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Abstract. The aim of this paper is to study the stability of fractional differential equa-
tions in Hyers-Ulam sense. Namely, if we replace a given fractional differential equation by
a fractional differential inequality, we ask when the solutions of the fractional differential
inequality are close to the solutions of the strict differential equation. In this paper, we
investigate the Hyers-Ulam stability of two types of fractional linear differential equations
with Caputo fractional derivatives. We prove that the two types of fractional linear differ-
ential equations are Hyers-Ulam stable by applying the Laplace transform method. Finally,
an example is given to illustrate the theoretical results.
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1. Introduction and preliminaries

For some equations (differential equations, functional equations, etc.) describing

physical models and practical problems, finding exact solutions of these equations is

very difficult, and the form of the exact solutions (if they exist) is often so complicated

that it is not convenient for numerical calculation. In view of this, it is necessary

to discuss approximate solutions with relatively simple form, and ask whether the

approximate solutions lie near the exact solutions.

Generally, we say that a differential equation is stable in Hyers-Ulam sense if

for every solution of the perturbed equation there exists a solution of the equation

that is close to it. In other words, if we replace a given differential equation by
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differential inequality, when can one assert that the solutions of the inequality lie

near the solutions of the equation?

In recent years, many researchers have focused on the study of Hyers-Ulam stability

of differential equations, and gained a series of results (see [1]–[7] and [9]–[14] and

the references therein).

Recently, by applying Laplace transform method, Rezaei, Jung, and Rassias dis-

cussed Hyers-Ulam stability of linear differential equations (see [11]). Popa and

Raşa proved the generalized Hyers-Ulam stability of linear differential equations in

a Banach space (see [10]). András and Mészáros presented Hyers-Ulam stability of

dynamic equations on time scales via Picard operators (see [1]). Regarding par-

tial differential equations, in [9], Lungu and Popa discussed Hyers-Ulam stability

of a first order partial differential equation, and in [2], Gordji, Cho, Ghaemi, and

Alizadeh investigated stability of second order partial differential equations. Hegyi

and Jung discussed the stability of Laplace’s equation (see [3]). As for fractional

differential equations, Wang, Zhou et al. (see [12], [13], [14]) proved the stability

of fractional evolution equations and the stability of nonlinear differential equations

with fractional integrable impulses, and they also introduced some new concepts

concerning the stability of fractional differential equations. In [4], Ibrahim presented

Hyers-Ulam stability of Cauchy differential equation of fractional order in the unit

disk. However, the theory of Hyers-Ulam stability of fractional differential equations

is still in its initial stages.

The main aim of this paper is to prove the Hyers-Ulam stability of the following

two types of fractional linear differential equations:

(1.1) (CDα
0+y)(x) − λy(x) = f(x),

and

(1.2) (CDα
0+y)(x)− λ(CDβ

0+y)(x) = g(x),

where x > 0, λ ∈ R, n − 1 < α 6 n, m − 1 < β 6 m, 0 < β < α, m,n ∈ N, m 6 n,

f(x) and g(x) are real functions defined on R+, and
CDα

0+ is the Caputo fractional

derivative of order α defined by

(1.3) (CDα
0+y)(x) =

1

Γ(n− α)

∫ x

0

(x − t)n−α−1y(n)(t) dt.

In order to prove our main results, we recall the definition of the Laplace transform

and some basic properties of the Laplace transform for fractional derivatives.
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A function y : (0,∞) → R is said to be of exponential order if there are constants

A,B ∈ R such that |y(x)| 6 AeBx for all x > 0. For each function y : (0,∞) → R of

exponential order, the Laplace transform of y(x) is defined by

(1.4) L{y(x)}(s) :=

∫

∞

0

e−sxy(x) dx, s ∈ C.

If the integral (1.4) is convergent at the point s0 ∈ C, then it converges absolutely

for s ∈ C such that ℜ(s) > ℜ(s0). One of the most useful properties of the Laplace

transform is the convolution property

(1.5) L{y1(x) ∗ y2(x)} = L{y1(x)}L{y2(x)},

where y1(x) ∗ y2(x) =
∫ x

0
y1(x− ξ)y2(ξ) dξ.

The following results are some basic properties of the Laplace transform of the

Caputo fractional derivatives.

Lemma 1.1 ([8]). Let α > 0, n − 1 < α 6 n, n ∈ N be such that y ∈ Cn(R+),

y(n) ∈ L1(0, b) for any b > 0, the estimates |y(n)(x)| 6 Beq0x (for x > b > 0, B and

q0 are all constants, B > 0, q0 > 0) holds, the Laplace transforms L{y(x)} and

L{Dny(x)} exist, and lim
x→∞

(Dky)(x) = 0 for k = 0, 1, . . . , n− 1. Then the following

relation holds:

(1.6) L{CDα
0+y(x)}(s) = sαL{y(x)}(s)−

n−1
∑

k=0

sα−k−1(Dky)(0).

