
Kybernetika

Rogério Martins; Gonçalo Morais
Generalized synchronization in a system of several non-autonomous oscillators
coupled by a medium

Kybernetika, Vol. 51 (2015), No. 2, 347–373

Persistent URL: http://dml.cz/dmlcz/144303

Terms of use:
© Institute of Information Theory and Automation AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/144303
http://dml.cz


KYB ERNET IK A — VO LUME 5 1 ( 2 0 1 5 ) , NUMBER 2 , PAGES 3 4 7 – 3 7 3

GENERALIZED SYNCHRONIZATION IN A SYSTEM OF
SEVERAL NON-AUTONOMOUS OSCILLATORS COUPLED
BY A MEDIUM

Rogério Martins and Gonçalo Morais

An abstract theory on general synchronization of a system of several oscillators coupled
by a medium is given. By generalized synchronization we mean the existence of an invariant
manifold that allows a reduction in dimension. The case of a concrete system modeling the
dynamics of a chemical solution on two containers connected to a third container is studied
from the basics to arbitrary perturbations. Conditions under which synchronization occurs are
given. Our theoretical results are complemented with a numerical study.
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Classification: 34D06, 34D35, 34C15

1. INTRODUCTION

We will introduce a general framework of generalized synchronization of periodic oscil-
lators coupled by a medium. Consider a very general coupling framework

ẋ1 = f1(x1, y, t)
...
ẋm = fm(xm, y, t)
ẏ = g(x1, . . . , xm, y, t)

(1)

of the oscillators xi ∈ Rn, i = 1, . . . ,m through a medium y ∈ Rp. Throughout this
paper is assumed the system is T−periodic in t, i.e, for all t ∈ R we have fi(xi, y, t+T ) =
fi(xi, y, t) for i = 1, . . . ,m and g(x1, . . . , xm, y, t+T ) = g(x1, . . . , xm, y, t). This coupling
scheme is rather natural, just imagine a group of cells immersed in a common medium,
each cell interacts chemically with all the other cells trough the medium. We can find
this type of coupling in several situations (see for example [4] and [7]).

By generalized synchronization we mean the existence of an invariant time dependent
manifold At, that can be seen as graph over certain subspaces and that attracts the
orbits in the future, i. e., given a metric d and a solution Z(t) = (x1, x2, . . . , xn, y)T of
system (1),

d (Z(t),At) → 0
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as t → +∞. In this case we will call At the synchronization manifold. If we assure the
existence of At, with certain characteristics, this can allow us, for example, to know the
asymptotic state of some oscillators from the state of the others. Depending on the type
of synchronization we have, the particular geometry of the synchronization manifold will
change. For example, the existence of an attracting manifold of the type

At = {x1 = x2 = . . . = xn}

is a very special case of synchronization, that we call identical synchronization. In this
case, we can predict the asymptotic behavior of all the oscillators from the knowledge of
any one of them and the respective synchronization manifold will be of diagonal type.

The existence of invariant synchronization manifolds will be, in general, obtained
from a general theory introduced by Russell Smith in [8]. Similar ideas were used by
Martins and Margheri in [5] in order to identify generalized synchronization of coupled
oscillators. The novelty of our case is that the coupling is done by the medium, the
nature of this coupling will introduce some new aspects to the geometrical structure of
the synchronization manifold that will, somehow, differ from the one given in [5].

All these ideas will be applied to a system modelling two containers with some chem-
ical solution. These containers are connected trough a semi-permeable membrane to
another container. We assume that the concentration of the chemical in the three con-
tainers is measured by the variables x1, x2 and y respectively. Then the evolution of
these concentrations is described by the linear system of differential equations

ẋ1 = k (y − x1)
ẋ2 = k (y − x2)
ẏ = k (x1 − y) + k (x2 − y) .

(2)

In the second part of this paper we study the perturbations of this system, giving
conditions under which there occurs generalized synchronization. The option to study
this particular example is rather arbitrary. Our goal is to give an example of the kind of
results derived from the so called Theorem of Generalized Synchronization, introduced
in section 2, whose proof is refered to section A. Analogous results could be obtained to
a larger number of oscillators with a similar coupling. With our choice we just want to
increase the intuition level of the results presented here.

2. GENERALIZED SYNCHRONIZATION

The system (1) may be written in a more condensed form, defining X = (x1, . . . , xm)T

and F (X, y, t) = (f1(x1, y, t), . . . , fm(xm, y, t))T . Hence, the system (1) can be rewritten
as {

Ẋ = F (X, y, t)
ẏ = g(X, y, t).

(3)

Throughout this paper is assumed that it is valid the assumption of existence and unique-
ness of solutions of system (1) and that all its solutions are defined in R. In the same
condensed form we denote by (X(t), y(t)) = (X(t;X0, y0, t0), y(t;X0, y0, t0)) the solution
of (1) so that (X(t0), y(t0)) = (X0, y0).
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In a more geometric flavor, for a system like the one presented in (1), we pretend
to identify a k-dimensional invariant submanifold At ⊂ Rmn+p, with k < nm + p, that
can be seen as a graph over a k-dimensional subspace that attracts the solutions of
system (1). In the literature, the typical case exposed is the identical synchronization.
In this case, the dimension of the synchronization manifold is equal to the dimension of
a single oscillator, whose behavior rigidly catches the overall behavior of the system.

Definition 2.1. If At is a k-dimensional invariant submanifold of Rnm+p, for each t ∈
R, that is a graph over a k-dimensional subspace, and attracts all the (bounded) orbits in
the future, i. e., given a metric d, for every (bounded) solution Z(t) = (x1, x2, . . . , xn, y)T

of system (1),
d (Z(t),At) → 0

as t → +∞, then we call At a synchronization manifold and we say that there is
(bounded) generalized synchronization.

The existence of a candidate for synchronization manifold will be obtained directly
from considerations of symmetry, from Lyapunov function, or using a general result
introduced by Russel Smith in [8]. In our framework, the hereafter called Russel Smith’s
condition is equivalent to the existence of a symmetric matrix P ∈ M(nm+p)×(nm+p)(R),
with precisely k negative eigenvalues, and positive constants ε, λ, so that for any

(
X
y

)
,

( Q
w ) ∈ Rnm+p and t ∈ R we have(

X −Q
y − w

)T

P
[(

F (X, y, t)− F (Q, w, t)
g(X, y, t)− g(Q, w, t)

)
+ λ

(
X −Q
y − w

)]
≤ −ε

∥∥∥(X −Q
y − w

)∥∥∥2

. (4)

Let V be the quadratic form associated with matrix P . The Russel Smith’s condition
is equivalent to say that, for any pair of solutions

(
X
y

)
and

(
Q
w

)
of system (1), the map

e2λtV
(

X−Q
y−w

)
is strictly decreasing. Indeed is valid the inequality

d
dt

{
e2λtV

(
X −Q
y − w

)}
≤ −2e2λtε

∥∥∥∥(X −Q
y − w

)∥∥∥∥2

.

This inequality shows that the Russell Smith’s condition may be seen as a dissipative
condition over the set of solutions of system (1). Intimate related with it are the amenable
points.

Definition 2.2. A point
(
X0, y0, t0

)T ∈ Rnm+p ×R is an amenable point if it gives

rise to a solution
(

X(t)
y(t)

)
so that∫ t0

−∞
e2λt

∥∥∥∥(X(t;X0, y0, t0)
y(t;X0, y0, t0)

)∥∥∥∥2

dt < +∞.

