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MOTION OF SPIRAL-SHAPED POLYGONAL CURVES

BY NONLINEAR CRYSTALLINE MOTION

WITH A ROTATING TIP MOTION

Tetsuya Ishiwata, Saitama

(Received September 30, 2013)

Abstract. We consider a motion of spiral-shaped piecewise linear curves governed by
a crystalline curvature flow with a driving force and a tip motion which is a simple model
of a step motion of a crystal surface. We extend our previous result on global existence of
a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline
motion with a given rotating tip motion. We show that self-intersection of the solution
curves never occurs and also show that facet extinction never occurs. Finally, we show that
spiral-shaped solutions exist globally in time.
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1. Introduction

In [3], we propose a simple model of spiral growth on crystal surface and consider

the linear crystalline motion β(Nj)Vj = U −Hj , where Vj , Nj and Hj denote a nor-

mal velocity, a unit normal vector and a crystalline curvature of the j-th facet(edge)

of the solution curve, respectively. Here, β (> 0) describes an anisotropy of a mo-

bility of the crystal and U is a forced term. In this paper, we set U > 0 since

we consider the case when the crystal grows. The detailed setting and definitions

are mentioned in the next section. Here, in the wake of the terminology in crystal

physics, we call each line-segment of the solution curve “facet”. In [3], we treat

a spiral-shaped solution with a given rotating tip motion and discuss the motion of

the solution curves.

The author is supported by Grant-in-Aid for Challenging Exploratory Research
(No. 23654052) and Scientific Research (C) (No. 24540119).
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In this short paper, we slightly extend the previous results for the nonlinear crys-

talline motion

(1.1) β(Nj)Vj = U − |Hj |
α−1Hj .

Here, α is a positive parameter.

To solve the problem, we have to give a boundary condition at the tip, which is

an end-point of the spiral. In this paper we give a movement of the tip concretely.

For simplicity, we assume that the tip moves along a given closed convex curve and

we discuss a time-global existence of spiral-shaped solution curves.

The paper is organized as follows: In the next section, we prepare some notation

and definitions and introduce a setting of the tip motion and initial curve. In Sec-

tion 3, we show that the solution curve does not intersect a given tip trajectory and

that self-intersection of the solution curve does not occur. We also show that any

facets never disappear during time evolution. In Section 4, we obtain that the spiral

solution exists globally in time.

2. Preliminaries and our model

We first introduce admissible curves as the solutions, that is, we prepare a spacial

class of spiral-shaped polygonal curves and consider the problem in this class. Note

that we here treat only spiral-shaped curve, that is,

⊲ the winding number of the curve may be more than one,

⊲ a curvature at each point is always positive,

⊲ the curve has no self-intersection.

Next, in order to define an “admissible spiral”, we introduce the Wulff shape. The

notion of the Wulff shape has originally come from crystal physics and the Wulff

shape describes an equilibrium shape of crystal. Let σ = σ(n) be an interfacial

energy density of a crystal. Here, n is a unit normal vector. Then, the Wulff shape

is given by Wσ = {z ∈ R
2 ; z · n 6 σ(n) for all n ∈ S1}. By definition, Wσ

is convex. If Wσ is a convex polygon, σ is called a “crystalline” energy. In this

paper, we consider this case, that is, we suppose that Wσ is an Nσ-sided convex

polygon. We denote by ϕj and lj the normal angle and the length of the j-th

facet of Wσ for j = 0, 1, . . . , Nσ − 1, respectively. Without loss of generality, we

set 0 = ϕ0 < ϕ1 < . . . < ϕNσ−1 (< 2π). Moreover, we set ϕj+mNσ
= ϕj and

lj+mNσ
= lj for j = 0, 1, . . . , Nσ − 1 and m ∈ Z and also set Nj = (cosϕj , sinϕj)

and Tj = (− sinϕj , cosϕj) for j ∈ Z.
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Let Γ be a polygonal curve. We denote by Fj the j-th facet of Γ. Namely, Fj is

the line segment from pj−1 to pj, where pj = (xj , yj) is the j-th vertex of Γ. We

denote by dj the length of Fj , that is, dj = |pj − pj−1|.