In particular, if 0 < α 6 1, then

(1.7) L{CDα
0+y(x)}(s) = sαL{y(x)}(s)− sα−1y(0).

The Mittag-Leffler function Eα,β(z) is defined by

(1.8) Eα,β =

∞
∑

k=0

zk

Γ(αk + β)
, z, β ∈ C, ℜ(α) > 0,

when α = β = 1, we can see that E1,1(z) = ez. More detailed information about the

function can be found in [8].
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Lemma 1.2 ([8]). If ℜ(s) > 0, λ ∈ C, |λs−α| < 1, then

(1.9) L{xβ−1Eα,β(λx
α)}(s) =

sα−β

sα − λ
,

where Eα,β(λx
α) is the Mittag-Leffler function.

R em a r k 1.3. When α = β, we have L{xα−1Eα,α(λx
α)}(s) = 1/(sα − λ).

2. Hyers-Ulam stability of fractional differential equation (1.1)

In this section, we will prove that the fractional differential equation (1.1) is Hyers-

Ulam stable.

Definition 2.1. The fractional differential equation ϕ(f, y,Dα1y, . . . , Dαny) = 0

has Hyers-Ulam stability if for a given ε > 0 and a function y such that

|ϕ(f, y,Dα1y, . . . , Dαny)| 6 ε,

there exists a solution ya of the differential equation such that |y(x)− ya(x)| 6 K(ε)

and lim
ε→0

K(ε) = 0. If this statement is also true when we replace ε and K(ε) by

F (x) and C(x), where F , C are appropriate functions not depending on y and ya

explicitly, then we say that the differential equation has the generalized Hyers-Ulam

stability.

More about stability of ordinary differential equations and fractional differential

equations can be found in [7], [11], [12] and [13].

Theorem 2.2. Let λ ∈ R, n − 1 < α 6 n, n ∈ N, and let f(x) be a given real

function defined on R+. If a function y : (0,∞) → R satisfies the inequality

(2.1) |(CDα
0+y)(x)− λy(x) − f(x)| 6 ε

for all x > 0 and for some ε > 0, then there exists a solution ya : (0,∞) → R of the

fractional differential equation

(2.2) (CDα
0+y)(x)− λy(x) = f(x)

such that

(2.3) |y − ya| 6 εxαEα,α+1(|λ|x
α).
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P r o o f. Putting y(k)(0) = bk, for k = 0, 1, . . . , n− 1, and Y (x) = (CDα
0+y)(x)−

λy(x) − f(x), by Lemma 1.1 we obtain

(2.4) L{Y (x)} = L{(CDα
0+y)(x) − λy(x)− f(x)}

= sαL{y(x)} −

n−1
∑

k=0

sα−k−1bk − λL{y(x)} − L{f(x)}

= (sα − λ)L{y(x)} −
n−1
∑

k=0

sα−k−1bk − L{f(x)},

so

(2.5) L{y(x)} =

∑n−1
k=0 s

α−k−1bk + L{f(x)}

sα − λ
+

L{Y (x)}

sα − λ
.

Setting

(2.6) ya(x) =

n−1
∑

k=0

bkx
kEα,k+1(λx

α) +

∫ x

0

(x− t)α−1Eα,α[λ(x − t)α]f(t) dt,

by Lemma 1.2 and (1.5), we get

(2.7) L{ya(x)} = L

{n−1
∑

k=0

bkx
kEα,k+1(λx

α)

}

+ L

{
∫ x

0

(x− t)α−1Eα,α[λ(x − t)α]f(t) dt

}

=
n−1
∑

k=0

bkL{x
kEα,k+1(λx

α)}+ L{xα−1Eα,α(λx
α)}L{f(x)}

=

∑n−1
k=0 bks

α−(k+1) + L{f(x)}

sα − λ
.

By Lemma 1.1, (2.7) and a simple computation, one can get

(2.8) L{(CDα
0+ya)(x) − λya(x)} = sαL{ya(x)} −

n−1
∑

k=0

sα−k−1bk − λL{ya(x)}

= L{f(x)}.

Since L is one-to-one, it follows that (CDα
0+ya)(x) − λya(x) = f(x), so ya(x) is

a solution of (2.2).
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By (2.5) and (2.7), we obtain

(2.9) L{y(x)− ya(x)} =
L{Y (x)}

sα − λ
.

Using the convolution property and Lemma 1.2, one can get

(2.10) L{(xα−1Eα,α(λx
α)) ∗ Y (x)} = L{xα−1Eα,α(λx

α)}L{Y (x)} =
L{Y (x)}

sα − λ
.