Solutions for which the initial conditions are amenable points are called amenable
solutions and its locus amenable orbits. Obviously the bounded solutions are amenable.
In sequence of this definition we define the set

At0 =


(

X0

y0

)
∈ Rnm+p :

X0

y0

t0

 is an amenable point

 .
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For the matrix P defined in (4), consider the respective eigenvalues, counted with mul-
tiplicities,

λ−1 , . . . , λ−k , λ+
k+1, . . . , λ

+
nm+p,

with λ−i < 0 and λ+
j > 0 for all i = 1, . . . , k and j = k + 1, . . . , nm + p. By symmetry of

matrix P we know that there are nm + p linearly independent eigenvectors respectively

v−1 , . . . , v−k , v+
k+1, . . . , v

+
nm+p.

We can then define the k-dimensional subspace V− ⊂ Rnm associated to the negative
eigenvalues of P

V− = span{v−1 , . . . , v−k }.

From the previous points we are in conditions to state the main theorem of this paper,
adapted from [5] to the case where the coupling is produced through the medium. The
proof of this theorem will be given in appendix A. A different proof can also be obtained
following the ideas in [8].

Theorem 2.3. (Theorem of Generalized Synchronization) Suppose that the system (1)
satisfies the Russell Smith’s condition and there is at least one amenable point. Then
there is bounded generalized synchronization with At as a synchronization manifold.
Moreover, for each t ∈ R, At can be seen as a graph over V−.

There are two important points about this theorem. First, we notice that the di-
mension of the synchronization manifold is equal to the dimension of the subspace V−,
which is given by the number of the negative eigenvalues of matrix P . On the other
hand, for the same system, we can use Russel Smith’s condition with different values for
λ and this give us At’s of different dimensions. So, in general, we can look for different
levels of synchronization in the same system, as we will have the opportunity to see in
the next sections.

3. A LINEAR EXAMPLE

In this section, we will consider the case of a linear system (1) that can be solved by
direct methods. In the next sections we will study a nonlinear perturbation of this
system.

We consider a system of three containers, say containers 1, 2 and 3. All the containers
have the same capacity, say 1 liter. The containers 1 and 2 are connected to the container
3 through a semi-permeable membrane. There is a chemical solution diluted in the
containers and we assume that the concentration of the chemical in the three containers
is measured by the variables x1, x2 and y respectively. Then the evolution of these
concentrations is described by the linear system of differential equations (2) where k is
a constant that depends on the permeability of the membrane. We can also write this
equation in the condensed form (

Ẋ
ẏ

)
= kA

(
X
y

)
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where

A =

−1 0 1
0 −1 1
1 1 −2

 .

The matrix A has eigenvalues −3, −1, and 0 with corresponding eigenvectors 1
1
−2

 ,

 1
−1
0

 ,

1
1
1

 .

So the structure of the phase portrait of this system is very clear: there is a one-
dimensional stable central manifold, the subspace generated by (1, 1, 1), and there is an
invariant two-dimensional stable subspace spanned by the vectors (1,−1, 0) and (1, 1, 1).

This system is linear. Being so it can be easily integrated. However we will study it
from the point of view of the tools introduced in last section. Doing so, it will give us
an useful intuition when we introduce nonlinear perturbations in section 4 and it also
illustrates the ideas given in section 2.

A question that naturally arises is: how can we find the matrix P in the Russel
Smith’s condition? To answer this question we need to go back a little bit and recall the
notion of the Lyapunov’s Equation. The following theorem is adapted from the Corollary
(4.4.7) of Theorem (4.4.6), page 270 of [3], where is presented in full generality.

Theorem 3.1. Given a square matrix D, for every square matrix C the Lyapunov’s
equation

DT P + PD = C

has an unique solution P if and only if σ(D)∩ σ(−D) = ∅, where σ(D) is the spectrum
of matrix D.

Actually, when C is a positive definite matrix there is a relation between the eigen-
values of D and P . This is a consequence of another result from matrix analysis known
as general inertia theorem (see page 105 of [3]). If all the eigenvalues of matrix D have
non-zero real part and C is a positive definite matrix we may guarantee that the matrix
P , solution of the above Lyapunov’s equation, has the same inertia of the matrix D,
meaning that the number of eigenvalues with positive real part is equal in both matrix D
and P . In the case that the matrix C is negative definite, as will be our case, it is not
difficult to show that the number of eigenvalues of matrix D with negative real part are
exactly the same as the number of eigenvalues of the matrix P with positive real part.

This theorem, for the case where D is negative definite, guarantees the existence of
a Lyapunov function for the linear system

ẋ = Dx.

Just choose any negative definite C and obtain a positive definite P by the results above.
Then V (x) = xT Px is a Lyapunov function because the Lie derivative of V along the
solutions verifies

V̇ (x) = xT (DT P + PD)x = xT Cx < 0.
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In our case, in order to guarantee that the matrix D in the Lyapunov’s equation does
not have eigenvalues with null real part, we introduce a positive parameter λ and we
replace the matrix kA by the perturbed matrix kA + λI in the Lyapunov’s equation.
Assuming that λ is chosen in such a way that σ(kA+λI)∩σ(−kA− λI) = ∅, the matrix
P that comes up as the solution of Lyapunov’s Equation

(kA + λI)T P + P (kA + λI) = −I, (5)

is a symmetric matrix, with a number of eigenvalues with positive real part equal to the
number of eigenvalues of matrix kA + λI with negative real part. Both points are easy
to prove. The last assumption comes directly from the previous observation while the
symmetry of matrix P is a direct consequence of the uniqueness and the fact that both
P and PT are solutions of the Lyapunov’s equation.

The matrix kA+λI has eigenvalues −3k +λ, −k +λ, and λ. We would like to study
the dynamic in the situation where one or two of its eigenvalues are positive, but in order
to P be well defined we must choose λ so that σ(kA + λI) ∩ σ(−kA− λI) = ∅. So we
have two different qualitative scenarios, if λ ∈ (0, k)\{k

2} then kA + λI has one positive
and two negative eigenvalues, if λ ∈ (k, 3k)\{ 3

2k, 2k} then kA + λI has two positive
eigenvalues and one negative eigenvalue. In both cases we can compute the solution P
of equation (5) for each λ, and we obtain the not so much friendly matrix

P =

−
k2−3kλ+λ2

2λ(λ−3k)(λ−k) − k2

2λ(λ−3k)(λ−k)
k

2λ(λ−3k)

− k2

2λ(λ−3k)(λ−k) − k2−3kλ+λ2

2λ(λ−3k)(λ−k)
k

2λ(λ−3k)
k

2λ(λ−3k)
k

2λ(λ−3k)
k−λ

2λ(λ−3k)

 . (6)

Although from the matrix theory we can only guarantee existence and uniqueness of a
solution of Lyapunov equation for λ ∈ (0, k)\{k

2} and λ ∈ (k, 3k)\{ 3
2k, 2k}, we see that

the matrix P above is defined and is also solution for λ ∈ (0, k) and λ ∈ (k, 3k), so from
now on we consider this solution for λ in those intervals. We can even compute the
eigenvalues of P . They are

− 1
2(λ− 3k)

,− 1
2(λ− k)

,− 1
2λ

,

with corresponding eigenvectors 1
1
−2

 ,

 1
−1
0

 ,

1
1
1

 .

In any case, if we make (
F (X, y, t)
g(X, y, t)

)
= kA

in (4), then we obtain(
X −Q
y − w

)T

P (kA + λI)
(

X −Q
y − w

)
= −1

2

∥∥∥∥(X −Q
y − w

)∥∥∥∥2
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so Russel Smith’s condition is satisfied with ε = 1/2. Then Theorem 2.3 with λ ∈
(0, k) says that there is an invariant one-dimensional synchronization manifold, that
we know to be the central subspace spanned by (1, 1, 1)T and if λ ∈ (k, 3k) we get a
two-dimensional synchronization manifold that we know to be the subspace spanned by
(1, 1, 1)T and (1,−1, 0)T .