We say that a polygonal curve Γ is an admissible spiral if (i) Γ has no self-

intersection, (ii) the outward unit normal vector of Fj coincides with Nj and (iii) dj

is positive for all j. For each facet of an admissible spiral, the crystalline curva-

ture Hj is given by Hj := lj/dj . Note that the crystalline curvature is defined for

more general curves. (See [2] and its references.) In this paper we only treat spiral

curves, thus, each facet of admissible spirals has a positive curvature.

Here we will introduce our target problem. We first give a tip motion. According

to the modeling in [3], the tip does not move in the normal direction and only moves

in the tangential direction and rotates along a certain convex closed curve, named the

tip trajectory. We set the tip trajectory as follows: (i) The tip trajectory is a closed

convex Nσ-sided polygonal curve, (ii) the normal angle of the j-th line-segment F
tip
j

is ϕj , and (iii) l
tip
j > lj/U

1/α, where ltipj is the length of F tip
j . Note that the third

condition means that if we take a tip trajectory as an initial curve, then each facet

of the solution curve moves outward by (1.1), that is, the crystal surface is under

a growth mode. We denote by P tip
j the j-th vertex of the tip trajectory and also

extend the subscripts j like ϕj for all j ∈ Z. Note that F tip
j is the line-segment from

P tip
j−1 to P

tip
j . We suppose that the tip moves along the tip trajectory anticlockwise

with a given speed v(Tj) > 0 on each F tip
j . That is, the tip moves from P tip

j−1 to P
tip
j

with a speed v(Tj) during a time period τj := ltipj /v(Tj).

Now we set an initial curve Γ0 =
M+1∑

j=0

Fj(0) as follows:

⊲
M∑

j=0

Fj(0) is an admissible spiral.

⊲ The normal vector of FM+1(0) is NM+1.

⊲ dM+1(0) = 0. That is, pM+1(0) = pM (0) = P tip

M .

⊲ Γ0 never intersects the interior domain enclosed by the tip trajectory.

⊲ d0 = ∞.

Here pM+1 is the tip and we call FM+1 the tip part of the spiral. According to the

modeling in [3], we suppose that the normal velocity at the tip part is zero, that is,

VM+1 = 0. Thus, by the setting of the tip motion, pM+1 moves only in the TM+1

direction. Note that the normal angle of FM+1 is ϕM+1 and thus Γ(t) =
M+1∑

j=0

Fj(t)

is admissible if all dj(t)’s are positive and Γ(t) has no self-intersections.

Finally we mention the short time existence and uniqueness of the solution. No-

tice that
M∑

j=0

Fj is governed by (1.1). Then we can obtain the system of ordinary
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differential equations for the length dj(t) as follows:

(2.1) ḋj(t) = − (cot(θj+1 − θj) + cot(θj − θj−1))Vj +
1

sin(θj − θj−1)
Vj−1

+
1

sin(θj+1 − θj)
Vj+1, for j = 1, 2, . . . ,M, t > 0.

Here θj denotes the normal angle of Fj. Thus, by the standard theory of a system

of ordinary differential equations, we can show that the solution {dj(t)} of (2.1)

exists uniquely in a short time interval and dj(t) for each t is positive since dj(0) is

positive for j = 0, 1, . . . ,M . On the other hand, dM+1(t) is governed by ḋM+1(t) =

v(TM+1)+VM/ sin(θM+1−θM ). From the 4-th condition on Γ0, we have dM (0) > ltipM

and thus VM (0) > 0. Then we have that dM+1(t) is positive in a short time. Note

that pj(t) = pj+1(t) − dj+1(t)Tj+1 for j = M,M − 1, . . . , 0 and Γ(t) =
M+1∑

j=0

Fj(t),

where Fj(t) = {λpj−1(t) + (1 − λ)pj(t) ; λ ∈ [0, 1]} for j = 1, 2, . . . ,M + 1 and

F0(t) = {p0(t) − λT0 ; λ > 0}. We also have that Γ(t) has no self-intersections in

a short time since Γ0 has no self-intersections. Thus, it is shown that the solution

curve Γ(t) is admissible in a short time interval. However, there are two possibilities

how to break the admissibility of the solution. One is a self-intersection of Γ(t) and

the other is a facet-extinction in finite time. In the next section, we treat these

issues. Suppose that the above singularities do not appear in [0, τM+1]. Then the

tip reaches the next vertex of the tip trajectory, that is, pM+1(τM+1) = P tip

M+1, and

changes its developing direction from TM+1 to TM+2. (See Figure 1 (iii) and (iv).)