By (2.9) and (2.10), we have

(2.11) y(x)− ya(x) = (xα−1Eα,α(λx
α)) ∗ Y (x),

therefore, from (2.1), it follows that

(2.12) |y(x)− ya(x)| = |(xα−1Eα,α(λx
α)) ∗ Y (x)|

=

∣

∣

∣

∣

∫ x

0

(x− t)α−1Eα,α[λ(x − t)α]Y (t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

∞
∑

k=0

λk(x− t)αk+α−1

Γ(αk + α)
Y (t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

k=0

∫ x

0

λk(x− t)αk+α−1

Γ(αk + α)
Y (t) dt

∣

∣

∣

∣

6

∞
∑

k=0

∫ x

0

∣

∣

∣

λk(x− t)αk+α−1

Γ(αk + α)

∣

∣

∣
|Y (t)| dt

6 ε

∞
∑

k=0

|λ|k

Γ(αk + α)

∫ x

0

(x− t)αk+α−1 dt

= εxα
∞
∑

k=0

(|λ|xα)k

Γ(αk + α+ 1)

= εxαEα,α+1(|λ|x
α),

which completes the proof. �

Similarly, we can prove that the fractional differential equation (2.2) is generalized

Hyers-Ulam stable.
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Corollary 2.3. Let λ ∈ R, n − 1 < α 6 n, n ∈ N, and let f(x) be a given real

function defined on R+. If a function y : (0,∞) → R satisfies the inequality

(2.13) |(CDα
0+y)(x)− λy(x) − f(x)| 6 F (x)

for all x > 0 and for some function F (x) > 0, then there exists a solution ya :

(0,∞) → R of the fractional differential equation (2.2) such that

(2.14) |y − ya| 6 C(x),

where C(x) = xαF (x)Eα,α+1(|λ|x
α).

3. Hyers-Ulam stability of fractional differential equation (1.2)

In this section, we will extend Theorem 2.2 and prove that fractional differential

equation (1.2) is Hyers-Ulam stable.

Theorem 3.1. Let λ ∈ R, m,n ∈ N, m 6 n, n − 1 < α 6 n, m − 1 < β 6 m,

0 < β < α, and let g(x) be a given real function defined on R+. If a function

y : (0,∞) → R satisfies the inequality

(3.1) |(CDα
0+y)(x) − λ(CDβ

0+y)(x)− g(x)| 6 ε

for all x > 0 and some ε > 0, then there exists a solution ya : (0,∞) → R of the

fractional differential equation

(3.2) (CDα
0+y)(x) − λ(CDβ

0+y)(x) = g(x)

such that

(3.3) |y − ya| 6 εxαEα−β, α+1(|λ|x
α−β).

P r o o f. Putting y(k)(0) = bk ∈ R for k = 0, 1, . . . , n − 1, and Y (x) =

(CDα
0+y)(x) − λ(CDβ

0+y)(x) − g(x) for each x > 0, by Lemma 1.1 we have

(3.4) L{Y (x)} = L{(CDα
0+y)(x)− λ(CDβ

0+y)(x)− g(x)}

= L{(CDα
0+y)(x)} − λL{(CDβ

0+y)(x)} − L{g(x)}

= sαL{y(x)} −

n−1
∑

k=0

sα−k−1bk − λ

{

sβL{y(x)} −

m−1
∑

k=0

sβ−k−1bk

}

− L{g(x)}

= (sα − λsβ)L{y(x)} −
n−1
∑

k=0

sα−k−1bk + λ
m−1
∑

k=0

sβ−k−1bk − L{g(x)}.
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By (3.4), it follows that

(3.5) L{y(x)} =

∑n−1
k=0 s

α−k−1bk − λ
∑m−1

k=0 sβ−k−1bk + L{g(x)}

sα − λsβ
+

L{Y (x)}

sα − λsβ
.

Put

(3.6) ya(x) =

n−1
∑

k=0

bkyk(x) +

∫ x

0

(x− t)α−1Eα−β,α[λ(x − t)α−β ]g(t) dt,

where

yk(x) = xkEα−β,k+1(λx
α−β)(3.7)

− λxα−β+kEα−β,α−β+k+1(λx
α−β), k = 0, 1, . . . ,m− 1,

yk(x) = xkEα−β,k+1(λx
α−β), k = m, . . . , n− 1.(3.8)

By Lemma 1.2 and (1.5), we get

(3.9)

L{ya(x)} = L

{m−1
∑

k=0

bkyk(x)

}

+ L

{n−1
∑

k=m

bkyk(x)

}

+ L

{
∫ x

0

(x− t)α−1Eα−β,α[λ(x− t)α−β ]g(t) dt

}

=

m−1
∑

k=0

bkL{x
kEα−β,k+1(λx

α−β)− λxα−β+kEα−β,α−β+k+1(λx
α−β)}

+

n−1
∑

k=m

bkL{x
kEα−β,k+1(λx

α−β)}

+ L{xα−1Eα−β,α(λx
α−β)}L{g(x)}

=

∑n−1
k=0 bks

α−k−1 − λ
∑m−1

k=0 bks
β−k−1 + L{g(x)}

sα − λsβ
.