4. GENERAL CONDITIONS FOR SYNCHRONIZATION
OF A NONLINEAR PERTURBATION

In this section, we will study a perturbation of the linear system of section 3 and we will
see what Russel Smith’s theory tell us about it. Consider the nonlinear non-autonomous
time-periodic perturbation of system (2)

ẋ1 = k (y − x1) + f1(x1, t)
ẋ2 = k (y − x2) + f2(x2, t)
ẏ = k (x1 − y) + k (x2 − y) + h(y, t).

(7)

The functions f1, f2, and h are assumed sufficiently regular, in such a way that there is
existence and uniqueness of solutions of (7) and that all the solutions are defined in R.
Moreover they are T -periodic in t for some T > 0.

Our idea will be to see when this perturbed system still satisfies Russel Smith’s
condition with the matrix P computed in the last section, that is a matrix that suits
the linear part. The general problem in its matricial form is written byẋ1

ẋ2

ẏ

 = k

−1 0 1
0 −1 1
1 1 −2

x1

x2

y

+

f1(x1, t)
f2(x2, t)
h(y, t)

 .

Given two solutions of the last system(
X
y

)
=

x1

x2

y

 and
(

Q
w

)
=

q1

q2

w

 ,

the inequality in the Russel Smith’s condition is thus given by(
X − Q
y − w

)T
P
[(

f1(x1, t) − f1(q1, t)
f2(x2, t) − f2(q2, t)

h(y, t) − h(w, t)

)
+ (kA + λI)

(
X − Q
y − w

)]
≤ −ε

∥∥(X − Q
y − w

)∥∥2
.

Considering the bilinear form associated to the matrix P (kA + λI), and assuming that
P is the solution of the Lyapunov equation (kA + λI)T P + P (kA + λI) = −I, we can
rewrite the last inequality by(

1
2
− ε

)∥∥∥∥(X −Q
y − w

)∥∥∥∥2

−
(

X −Q
y − w

)T

P

f1(x1, t)− f1(q1, t)
f2(x2, t)− f2(q2, t)

h(y, t)− h(w, t)

 ≥ 0.

On the other hand, if x1 6= q1, x2 6= q2, and y 6= w, defining α = α(x1, q2, t) =
f1(x1,t)−f1(q1,t)

x1−q1
, β = β(x2, q2, t) = f2(x2,t)−f2(q2,t)

x2−q2
, and γ = γ(y, w, t) = h(y,t)−h(w,t)

y−w , we
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can write the second term in the left hand side of the last inequality as(
X −Q
y − w

)T

P

α 0 0
0 β 0
0 0 γ

(X −Q
y − w

)
.

So the inequality in Russel Smith’s condition is equivalent to(
X −Q
y − w

)T
(1

2
− ε

)
I − P

α 0 0
0 β 0
0 0 γ

(X −Q
y − w

)
≥ 0. (8)

Consider the symmetric matrix Ω of the associate quadratic form

Ω =
1
2

([(
1
2
− ε

)
I − P

(
α 0 0
0 β 0
0 0 γ

)]T

+
(

1
2
− ε

)
I − P

(
α 0 0
0 β 0
0 0 γ

))
. (9)

This matrix, written in an explicit form, is given by

Ω =

 1
2
− ε +

α(k2−3kλ+λ2)
2λ(λ−3k)(λ−k)

(α+β)k2

4λ(λ−3k)(λ−k)
(α+γ)k

4λ(3k−λ)
(α+β)k2

4λ(λ−3k)(λ−k)
1
2
− ε +

β(k2−3kλ+λ2)
2λ(λ−3k)(λ−k)

(β+γ)k
4λ(3k−λ)

(α+γ)k
4λ(3k−λ)

(β+γ)k
4λ(3k−λ)

1
2
− ε +

γ(k−λ)
2λ(3k−λ)

.

So all the discussion about the inequality in Russel Smith’s condition is therefore equiv-
alent to study under which circumstances the quadratic form defined by matrix Ω is
positive definite. The result of the last observations can be resumed in the following
theorem that is a direct consequence of Theorem 2.3.

Theorem 4.1. Suppose that there is λ ∈ (0, k) ∪ (k, 3k) and ε for which Ω is positive
definite for all x1, x2, y, q1, q2, w, with x1 6= x2, q1 6= q2, y 6= w, where P is the solution
of the Lyapunov equation (kA + λI)T P + P (kA + λI) = −I given by (6). Then there is
bounded generalized synchronization for system (7). If λ ∈ (0, k), the synchronization
manifold At is one-dimensional and can be seen as a graph over the subspace spanned
by (1, 1, 1)T , if λ ∈ (k, 3k), the synchronization manifold At is two-dimensional and can
be seen as a graph over the subspace spanned by (1,−1, 0)T and (1, 1, 1)T .

We can try to see in what conditions Ω is positive definite. This can be done in two
ways, computing the eigenvalues and see if they are all positive or studying the minors.
Since the former is unmanageable, we use the second. Consider the coeficients a, b, c,
and d given as function of parameters λ and k

a =
(k2 − 3kλ + λ2)

2λ(λ− 3k)(λ− k)
=

1
12

(
2
λ

+
1

−3k + λ
+

3
−k + λ

)
,

b =
k2

4λ(λ− 3k)(λ− k)
,

c =
k

4λ(3k − λ)
,

d =
λ− k

2λ(λ− 3k)
.

(10)
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Then the matrix Ω is thus given by

Ω =

 1
2 − ε + αa (α + β)b (α + γ)c
(α + β)b 1

2 − ε + βa (β + γ)c
(α + γ)c (β + γ)c 1

2 − ε + γd

 ,

where the three minors of matrix Ω are respectively

m1(α) =
1
2
− ε + αa;

m2(α, β) =
(

1
2
− ε + αa

)(
1
2
− ε + βa

)
− b2(α + β)2;

m3(α, β, γ) =
(

1
2
− ε + γd

)
m2(α, β) + 2c2b(α + β)(α + γ)(β + γ)

− c2(m1(α)(β + γ)2 + m1(β)(α + γ)2).

(11)

Our intuition says that if the difference quotients α, β, and γ, are bounded and if k
is sufficiently large then the system synchronizes as the linear part does. These ideas
are explicitly stated and proved in the following theorem.

Theorem 4.2. Suppose that the following quotients

α = α(x1, q2, t) =
f1(x1, t)− f1(q1, t)

x1 − q1
,

β = β(x2, q2, t) =
f2(x2, t)− f2(q2, t)

x2 − q2
,

γ = γ(y, w, t) =
h(y, t)− h(w, t)

y − w
,

are bounded. Then if k is sufficiently large, there is bounded generalized synchronization
for system (7), with a one-dimensional synchronization manifold At that can be seen as a
graph over the subspace spanned by (1, 1, 1)T , or with a two-dimensional synchronization
manifold At that can be seen as a graph over the subspace spanned by (1,−1, 0)T , and
(1, 1, 1)T .

P r o o f . If we specify a concrete value for λ in (11), the expressions became much
simpler. We will choose λ = k/2, that will give the one-dimensional manifold, and
λ = 2k that will give a two dimensional manifold. Those values were chosen arbitrarily,
given that they growth linearly with k. For the first value of λ the four expressions in
(10) are given by

a =
2
5k

, b =
2
5k

, c =
1
5k

, d =
1
5k

.
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So the minors in (11) become

m1(α) =
1
2
− ε + α

2
5k

;

m2(α, β) =
(

1
2
− ε + α

2
5k

)(
1
2
− ε + β

2
5k

)
− 4

25k2
(α + β)2;

m3(α, β, γ) =
(

1
2
− ε +

γ

5k

)
m2(α, β) +

4
125k2

(α + β)(α + γ)(β + γ)

− 1
25k2

(
m1(α)(β + γ)2 + m1(β)(α + γ)2

)
.