At t = τM+1, we also add a new vertex pM+2 and a new facet FM+2 to the solution

curve Γ(τM+1) as pM+2(τM+1) = pM+1(τM+1) = P tip

M+1 and solve the problem with

the initial curve Γ(τM+1). Note that the system size of (1.1) increases by 1. If we

can repeat this procedure, then we finally obtain the time-global existence of the

spiral solution.

P
tip

M

P
tip

M+1

(i) t = 0 (ii) 0 < t < τM+1 (iii) t = τM+1 (iv) t > τM+1

Figure 1. Time evolution of admissible spiral.
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3. No self-intersection and no facet-extinction

In this section, we prove three lemmas. The proofs are similar to or almost the

same as that in [3]. For reader’s convenience, we give proofs.

We first show that self-intersection of the solution curves never occurs as long as

all facets of the solution exist.

We divide the argument into two parts. First we show an inner facet of the spiral

never catches up an outer facet.

Lemma 3.1.

M∑

j=0

Fj(t) has no self-intersections as long as all facets exist.

P r o o f. Suppose that a self-intersection of the solution curve first occurs at

t = t∗ > 0. Then there are 3 possible self-intersection patterns: (1) Facet-Facet

contact: Fj0 contacts Fj1 , (2) Vertex-Facet contact: pj0 contacts Fj1 , (3) Vertex-

Vertex contact: pj0 contacts pj0 .

(1) (2) (3)

Figure 2. Three contact patterns: (1) Facet-Facet, (2) Vertex-Facet and (3) Vertex-Vertex.

The case (2) never occurs because of the admissibility of Γ(t) and the positivity

of the curvature of each facet. If the case (3) occurs, then both adjacent facets of

each vertex contact at t = t∗. Thus, it is sufficient to discuss the Facet-Facet contact

case. Suppose that Fj0 contacts Fj1 . Note that Nj0 = Nj1 . Let us consider the

case j0 < j1. That is, Fj0 and Fj1 are, resectively, the outer and inner parts of the

spiral. If dj0 (t
∗) < dj1 (t

∗), then Fj1 intersects Γ(t) before t = t∗. This contradicts

the definition of t∗. Thus, dj0(t
∗) > dj1(t

∗). If dj0(t
∗) > dj1(t

∗), then Vj0 > Vj1 near

t = t∗ and thus the distance between the facets in the normal direction increases.

Hence, such a contact is impossible. Thus, we have dj0 (t
∗) = dj1(t

∗), that is, Fj0

and Fj1 are completely overlapping each other. By the admissibility of the solution

curve, both adjacent facets also have overlaps and we can repeatedly apply the above

argument and obtain that both the adjacent facets also overlap each other completely.

Therefore, we finally obtain that Fj0±i(t
∗) = Fj1±i(t

∗) and dj0±i(t
∗) = dj1±i(t

∗) for

i = 0, 1, 2, . . ., from which it follows that there exists an infinite-length facet Fk

except another infinite-length facet F0. That is, pk or pk−1 moves away to infinity

in finite time t∗. However, this is impossible since all Vj ’s are bounded above by

U/ min
06j<Nσ

β(Nj). Therefore, we have the assertion. �

115



Next we show that the regular step part
M∑

j=0

Fj(t) never intersects the tip trajec-

tory. Due to this result, the tip does not touch the regular step part of the spiral.

Lemma 3.2. For t > 0,
M∑

j=0

Fj(t) never touches the tip trajectory as long as all

facets exist.

P r o o f. From the setting of Γ0, FM (0) has an overlap with the tip trajectory.

Generally, there is a possibility that some facets of Γ0 have an overlap with the tip

trajectory. Let Fk(0) (k 6 M) be such a facet, that is, Fk(0) ∩ F tip

k 6= ∅. Note

that F tip
k and ltipk are Nσ-periodic. Then, by admissibility of the curves and the 4-th

condition on Γ0, we have dk(0) > ltipk . Thus,

β(Nk)Vk(0) = U − (lk/dk(0))
α > U − (lk/l

tip

k )α > 0.