By (3.9), one can get

(3.10) L{(CDα
0+ya)(x) − λ(CDβ

0+ya)(x)} = L{g(x)},

so ya(x) is a solution of (3.2).

Using (3.5) and (3.9), we obtain

(3.11) L{y(x)− ya(x)} =
L{Y (x)}

sα − λsβ
.
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By (1.5) and Lemma 1.2, we have

(3.12) L{[xα−1Eα−β,α(λx
α−β)] ∗ Y (x)} = L[xα−1Eα−β,α(λx

α−β)]L{Y (x)}

=
L{Y (x)}

sα − λsβ
.

Using (3.11) and (3.12), we see that

(3.13) y(x)− ya(x) = [xα−1Eα−β,α(λx
α−β)] ∗ Y (x).

Therefore, from (3.1), it follows that

(3.14) |y(x)− ya(x)| = |[xα−1Eα−β,α(λx
α−β)] ∗ Y (x)|

=

∣

∣

∣

∣

∫ x

0

(x − t)α−1Eα−β,α[λ(x − t)α−β ]Y (t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0

∞
∑

k=0

λk(x− t)αk−βk+α−1

Γ[(α− β)k + α]
Y (t) dt

∣

∣

∣

∣

6

∞
∑

k=0

|λ|k

Γ[(α − β)k + α]

∣

∣

∣

∣

∫ x

0

(x − t)αk−βk+α−1Y (t) dt

∣

∣

∣

∣

6

∞
∑

k=0

|λ|kε

Γ[(α − β)k + α]

∫ x

0

(x− t)αk−βk+α−1 dt

= εxα
∞
∑

k=0

(|λ|xα−β)k

Γ[(α− β)k + α+ 1]

= εxαEα−β,α+1(|λ|x
α−β),

which completes the proof. �

R em a r k 3.2. If β = 0 and f(x) = g(x), then the equation (CDα
0+y)(x) −

λ(CDβ
0+y)(x) = g(x) coincides with (CDα

0+y)(x) − λy(x) = f(x), and εxαEα−β,α+1

(|λ|xα−β) coincides with εxαEα,α+1(|λ|x
α), so Theorem 3.1 generalizes Theorem 2.2.

Corollary 3.3. Let λ ∈ R, m,n ∈ N, m 6 n, n − 1 < α 6 n, m − 1 < β 6 m,

0 < β < α, and let g(x) be a given real function defined on R+. If a function

y : (0,∞) → R satisfies the inequality

(3.15) |(CDα
0+y)(x) − λ(CDβ

0+y)(x) − g(x)| 6 F (x)

for all x > 0 and some function F (x) > 0, then there exists a solution ya : (0,∞) → R

of the fractional differential equation (3.2) such that

(3.16) |y − ya| 6 F (x)xαEα−β, α+1(|λ|x
α−β).
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4. An example

Consider the fractional differential equation

(4.1) (CD2
0+y)(x) −

1

2
(CD

3

2

0+y)(x) =
7

3
− 2

√

x

π

,

where α = 2, β = 3
2 , λ = 1

2 , g(x) =
7
3 − 2

√

x/π.

For ε = 1
2 , it is easy to check that the function y1(x) = x2 satisfies

(4.2)

∣

∣

∣

∣

(CD2
0+y1)(x)−

1

2
(CD

3

2

0+y1)(x) −
7

3
+ 2

√

x

π

∣

∣

∣

∣

<
1

2
,

and initial values of y1(x) are y1(0) = 0, y′1(0) = 0.

From (3.6) and the initial values of y1(x), we get an exact solution of equation (4.1)

(4.3) ya(x) =

∫ x

0

(x − t)E 1

2
,2

[1

2
(x− t)

1

2

]

(

7

3
− 2

√

t

π

)

dt.

By Theorem 3.1, the control function of y1(x) is
1
2x

2E1/2,3(
1
2x

1/2), thus

(4.4) |y1(x) − ya(x)| <
1

2
x2E1/2,3

(1

2
x1/2

)

,

and the error of the approximate solution y1(x) can be estimated.

A c k n ow l e d g em e n t. We thank the reviewers for their careful reading of the

manuscript, insightful comments and valuable suggestions, which help to improve

the quality of the paper.
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