Now it is clear that if α, β and γ are bounded, we can find a sufficiently large k, and a
sufficiently small ε, that make the last expressions always positive. For these values of
k and ε, Ω is positive definite and the result follows from the last Theorem.

When λ = 2k the proof is similar, in this case four expressions in (10) are given by

a =
1
4k

, b = − 1
8k

, c =
1
8k

, d = − 1
4k

.

So the minors in (11) become

m1(α) =
1
2
− ε +

α

4k
;

m2(α, β) =
(

1
2
− ε +

α

4k

)(
1
2
− ε +

β

4k

)
− 1

64k2
(α + β)2;

m3(α, β, γ) =
(

1
2
− ε− γ

4k

)
m2(α, β) +

1
256k2

(α + β)(α + γ)(β + γ)

− 1
68k2

(
m1(α)(β + γ)2 + m1(β)(α + γ)2

)
.

Using the same reasoning of the case when λ = k/2 we can establish the desired re-
sult. �

5. IDENTICAL SYNCHRONIZATION IF F1 = F2

In this section we consider the special case where the perturbations are identical in each
oscillator, i. e. we assume that f1 = f2 = f . In fact, when the nonlinear perturbation is
identical on both oscillators, the qualitative behavior of the perturbed system is relatively
simple.

This symmetry allows us to find an explicit Lyapunov function for the system. First
we notice that in this case the subspace spanned by (1, 1, 1)T and the two-dimensional
subspace spanned by (1, 1, 1)T and (1,−1, 0)T , are not invariant. However the two-
dimensional subspace orthogonal to (1,−1, 0)T , the subspace {x1 = x2}, is still invariant.
Actually, we can give conditions under which it attracts all the solutions.

If we let z = x1 − x2, and if x1 6= x2, then

ż = −k(x1 − x2) +
f(x1, t)− f(x2, t)

x1 − x2
(x1 − x2)

= −(k − a(x1, x2, t))z1,
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with a(x1, x2, t) = (f(x1, t)−f(x2, t))/(x1−x2). So if a < k1 < k, for k1 ∈ R, and for all
x1, x2, t, x1 6= x2, then z(t) → 0 as t → +∞, which is equivalent to say that {x1 = x2}
is a synchronization manifold.

Theorem 5.1. If f1 = f2 = f and for some k1 ∈ R

f(x1, t)− f(x2, t)
x1 − x2

< k1 < k

for all x1, x2, t, x1 6= x2, then the system (7) synchronizes where {x1 = x2} is a two-
dimensional synchronization manifold.

This is what we can call identical synchronization. In this case, the asymptotic
behavior of one oscillator can be determined by the asymptotic behavior of the other.
Notice that in this situation we can prove that all the orbits, bounded or not, converge to
the synchronization manifold. On the other hand, the two-dimensional manifold given
by Theorem 4.2 is a graph over the subspace spanned by (1,−1, 0)T and (1, 1, 1)T , so in
general it is other kind of synchronization.

6. ABOUT THE RANGES THAT α, β AND γ CAN ASSUME

In Theorem 4.2 we saw that if α, β and γ are bounded then we can assure the existence
of a sufficiently large k in order Theorem 4.1 holds. In this section we try to find optimal
values to bound the parameters α, β, γ and k. As we will see, it is not easy to give
analytic results about these bounds. However, we will be able to give some numerical
results that will give us the necessary insight about them.

In order to make some graphical representations we must consider some restrictions
on the parameters. We start by the case where f1 = f2 = f and h = 0. In this case Ω
only depends on ε, α, λ and k. On the other hand, the ε only introduces an arbitrary
small perturbation on Ω, which means that if Ω is positive definite for ε = 0 then it is
also positive definite for ε sufficiently small. So, in the following figures we make ε = 0.
In Figure 1, on the left, we make k = 1 and draw the region in the plane λ − α where
Ω is positive definite. This figure was drawn using the expressions in (11).

We only draw this figure for λ ∈ (0, 3k), this is the relevant interval in Russel Smith’s
condition. For λ ∈ (0, k), if the range of values of α falls in the shaded region for this
λ then we have an one-dimensional manifold accordingly to Theorem 4.1. On the other
hand, for λ ∈ (k, 3k), if the range of values of α falls in the shaded region for this λ then
we have a two-dimensional manifold accordingly to the same Theorem.

This picture can give us an idea of the kind of ranges α can span in order to guarantee
synchronization. Notice that in general we must choose a different λ for each interval.
When k grows, this shaded region has a similar shape but tends to become larger in the
α direction, this is essentially what makes Theorem 4.2 come true.

We can draw an analogous figure for the case where there is only a perturbation on
de medium and no perturbation on the oscillators, f1 = f2 = 0 (see Figure 1 on the
right). In this case we can show a shaded region on the plane λ− γ. In this scenario we
can make similar observations as we did for the last case.



358 R. MARTINS AND G. MORAIS

Fig. 1. On the left, the region where Ω is positive definite in the

plane λ− α and on the right, the region where Ω is positive definite in

the plane λ− γ.

When the nonlinear perturbations on the oscillators are non-identical, the treatment
of the problem is not so simple since we need one extra dimension. In Figure 2(a) – 2(c)

we make h = 0 and draw the shaded region where Ω is positive definite, on the α − β
plane, for k = 1 and a sample of values of λ in the open interval (0, k).

(a) λ = 0.1 (b) λ = 0.5 (c) λ = 0.9

Fig. 2. Several examples of the domains Dk,λ, for k = 1 and

λ ∈ (0, 1). The contours represents the border of the domains, beyond

those explicitly represented, for λ ∈ {0.2, 0.4, 0.7}.

On the other hand, in Figure 3(a) – 3(c) we consider a sample of values of λ in the
open interval (k, 3k). We would like to do a slightly deeper study of this case. From
now on we will consider γ = 0. First of all, this is the natural choice to obtain a two
dimensional bifurcation diagram. This fact is an important to explain the underlying
idea involving the generalized synchronization. On the other hand, in [4] it is considered
a system with identical oscillators and the general case, that we study in here, it is
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(a) λ = 1.1 (b) λ = 2.1 (c) λ = 2.9

Fig. 3. Several examples of the domains Dk,λ, for k = 1 and

λ ∈ (1, 3). The contours represents the border of the domains, beyond

those explicitly represented, for λ ∈ {1.6, 1.9, 2.5}.

produced via nonlinear pertubations that do not have any effect on the medium. To
simplify the notation, we write m3(α, β, 0) = m3(α, β). For fixed values of k and λ, we
define Dk,λ as the set where Ω is positive definite:

Dk,λ = {(α, β) ∈ R2 : m1(α) > 0 ∧m2(α, β) > 0 ∧m3(α, β) > 0}.

In the figures we see that the domains Dk,λ are not contained on each other for
different values of λ. In general, given two intervals of values where the range of α and
β are contained, we obtain a rectangle and the system synchronizes if this rectangle is a
subset of one of this shaded region for some value of k and λ. Again, these regions tend
to get larger as k increases. This is what makes Theorem 4.2 possible.

Notice also that if α, β and γ are contained in a compact set that is contained in the
interior of the shaded area for some k and λ then we can find a sufficiently small ε in
order that Russel Smith’s condition holds, so there is essentially no loss of generality in
considering these shaded regions for ε = 0.

7. CONVEXITY AND REGULARITY OF THE BOUNDARY OF DK,λ

We now give some analytical results about the domains Dk,λ. We prove that they are
convex and in which cases they have a smooth boundary. In a forthcoming paper we
will use these properties to construct an algorithm to find the largest area isothetic
rectangle, i. e. a rectangle with its sides parallel to the axis, that is contained in one
of these regions. This allows us to, given a value of k, find concrete bounds on the
nonlinearities, where synchronization occurs.