Therefore, Fk moves outward for some while near t = 0 and thus it cannot keep the

overlap with the tip trajectory.

Let t∗ > 0 be the first time when some facets contact the tip trajectory. There

are 3 possible contact patterns.

(1) Facet-Facet contact: Fj0(t
∗) contacts F tip

j0
from outside of the tip trajectory.

(2) Vertex-Facet contact: (2i) pj0 contacts F
tip
i0
or (2ii) Fj0 contacts P

tip
i0
.

(3) Vertex-Vertex contact: pj0 contacts P
tip
j0
.

Notice that the contact pattern in Figure 3 never occurs. (See Remark 3.1.) We

first exclude the case (2). If the case (2i) occurs, then Γ is locally concave around

pj0 , that is, θj0 > θj0+1. This contradicts our setting. If the case (2ii) occurs, then

we have ϕi0 < θj0 < ϕi0+1. This means that the Wulff shape has a facet whose

normal angle lies between ϕi0 and ϕi0+1. However, the i0-th facet and the (i0+1)-st

facet of the Wulff shape are adjacent to each other. Thus, we have a contradiction.

Therefore, the case (2) does not occur.

When the case (3) occurs, Facet-Facet contact occurs at least for one adjacent

facet of the vertex. Thus, we only consider the case (1). Then, we again apply the

above estimate on the velocity and get Vj0(t) > 0 near t = t∗. Thus, the distance

between Fj0 and F tip
j0
in the normal direction increases near t = t∗. That is, the

contact between Fj0 and F tip
j0
is impossible. Hence, we have the assertion. �

R em a r k 3.1. If the situations in Figure 3 occur, then self-intersection occurs

since d0 = ∞. This fact contradicts Lemma 3.1. Thus, these situation never occur.

From the above two lemmas, we conclude that Γ(t) never has any self-intersections.

We next show that all facets exist for 0 < t 6 τM+1. Note that only FM+1 has

zero-length. We first show that no facets never disappear in (0, τM+1].
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(a) (b)

Tip trajectory

Γ(t∗)

Tip trajectory

Γ(t∗)

Figure 3. Impossible intersection patterns.

Lemma 3.3. No facet-extinctions occur in (0, τM+1].

Here and in the sequel we denote by C various positive constants and A ∼ B

means that c1A 6 B 6 c2A for some positive constants c1 and c2. We also introduce

the following notation: Lk(t) := {z ∈ R
2 ; (pk(t) − z) · Nk = 0}. Note that Lk(t)

contains the k-th facet Fk(t) and pk(t) is the vertex of Fk.

P r o o f. We first note that if lim inf
t→T

dj(t) = 0 for some T > 0 and j, then we

can show lim
t→T

dj(t) = 0 in the same manner as in [2]. In the case M = 0, then

Γ(t) = F0(t) +F1(t). From the fact that V0(t) = U/β(N0) and V1(t) = 0, these two

facets exist for t ∈ [0, τM+1]. Thus, we consider the case M > 1.

Assume that there exist T ∈ [0, τM+1] and j0 ∈ {0, 1, 2, . . . ,M + 1} such that

dj0(T ) = 0 and dj(t) > 0 for all j and 0 < t < T .

We first exclude the case j0 = M +1, that is, the tip part disappears. In this case,

pM (T ) = pM+1(T ) and thus FM (t) intersects an interior region of the tip trajectory

at t ∈ (T − δ, T ) for some δ > 0. This is a contradiction. Thus, FM+1 remains.

We also show that F0 remains. Note that d0(0) = ∞. If F0 disappears at t = T ,

then y0(t) → −∞ as t → T . Recall that p0(t) = (x0(t), y0(t)) and p0(t) ∈ L1(t). By

Lemma 3.2 and the fact that Γ(t) is spiral, F1(t) lies in the region above the line L
tip
1 ,

where Ltip
1 is the line containing F tip

1 . That is, F1(t) ⊂ R := {z ∈ R
2 ; (z − P tip

1 )×

N1 > 0}. Since V0(t) = U/β(N0) is constant, we have x0(0) 6 x0(t) 6 x0(0) + V0T

for 0 6 t 6 T . Due to this fact and lim
t→T

y0(t) = −∞, there exists T ′ ∈ (0, T ) such

that (p0(t)−P tip
1 ) ·N1 < 0 for t > T ′. That is, F1(t) 6⊂ R for t > T ′, which leads to

a contradiction.

