−

(

n− 3

k − 2

)

(µ2

1
+ . . .+ µ2

n−1
)

=

(

n− 3

k − 1

)

(µ2

1
+ . . .+ µ2

n−1
) +

(

n− 3

k − 2

)

(µ1 + . . .+ µn−1)
2.

Since (see for example [1], [13])

(2.2)

n−1
∑

i=1

µi =

n
∑

i=1

di = 2m and

n−1
∑

i=1

µ2

i =

n
∑

i=1

d2i +

n
∑

i=1

di = M1 + 2m,

rearranging the last equality we obtain the desired result.

�

Remark 2.1. For k = 1 from (2.1), the equalities (2.2) are obtained. Also,

from the second equality in (2.1) it follows that µI1 > 2mk/(n− 1) and µIn 6

2mk/(n− 1), for each k, 1 6 k 6 n− 2. For k = 1, these inequalities reduce to the

well known inequalities µ1 > 2m/(n− 1) and µn−1 6 2m/(n− 1).

In the following theorem we prove an inequality reverse to (1.1), which establishes

a lower bound for the invariant µI1 −µIn in terms of the parameters k, n,m andM1.

Theorem 2.1. Let G be an undirected connected graph with n, n > 3, vertices

and m edges. Then for each k, 1 6 k 6 n− 2, the following is valid

(2.3) µI1 − µIn >
2

n− 1

√

k(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

n− 2
.

Equality holds if and only if G ∼= Kn.

P r o o f. If in (see [14])

n
∑

i=1

a2
i

n
∑

i=1

b2
i
−

( n
∑

i=1

aibi

)2

6
n2

4
(R1R2 − r1r2)

2
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we substitute n :=
(

n−1

k

)

, 1 6 k 6 n − 2, ai := µI , bi := 1, i = 1, 2, . . . ,
(

n−1

k

)

,

R1 = µI1 , r1 = µIn , r2 = R2 = 1, it transforms into

(2.4)
∑

I∈J

µ2

I

∑

I∈J

1−

(

∑

I∈J

µI

)2

6

(

n−1

k

)2

4
(µI1 − µIn)

2
.

Now, according to (2.1) the above inequality becomes

(µI1 − µIn)
2

>
4

(

n−1

k

)2

((

n− 1

k

)(

n− 3

k

)(

M1 + 2m+
4m2(k − 1)

n− k − 1

)

− 4m2

(

n− 2

k − 1

))

.

Rearranging the last inequality yields the desired result.

Equality in (2.4) holds if and only if µI = µI1 = µIn , for each I ∈ J , i.e. when

µ1 = µ2 = . . . = µn−1. Consequently, equality in (2.3) holds if and only if G ∼= Kn.

�

The following corollary of the inequality (2.3) sets a lower bound of the invariant

µI1 − µIn in terms of the parameters k, n and m.

Corollary 2.1. Let G be an undirected connected graph with n, n > 3, vertices

and m edges. Then for each k, 1 6 k 6 n− 2,

(2.5) µI1 − µIn >
2

n− 1

√

2mk(n− k − 1)(n(n− 1)− 2m)

n(n− 2)
.

Equality holds if and only if G ∼= Kn.

P r o o f. In [5] it was proved that for each connected simple (n,m)-graph, n > 3,

holds

(2.6) M1 >
4m2

n
.

The inequality (2.5) is obtained from the inequalities (2.3) and (2.6). �

Corollary 2.2. Let G be an undirected connected r-regular, 2 6 r 6 n−1, graph

with n, n > 3, vertices and m edges. Then for each k, 1 6 k 6 n− 2

(2.7) µI1 − µIn >
2

n− 1

√

nkr(n− k − 1)(n− r − 1)

n− 2
.

Equality holds if and only if r = n− 1, i.e. if G ∼= Kn.

Remark 2.2. For k = 1 from (2.3) the inequality proved in [6], Theorem 4,

and [17], Theorem 3.4, is obtained. Also, for k = 1 from (2.7) the inequality proved

in [17], Corollary 3.2 (see also [8]) is obtained.
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The following theorem establishes a lower bound for the invariant µI1/µIn in terms

of the parameters k, n, m and M1.

Theorem 2.2. Let G be an undirected connected graph with n, n > 3, vertices

and m edges. Then for each k, 1 6 k 6 n− 2,

(2.8)
µI1

µIn

>
1

4m2

(
√

(n− 1)((n− k − 1)(M1 + 2m) + 4m2(k − 1))

k(n− 2)

+

√

(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

k(n− 2)

)2

.

Equality holds if and only if G ∼= Kn.

P r o o f. For n :=
(

n−1

k

)

, 1 6 k 6 n − 2, ai := 1, bi := µI , i = 1, 2, . . . ,
(

n−1

k

)

,

r = µIn , R = µI1 , the inequality (see [3])

n
∑

i=1

b2
i
+ rR

n
∑

i=1

a2
i
6 (r +R)

n
∑

i=1

aibi

becomes

(2.9)
∑

I∈J

µ2

I
+ µI1µIn

∑

I∈J

1 6 (µI1 + µIn)
∑

I∈J

µI .

Using the AG-inequality, i.e., the inequality between arithmetic and geometric

means, from (2.9) we obtain

(2.10) 2

√

µI1µIn

∑

I∈J

1
∑

I∈J

µ2

I
6 (µI1 + µIn)

∑

I∈J

µI .

Bearing in mind the equality (2.1), the above inequality transforms into

(2.11)

√

µI1

µIn

+

√

µIn

µI1

>
1

m

√

(n− 1)((n− k − 1)(M1 + 2m) + 4m2(k − 1))

k(n− 2)
.

Since
(
√

µI1

µIn

+

√

µIn

µI1

)2

=

(
√

µI1

µIn

−

√

µIn

µI1

)2

+ 4,

based on (2.11) we have that

(2.12)

√

µI1

µIn

−

√

µIn

µI1

>
1

m

√

(n− k − 1)((n− 1)(M1 + 2m)− 4m2)

k(n− 2)
.

The inequality (2.8) is obtained according to (2.11) and (2.12).
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Equality in (2.10) holds if and only if µI = µI1 = µIn , for each I ∈ J , i.e. for

µ1 = µ2 = . . . = µn−1. Consequently, equality in (2.8) holds if and only if G ∼= Kn.

�

Remark 2.3. It is easy to verify that the inequality obtained by rearranging (2.9),

using (2.1), is stronger than (2.11) and (2.12).

Remark 2.4. For k = 1 from (2.8), the inequality obtained in [16], Theorem 2.3,

is recovered. For k = 1, from (2.11) the inequality proved in [6], Theorem 3, and [16],

Theorem 2.1, is obtained. Also, for k = 1 from (2.12) we arrive at the inequality

obtained in [16], Theorem 2.2.
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