Theorem 7.1. Fix a value for λ, ε and k. The region Dk,λ where Ω is positive definite
is convex.
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P r o o f . Fix a value for λ, ε and k and consider the set Dk,λ. Now consider (α1, β1)
and (α2, β2) in Dk,λ. We will show that if ξ ∈ (0, 1) and

(α, β) = (1− ξ)(α1, β1) + ξ(α2, β2)

then (α, β) ∈ Dk,λ. Notice that a point (α, β) is in Dk,λ if and only if (8) holds. Given(
X
y

)
and

(
Q
w

)
in R3,

„
X −Q
y − w

«T
24„

1

2
− ε

«
I − P

0@(1− ξ)α1 + ξα2 0 0
0 (1− ξ)β1 + ξβ2 0
0 0 0

1A35 „
X −Q
y − w

«

= (1− ξ)

„
X −Q
y − w

«T
24„

1

2
− ε

«
I − P

0@α1 0 0
0 β1 0
0 0 0

1A35 „
X −Q
y − w

«

+ ξ

„
X −Q
y − w

«T
24„

1

2
− ε

«
I − P

0@α2 0 0
0 β2 0
0 0 0

1A35 „
X −Q
y − w

«
≥ 0.

We conclude that (α, β) satisfies (8), so it belongs to Dk,λ. �

With the next set of lemmas we prepare the proof of the smoothness of the boundary
of the sets Dk,λ. Considering ε = 0, the set Dk,λ can be seen as the intersection of three
regions where each one of the following polynomials are positive:

m1(α) =
1
2

+ αa;

m2(α, β) =
(

1
2

+ αa

)(
1
2

+ βa

)
− b2(α + β)2;

m3(α, β) =
1
2
m2(α, β) + c2

(
(2b− a)(α + β)αβ − α2 + β2

2

)
,

(12)

with the parameters given by (10). In general, if we intersect three regular domains with
a smooth boundary, the intersection may produce singular points. In the case we have
here, the three sets are sequentially contained in each other in a very specific way.

The behavior of the first minor m1(α) is very simple. From the equations (12) we
see that m1(α) > 0 is generically a semi-plane. If a 6= 0 i. e. if λ 6= 3±

√
5

2 k then the
boundary of this semi-plane is given by α = − 1

2a . If λ = 3±
√

5
2 k, then m1(α) > 0 is the

whole plane.
The second minor is a quadratic form. First we notice that the region m2(α, β) > 0

is non-empty, since it clearly contains a neighborhood of the origin, so the conic section
associated is non-degenerate. After expanding the expression in (12), the quadratic
matrix of m2(α, β), M , is given by

M =

[
−b2 a2−2b2

2
a2−2b2

2 −b2

]
.

Without to much effort we can show that the determinant of M , is given by

|M | = a2(4b2 − a2)/4 =
(λ− 2k)(k2 − 3kλ + λ2)2

64λ3(3k − λ)3(λ− k)3
,
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that is positive if λ ∈ (0, k) or λ ∈ (2k, 3k) and negative if λ ∈ (k, 2k). This means that
m2(α, β) = 0 is an ellipse if λ ∈ (0, k) or λ ∈ (2k, 3k), is a hyperbola if λ ∈ (k, 2k) and
is a parabola if λ = 2k. It is straightforward to see that the line α = −1/2a, provided
that λ 6= 3±

√
5

2 k, is tangent to the curve m2(α, β) = 0.
We define Dk,λ,mi = {(α, β) ∈ R2 : mi(α, β) > 0} for i = 1, 2, 3. A very simple

argument shows that Dk,λ,m2 ⊂ Dk,λ,m1 . Indeed, it is true that m1(0, 0) > 0 and
m2(0, 0) > 0. Due to the tangency stated above and that Dk,λ,m2 is a union of convex
components, we can therefore state the following lemma.

Lemma 7.2. If λ ∈ (0, k)\
{

3−
√

5
2 k

}
then Dk,λ,m2 is an interior of an ellipse and

Dk,λ,m2 ⊂ Dk,λ,m1 . If λ ∈ (k, 2k) then Dk,λ,m2 has two connected components bounded
by the hyperbola. In this case one of these components is contained in Dk,λ,m1 . If λ ∈
(2k, 3k)\

{
3+
√

5
2 k

}
then Dk,λ,m2 is again an interior of an ellipse and Dk,λ,m2 ⊂ Dk,λ,m1 .

If λ = 3±
√

5
2 k then Dk,λ,m2 is the region between the two lines α+β = ± 1

2b and Dk,λ,m1

is the whole plane, so clearly Dk,λ,m2 ⊂ Dk,λ,m1 .

When we move ourselves to understand what are the geometric and analytical conse-
quences to put in scene the third minor m3, we acknowledge that the problem becomes
much more difficult. We start by study the points where the boundary of Dk,λ,m2 and
Dk,λ,m3 intersect, i. e., the solution of the following nonlinear system{

a(α+β)
2 + a2αβ − b2(α + β)2 + 1

4 = 0
(2b− a)αβ(α + β)− α2+β2

2 = 0.
(13)

This system is not easily solvable, so we consider the change of variables α = ξ − η and
β = ξ + η. This transforms the system (13) into{

(a2 − 4b2)ξ2 + aξ − a2η2 + 1
4 = 0

2(2b− a)ξ3 − 2(2b− a)η2ξ − ξ2 − η2 = 0.
(14)

To solve this system we start by looking for solutions with η = 0 and we find

(α0, β0) =
(

1
2(2b− a)

,
1

2(2b− a)

)
.

Notice that 2b − a = 1
2(k−λ) 6= 0. Then, solving the first equation in order to η2 and

substituting it in the second equation yields

8(2b− a)b2ξ3 − 4b(a− b)ξ2 − 2b− a

2
ξ − 1

4
= 0.

Now we have one root of this equation, ξ = 1
2(2b−a) and we can factorize the second

equation and obtain

8b2

(
ξ − 1

2(2b− a)

)(
ξ +

1
4b

)2

(2b− a) = 0.
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For ξ = − 1
4b , we obtain η2 = a(a−4b)

4b2a2 and two more solutions

(α1, β1) =

(
−a−

√
a(a− 4b)

4ab
,
−a +

√
a(a− 4b)

4ab

)
,

(α2, β2) =

(
−a +

√
a(a− 4b)

4ab
,
−a−

√
a(a− 4b)

4ab

)
,

for a > 0, i. e. for λ ∈
(

3−
√

5
2 k, k

)
and λ ∈

(
3+
√

5
2 k, 3k

)
. Actually, some computations

show that a− 4b > 0 for λ ∈ (0, 3k)\{k}.
The solution (α0, β0) belongs to the line α = β and the solutions (α1, β1) and (α2, β2)

are the reflection of each other from the same line. This is not at all surprising because
the system is indeed symmetric about this line. Symmetry is by all means an important
property and is established in the next lemma.

Lemma 7.3. The domain Dk,λ is symmetric in relation to the line α = β.

Now we prove that at (αi, βi), for i ∈ {0, 1, 2}, the algebraic varieties m2(α, β) = 0
and m3(α, β) = 0 are indeed tangent to each other. A straightforward computation
shows that

∇m3(α0, β0) =
(

1
2
− c2

4b(2b− a)

)
∇m2(α0, β0),

which means that at (α0, β0) the gradients are parallel. Necessarilly the algebraic vari-
eties are tangent at (α0, β0). Following the same method, for i = 1, 2 we have

∇m3(αi, βi) =
(

1
2

+
c2

2ab

)
∇m2(αi, βi)

and so at the points (α1, β1) and (α2, β2) the algebraic varieties are also tangent to each
other. We conclude that:

Lemma 7.4. The algebraic varieties m2(α, β) = 0 and m3(α, β) = 0 are tangent at
their intersection points and are not singular.