Note that there is a possibility that more than two facets disappear at the same

time. Then we can find a consecutive extinction part
j2−1⋃

k=j1+1

Fk which includes the

j0-th facet and Fj1 and Fj2 remain. If θj2 − θj1 > π, then self-intersection of Γ(t)

occurs before t = T since Fj1 and Fj2 have positive lengths. Thus, 0 < θj2 −θj1 6 π.

In the case when θj2 − θj1 = π, Lj1 and Lj2 are parallel. Note that the tip trajectory
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and the subarc
M+1∑

j=j2+1

Fj(t) lie between Lj1 and Lj2 by geometry. However, the

distance between Lj1 and Lj2 tends to zero as t → T . Then the solution curve

intersects the tip trajectory and this leads to a contradiction.

We finally consider the case 0 < θj2 − θj1 < π. We can show that this case does

not happen by the same argument as in [2]. Set Q := {j1 + 1, j1 + 2, . . . , j2 − 1}.

Thus, we can define the meeting point p∗ := lim
t→T

pi(t) for i ∈ Q ∪ {j2}. Let q(t)

be the intersection point of two lines Lj1 and Lj2 . Define two functions h1(t) and

h2(t) by h1(t) := (q(t)− p∗) ·Nj0 and h2(t) := (pj0(t)− p∗) ·Nj0 , respectively. Note

that h1(T ) = h2(T ) = 0. From dj0(T ) = 0 we have Vj0(t) → −∞ as t → T . Thus,

Vj0(t) < 0 in t ∈ (T − δ, T ) for some δ > 0. Then, by geometry, h1(t) > h2(t) > 0 at

t ∈ (T − δ, T ). Since dj1(t) and dj2 (t) remain positive in [0, T ], we have Vj1(t) and

Vj2(t) remain bounded in [0, T ]. Thus, the velocity of q(t) is bounded, that is, ḣ1(t)

is bounded. On the other hand, since Vj0(t) → −∞ as t → T , we have ḣ2(t) → −∞

as t → T . Hence, the function h1(t) − h2(t) increases near t = T . This leads to

a contradiction.

Therefore, we conclude that no facet-extinctions ever occur. �

4. Main results

From the results in the previous section and the fact that all facets remain in

a bounded region in a finite time since their velocities are bounded above, we have

the following:

Theorem 4.1. The solution curve exists in [0, τM+1]. Moreover, the solution

curve is an admissible spiral and does not intersect the tip trajectory for t ∈ [0, τM+1].

As mentioned in the last part of Section 2, at t = τM+1, we add a new vertex

pM+2 and a new facet FM+2 to Γ(τM+1) as pM+2(τM+1) = pM+1(τM+1) = P tip

M+1.

We also denote by Γ(τM+1) this polygonal curve. Note that dM+2 = 0 and the subarc
M+1∑

j=0

Fj(τM+1) is an admissible spiral, thus Γ(τM+1) satisfies the conditions on the

initial curve for our problem in Section 2. Therefore, we can apply the above theorem

and obtain a solution for t ∈ [τM+1, τM+1 + τM+2]. We repeat this procedure. Let

Tk :=
k∑

i=1

τM+k for k = 1, 2, 3, . . .. Note that the zero-length new facet is created

at each Tk, that is, the number of the facets diverges to infinity as t → ∞. We

easily obtain that the winding number of the solution curve also diverges to infinity

as t → ∞ since the tip rotates anticlockwise along the tip trajectory at t = Tk for

all k = 1, 2, 3, . . .. Thus, we obtain the following:
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Theorem 4.2. The spiral-shaped solution exists uniquely and globally in time.

Moreover, the number of the facets and the winding number of the solution curve

diverge to infinity as t → ∞.
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