Next, we will study the regularity of curve m3(α, β) = 0. In the coordinates ξ and η,
m2 and m3 are given by

m2(ξ, η) = (a2 − 4b2)ξ2 + aξ − a2η2 +
1
4
,

m3(ξ, η) =
1
2
m2(ξ, η) + 2c2(2b− a)ξ3 − 2c2(2b− a)η2ξ − c2ξ2 − c2η2.

In order to find the points where m3 is non-singular (see [1], p. 33), we have to find
the points where the gradient ∇m3(ξ, η) = (0, 0). The last condition is equivalent to
have {

(a2 − 4b2 − 2c2)ξ + 2c2(2b− a)(3ξ2 − η2) + a
2 = 0

(a2 + 2c2)η + 4c2(2b− a)ηξ = 0.
(15)
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Take notice that along the line η = 0 the solutions of the system (15) are the solu-
tions of

∂m3

∂ξ
(ξ, 0) = 6c2(2b− a)ξ2 + (a2 − 4b2 − 2c2)ξ +

a

2
= 0, (16)

and we get a singular point if a solution of (16) is also solution of m3(ξ, 0) = 0, i. e.

m3(ξ, 0) = 2c2(2b− a)ξ3 +
1
2
(a2 − 4b2 − 2c2)ξ2 +

a

2
ξ +

1
8

= 0.

The roots of this polynomial are

ξ1 = − 1
2(a− 2b)

, ξ± =
a + 2b±

√
(a + 2b)2 + 8c2

8c2

It is obvious that the two solutions of (16) are between the last three roots. Then
the solutions of ∇m3(ξ, η) = (0, 0) along the line η = 0 are the values of ξ where two of
the last roots coincide. Since c 6= 0 then ξ+ 6= ξ− for all λ ∈ (0, 3k)\{k}. On the other
hand, after some computations we find that

b1 = b± ⇔ c2 + 2b(a− 2b) = 0 ⇔ λ =

(
7± 2

√
11

5

)
k.

Looking now for solutions where η 6= 0 and going back to the system (15), the second
equation gives us immediately

ξs =
a2 + 2c2

4c2(a− 2b)
. (17)

Using this information in the first equation of system (15) we get

2(a− 2b)c2η2 − (a2 + 2c2)(a2 + 8b2 + 10c2)
8(a− 2b)c2

+
a

2
= 0.

It is not surprising that the value of ξs found in (17) will produce the two symmetric
values for η

η± = ±

√
(a2 + 2c2)(a2 − 8b2 − 10c2)

16c2(a− 2b)2
+

a

4c2(a− 2b)
.

This is of course result of the symmetry of the domains stated in lemma 7.3. The
change of variables just produced a change of the axis of symmetry of the domains.
This symmetry implies that m3(ξs, η−) = m3(ξs, η+). Again, for the points (ξs, η±)
belong to ∂Dk,λ,m3 it is necessary that m3(ξs, η+) = 0. Writing the last equation in the
variables (k, λ) we get1

m3(ξs, η+) = − (3k2 − 8kλ + 3λ2)2(2k4 − 8k3λ + 12k2λ2 − 6kλ3 + λ4)
8λ2(k − λ)4(λ− 3k)2

= 0.

1The following computations are elementar but to long to be made by hand. We used a computer
algebra system.
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(a) λ = 7−2
√

11
5

k (b) λ = 4−
√

7
3

k

Fig. 4. Representation of the non-regular cases of Dk,λ.

So the solutions of the equation m3(ξs, η+) = 0 will be also solution of

3k2 − 8kλ + 3λ2 = 0 ∨ 2k4 − 8k3λ + 12k2λ2 − 6kλ3 + λ4 = 0.

Again, with a computer algebra system, its possible to show that the only solutions of
the last equations are

λ =

(
4±

√
7

3

)
k.

In Figures 4(a) – 4(b) we represent two examples of the values where ∂Dk,λ is not smooth.
In all other cases, the implicit function theorem give us the guarantee that the domains
are of class C∞.

So far, we have proved that our domain is convex and we have shown in which
situations they are regular. We have one last property that comes out a little bit
surprising. As stated before, the origin is contained in all domains Dk,λ,m1 , Dk,λ,m2 and
Dk,λ,m3 . We already showed that at these points the borders of the domains are tangent
to each other. This proves that the intersections do not produce singularities. What is
more surprising is the fact that the connected component of Dk,λ,m3 that contains the
origin is totally contained in Dk,λ,m2 . This can be seen through the Figures 5(a) – 5(f).
The next theorem states precisely this.

Theorem 7.5. If λ ∈ (0, 3k)\
{

k, 4±
√

7
3 k, 7±2

√
11

5 k
}

the boundary of Dk,λ is C∞. More-

over, for the connected component of Dk,λ,m3 , call it D0
k,λ,m3

, that contains (0, 0) we
have D0

k,λ,m3
= Dk,λ.

P r o o f . We have already shown that the algebraic variety m3 = 0 is C∞. As we have
seen from the previous observations, there are two distinct situations: ∂Dk,λ,m3 and
∂Dk,λ,m2 intersect in one or three points. We concentrate first in the case when the
intersection occurs in three distinct points. Using the coordinates (ξ, η), when ξ = 0
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(a) λ = 0.1 (b) λ = 0.5 (c) λ = 0.7

(d) λ = 1.3 (e) λ = 2.15 (f) λ = 2.75

Fig. 5. Relation between m2(α, β) ≥ 0 and the third minor.

and m2(ξ, η) = 0 we have η = ± 1
2a . We obtain a point of intersection (ξ∗, η∗) = (0, 1

2a )
and another one that is symmetric with this one. On the other hand, the intersection
point (ξ1, η1) is given by

(ξ1, η1) =

(
− 1

4b
,

√
a(a− 4b)

2ab

)
.

Knowing that − 1
4b = − (k−λ)(3k−λ)λ

k2 and that the value of ξ for (α0, β0) is 1
2(2b−a) = k−λ

it is easy to see that we have both{
− 1

4b < 0 ∧ 1
2(2b−a) > 0, λ ∈ (0, k)

− 1
4b > 0 ∧ 1

2(2b−a) < 0, λ ∈ (k, 3k).

A simple computation shows that

m3(ξ∗, η∗) = m3

(
0,

1
2a

)
= − c2

4a4
< 0. (18)

Putting all this together, we have shown that the point (ξ∗, η∗) is between (α0, β0) and
(α1, β1) and that (ξ∗, η∗) 6∈ Dk,λ,m3 . This shows that for ξ between − 1

2a and 1
2(2b−a) ,

the connected component of Dk,λ,m3 that contains (0, 0) does not get out Dk,λ,m2 . By
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symmetry, we know that the same situation happens between the points (α0, β0) and
(α2, β2). A similar argument, done along the line η = 0 could be used to show that this
is exactly the same situation between (α2, β2) and (α1, β1).

When there is only one intersection point, a similar argument could be done to show
that the connected component of Dk,λ,m3 containing the point (0, 0) is totally contained
in Dk,λ,m2 . �

With this theorem we just finish the geometric characterization of the domains Dk,λ.
The property that it exhibits, the inclusion

D0
k,λ,m3

⊂ Dk,λ,m2 ⊂ Dk,λ,m1

is by all means remarkable. A complete understanding of this phenomena remains open
and is certainly important enough to be object of future work.

A. PROOF OF THEOREM OF GENERALIZED SYNCHRONIZATION

In order to keep this paper as self contained as possible, we present a proof of Theorem
of Generalized Synchronization (theorem 2.3). To simplify the notation, we will consider
a simplified version of system (1) written as

x′ = f(x, t), x ∈ RN ,

where N = nm+p. Without loss of generality, we assume that the origin is an amenable
point. Indeed, if

(
x0, t0

)
is an amenable point, consider the change of variables x̃(t) =

x(t) − x(t), with x(t) = x
(
t;x0, t0

)
. Then x(t; t0, x0) is solution of the equation (1) if

and only if x̃(t; t0, x0), with x̃0 = x0 − x0, is solution of the equation

˙̃x(t) = f(x̃(t) + x(t), t)− ẋ(t) ··= f̃ (x̃(t), t) . (19)

The next lemma establishes the relation among the amenable points of both equations.

Lemma A.1. The point (x̃0, t0) is amenable for equation (19) if and only if (x0, t0) =
(x̃0 + x(t0), t0) is an amenable point for equation (1). In particular have

Ãt0 = At0 − x(t0).

P r o o f . By the inequality ‖A ± B‖2 ≤ 2‖A‖2 + 2‖B‖2, using the change of variables
x̃(t) = x(t)− x(t) it follows the inequality∫ t0

−∞
e2λt‖x(t;x0, t0)‖2 dt ≤ 2

∫ t0

−∞
e2λt‖x̃(t; x̃0, t0)‖2 dt

+ 2
∫ t0

−∞
e2λt‖x(t)‖2 dt.
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This shows that if (x̃0, t0) is an amenable point for equation (19) then (x0, t0) =
(x̃0 + x0, t0) is amenable for equation (1). In the opposite direction we have∫ t0

−∞
e2λt‖x̃(t; x̃0, t0)‖2 dt ≤ 2

∫ t0

−∞
e2λt‖x(t;x0, t0)‖2 dt

+ 2
∫ t0

−∞
e2λt‖x(t)‖2 dt,

which is enough to show the reciprocal implication. �

From the previous lemma we have that At0 is a graph of a function over V− if and only
if Ãt0 also is. On the other hand, if the origin is an equilibrium point, i. e. f(0, t) = 0
for all t ∈ R, then any (0, t) with t ∈ R is also an amenable point for equation (1). From
this point on, we will assume this in all further developments. The next lemma gives a
characterization of the quadratic form V on the amenable points.

Lemma A.2. If the Russel Smith’s condition (4) is valid then, given an amenable
point (α0, t0), any other point (α1, t0) is amenable if and only if for all t ∈ R we have
V (x1(t;α1, t0)− x0(t;α0, t0)) < 0.

P r o o f . Integrating (2) in the interval (α, τ) we have

e2λτV (x1(τ)− x0(τ)) ≤ e2λαV (x1(α)− x0(α))

− 2ε

∫ τ

α

e2λt‖x1(t)− x0(t)‖2 dt,
(20)

with x1(t) = x1(t;α1, t0) and x0(t) = x0(t;α0, t0). Assuming that (α1, t0) is amenable
observe that∫ t0

−∞
e2λt‖x1(t)− x0(t)‖2 dt ≤ 2

∫ t0

−∞
e2λt‖x1(t)‖2 dt

+ 2
∫ t0

−∞
e2λt‖x0(t)‖2 dt < ∞.

Then there is a sequence tn → −∞ such that e2λt ‖x1(tn)− x0(tn)‖2 → 0. Assigning
α = tn in (20) and if we let n →∞ we get

e2λτV (x1(τ)− x0(τ)) ≤ −2ε

∫ τ

−∞
e2λt‖x1(t)− x0(t)‖2 dt

which means that V (x1(t)−x0(t)) < 0 for all t ∈ R. Reciprocally, again by (20), we have

0 ≤ 2ε

∫ t0

−∞
e2λt‖x1(t)− x0(t)‖2 dt ≤ −e2λt0V (x1(t0)− x0(t0)).
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Then necessarily
∫ t0
−∞ e2λt‖x1(t)− x0(t)‖2 dt < ∞, whereby∫ t0

−∞
e2λt‖x1(t)‖2 dt ≤ 2

∫ t0

−∞
e2λt‖x1(t)− x0(t)‖2 dt

+ 2
∫ t0

−∞
e2λt‖x0(t)‖2 dt ≤ ∞.

This proves that (α1, t0) is amenable. �

By the symmetry of matrix P , we know that RN admits an orthonormal base made
by eigenvectors of this matrix. We represent it by

v−1 , . . . , v−k , v+
k+1, . . . , v

+
N .

Hence M =
[
v−1 . . . v−k v+

k+1 . . . v+
N

]
is an orthogonal matrix and therefore

Q = MT PM = diag
{
λ−1 , . . . , λ−k , λ+

k+1, . . . , λ
+
N

}
.

Thus, to represent V by the matrix Q we have to produce the change of variables

MT X = Ξ =

 ξ1

...
ξN

 .

We define the projection of RN over V− by

π− : RN → V−
π−(X) = (ξ1 . . . ξk 0 . . . 0)T

.

In the variables Ξ, the quadratic form V is given by

V (X) = XT PX =XT MMT PMMT X

=(MT X)T MT PM(MT X) = λ−1 ξ2
1 + · · ·+ λ+

Nξ2
N .

This observation is useful to show the following lemma.

Lemma A.3. There are δ > 0 and λ such that, for all X ∈ RN

λ
[
δV (X) + ‖π−(X)‖2

]
> ‖Ξ‖2 ≥ ‖π−(X)‖2.

P r o o f . For a sufficiently small δ for which is valid the inequality

−1 < δλ−i < 0 < δλ+
j

and another λ that also check the inequalities

λ >
1

1 + δλ−i
e λ >

1
δλ+

j
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for i = 1, . . . , k e j = k + 1, . . . , n, we will get successively

λ
[
δV (X) + ‖π−(X)‖2

]
= λ

[
(1 + δλ−1 )ξ2

1 + · · ·+ (1 + δλ−k )ξ2
k + δλ+

k+1ξ
2
k+1 + · · ·+ δλ+

Nξ2
N

]
> ξ2

1 + · · ·+ ξ2
k + ξ2

k+1 + · · ·+ ξ2
N = ‖Ξ‖2

≥ ξ2
1 + · · ·+ ξ2

k = ‖π−(X)‖2,

which is the point that we wanted to prove. �

The inequality proved above is fundamental to show the next result.

Lemma A.4. Given t0 ∈ R and the correspondent manifoldAt0 , the function π− : At0 →
π−(At0) ⊂ V− is one-to-one, continuous and globally Lipchitz.

P r o o f . For the usual topology we know that a projection in a vector space is a
continuous map. Given two amenable points x1 6= x2 in At0 , by lemma A.2 we get
V (x1 − x2) < 0. By lemma A.3, with the correspondence MT xi = Ξi, we obtain

λ‖π−(x1 − x2)‖2 > ‖Ξ1 − Ξ2‖2 ≥ ‖π−(x1 − x2)‖2,

which is enough to assure π−(x1) 6= π−(x2). Otherwise we would have either Ξ1 = Ξ2

and x1 = x2. On the other hand, by the same inequality we also get

‖π−(x1 − x2)‖ ≤ ‖Ξ1 − Ξ2‖ ≤ ‖M‖‖X1 −X2‖.

This means that π− : At0 → V− is ‖M‖-Lipchitz. �

To proceed in the direction of our goal we need to introduce the Wazewski’s Topo-
logical Principle (see [10] for full details). To do that we need to set up some concepts.

Definition A.5. Let X be a topological space and A ⊂ X. A continuous map r : X →
A such that r(a) = a for all a ∈ A is called a retraction. The set A is called a retract of
X if there exists a retraction r : X → A.

A classical result of Algebraic Topology shows that in Rn the border of unit disk ∂Dn =
{x ∈ Rn : |x| = 1} is not a retraction of Dn = {x ∈ Rn : |x| ≤ 1} (see [2], p. 114 for
full details). Consider a continuous vector field f on a open set A ⊂ Rn and a Cauchy
problem {

ẋ = f(x, t)
x(t0) = x0,

(21)

for which the existence and uniqueness of solutions holds. Let x(t; t0, x0) be the flux of
f and Ω an open set in Rn × R.

Definition A.6. Apoint (t0, x0) ∈ ∂Ω is called an ingress point for the equation (21)
if there is ε > 0 such that (x(t, t0, x0), t) ∈ Ω for all t ∈ (t0, t0 + ε]. Furthermore, if
(x(t; t0, x0), t) /∈ Ω for any t ∈ (t0 − ε, t0) then (t0, x0) is called a strict ingress point.
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We represent by Ωi and Ωsi, respectively, the sets of ingress and strictly ingress points.
We are in conditions to state the so called Wazewski’s Topological Principle as presented
in [10].

Theorem A.7. (Wazewski’s Topological Principle) Assuming that Ωi = Ωsi, let
S ⊂ Ω ∪ Ωi such that S ∩ Ωi is a retract of Ωi and S ∩ Ωi is not a retract of S.
Then there is a point (t0, x0) ∈ S ∩ Ω such that the respective solution of (21) verifies
(t, x(t; t0, x0)) ∈ Ω for all t ∈ (α(t0, x0), t0], where α(t0, x0) is the lower bound of the
maximal interval of existence for the solution x(t; t0, x0).

We are now in condition to complete the prove that At0 is a graph over V−.

Lemma A.8. Consider the sets At0 e V− given before. The map π− : At0 → V− is
onto.

P r o o f . Let C be the cone associated to V

C =
{
x ∈ RN : V (x) < 0

}
=
{
x ∈ RN : λ−1 ξ2

1 + · · ·+ λ+
Nξ2

N < 0
}

,

and Ω the subset of RN × R defined by

Ω =
{
(x, t) ∈ RN × R : V (x) < 0

}
.

If Ωt0 = {(x, t) ∈ Ω: t = t0}, (x0, t0) ∈ ∂Ω and x0 = 0 then (x0, t0) 6∈ Ωi. In alternative,
if (x0, t0) ∈ ∂Ω and x0 6= 0, by (2) we get

d
dt

{
e2λtV (x(t;x0, t0))

}∣∣∣∣
t=t0

≤ −2e2λt0ε‖x0‖2 < 0.

Hence, in a neighborwood t0, with t < t0 we have V (x(t)) > 0 and x(t) 6∈ Ω. In a
neighborhood of t0, with t > t0 we have V (x(t)) < 0 e x(t) ∈ Ω. From these points
we get

Ωi = Ωsi = ∂Ω \ {(0, t) : t ∈ R}. (22)

Given ξ ∈ V−, our task is to find a x0 ∈ At0 such that

π−(x0) = ξ =
(
ξ1, . . . , ξk, 0, . . . , 0

)
.

To apply the Wazewski’s Topological Principle we define the set

S =
{
(x, t0) ∈ RN × R : π−(x) = ξ e V (x) ≤ 0

}
=
{
(x, t0) ∈ RN × R : λ+

k+1ξ
2
k+1 + · · ·+ λ+

Nξ2
N

≤ −λ−1 ξ
2

1 − · · · − λ−k ξ
2

k ∧ π−(x) = ξ
}

It is easy to show that S and DN−k are homeomorphic. On the other hand we have
that

S ∩ ∂Ω =
{
(x, t0) ∈ RN × R : λ+

k+1ξ
2
k+1 + · · ·+ λ+

Nξ2
N

= −λ−1 ξ
2

1 − · · · − λ−k ξ
2

k ∧ π−(x) = ξ
}
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is homeomorphic to SN−k−1 = ∂DN−k. Therefore, S∩∂Ω is not a rectract of S. Hence,
the set of ingress point may be written as

Ωi =

(x, t0) ∈ RN × R : λ−1 ξ2
1 + · · ·+ λ+

Nξ2
N = 0 ∧

N∑
j=1

ξ2
k > 0

 .

Is easy to show that S ∩Ωi = S ∩ ∂Ω. We will now show that S ∩Ωi is a retract of Ωi.
Following the same arguments given in [5], adapted to our framework, it is easy to find
a retraction of r1 : Ωi → ∂(Ωt0 \{(0, t0)}). Consider the set T = {x ∈ ∂Ωt0 : V (π−(x)) =
V (ξ)}. Is direct to show that r2 : ∂(Ωt0 \ {(0, t0)}) → T defined by

r2(x) =
V (ξ)

V (π−(x))
x

is a retraction. Defining π+ ··= I − π−, the set T can also be given by the equalities

V (π−(x)) = V (ξ) e V (π+(x)) = −V (ξ).

The first defines a set that is diffeomorphous to Sk−1 ⊂ V− and the second a set dif-
feomorphous to SN−k−1 ⊂ V+. Therefore T is given by the cartesian product T1 × T2

diffeomorphic to Sk−1×SN−k−1. Finally we may define a retraction r3 : T → S∩∂Ωi by
r3(x) ··= ξ + π+(x). Follows immediately that r3 ◦ r2 ◦ r1 is a retraction of Ωi in S ∩Ωi.

By Wazewski’s Topological Principle there is a point (x0, t0) ∈ S ∩ Ω such that
x(t;x0, t0) ∈ Ω for all t ∈ R. This equivalent to say that V (x(t;x0, t0)) < 0 for all t ∈ R.
By lemma A.2 the point (x0, t0) is amenable and π−(x0) = ξ. �

To finish the proof of Theorem 2.3 we still need to show that the amenable manifoldAt

is the assymptotic limit of the bounded orbits.

Lemma A.9. If x(t) for all t > 0 is a bounded solution of (1) then

d(x(t),At) −−−−→
t→+∞

0.

P r o o f . By assuming that the system (1) is T -periodic, the Poincaré stroboscopic map
P : RN → RN

P(x0) = x(T ;x0, 0)

is well defined. Because the sequence {x(cT ; 0, x0)}c∈N is bounded, its ω-limit, repre-
sented by the set A, is non-empty, compact and invariant for the Poincaré map. Consider
a solution y(t) = y(t; y0, 0) such that y0 ∈ A. As y(t) is contained in a compact set

{x(t;A, 0) : t ∈ [0, T ]} ,

then y(t) is bounded and therefore (y0, 0) is an amenable point. With an analogous
argument we may show that the ω-limit of the sequence {x(cT + t)}c∈N is a subset of
At for all t ∈ R. In order to obtain a contradiction, suppose that there is a sequence
tc → +∞ such that

d (x(tc),At) > ε > 0.
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Let tc = lc + hcT , with lc ∈ [0, T ] and hc ∈ Z. Because {lc} and {x(tc)} are both
bounded we may assume the existence of l ∈ [0, T ] and P ∈ RN such that lc → l and
x(tc) → P . We will then get

‖x(hcT + l)− P‖ ≤ ‖x(tc − lc + l)− x(tc)‖+ ‖x(tc)− P‖
≤ max

t>0
‖x′(t)‖‖lc − l‖+ ‖x(tc)− P‖ −−−−−→

k→+∞
0.

Then necessarilly either x(hcT + l) → P and P ∈ Al. On the other hand, by the time
periodicity of the system (1), we have At0+T = At0 and therefore

0 < ε < d (x(tc),Atc
) = d (x(tc),Alc) .

However, we also have

d (x(tc),Alc) < ‖x(lc;P, l)− x(tc)‖
≤ ‖x(lc;P, l)− P‖+ ‖P − x(tc)‖ −−−−−→

k→+∞
0

which results in a contradiction. Then d(x(t),At) −−−−→
t→+∞

0. �
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