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Abstract. This paper deals with basic stability properties of a two-term linear autonomous
fractional difference system involving the Riemann-Liouville difference. In particular, we
focus on the case when eigenvalues of the system matrix lie on a boundary curve separating
asymptotic stability and unstability regions. This issue was posed as an open problem in
the paper J. Čermák, T.Kisela, and L.Nechvátal (2013). Thus, the paper completes the
stability analysis of the corresponding fractional difference system.

Keywords: fractional difference system; stability; Laplace transform

MSC 2010 : 39A06, 39A30, 39A12

1. Introduction

Fractional calculus is a discipline concerning integrals and derivatives of noninte-

ger orders. In last decades, this originally theoretical concept has found numerous

applications in both technology and science and nowadays it belongs to the most

developing areas of mathematical analysis. For detailed information on its history

and basics we refer, e.g., to monographs [6], [13].

In this paper, we consider a discrete fractional calculus, namely the fractional

calculus built on a set of equidistant points tn = nh, h > 0, n ∈ Z
+
0 , which is

especially important for a numerical analysis of continuous fractional models. The

key notion of discrete fractional calculus is the so-called fractional sum introduced

as

∇−γ
h f(tn) =

n
∑

k=1

h

(

n− k + γ − 1

n− k

)

f(tk),
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where the order γ is a positive real and f(tn) is a given sequence. The definition of

a fractional difference is not unique. We are going to employ one of the two most

common approaches, the so-called Riemann-Liouville fractional difference

∇α
hf(tn) = ∇

⌈α⌉
h ∇

−(⌈α⌉−α)
h f(tn),

where the order α is a positive real, ⌈α⌉ = min{m ∈ Z ; m 6 α} is the ceiling

function and f(tn) is a given sequence. We recall that for a given m ∈ Z
+ the mth

difference is introduced recursively as ∇m
h f(tn) = ∇h∇

m−1
h f(tn) and ∇hf(tn) =

(f(tn)− f(tn−1))/h. For more details on discrete fractional calculus, and in partic-

ular its backward version that we discuss, we refer to, e.g., [2], [5], [10].

While the stability analysis in the continuous fractional calculus is a quite estab-

lished topic (see, e.g., the surveys [7], [12]), the related results in the discrete case

are rather rare (see, e.g., [8] or [3], [4]). In [3] the fractional difference system

∇α
hy(tn) = Ay(tn), 0 < α < 1, n ∈ Z

+,(1.1)

∇α−1
h y(0) = y0, y0 ∈ R

d,(1.2)

where A is a d× d constant real matrix and y(tn) is a d-vector, was considered. The

authors gave the description of the stability behaviour depending on the position of

eigenvalues in the complex plane except for the case when an eigenvalue lies on the

boundary of the asymptotic stability region. In this paper, we focus on this missing

part and complete the description of the stability behaviour of (1.1).

The paper is organized as follows. In Section 2 we recall the necessary background,

such as the basics of the discrete Laplace transform, the used notation and key results

of [3]. Section 3 is devoted to the main result, i.e., it involves the theorem completing

the known results and the summarizing corollary. Section 4 concludes the paper with

some additional comments and comparisons.

2. Used notation and known results

In the sequel, we adopt the notation introduced in [3]. We assume that the ma-

trix A occuring in (1.1) is similar to a Jordan canonical form J . Thus, there exists

an invertible matrix P such that A = PJP−1, where J = diag(J1, . . . , Js) and Jl are

Jordan blocks of order rl (l = 1, . . . , s). In addition, we assume that the matrix A is

hα-regressive, i.e. I − hαA is invertible, which ensures the existence and uniqueness

of the solution for (1.1), (1.2) (see [3], Proposition 4).
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The key tool utilized in this paper is the discrete Laplace transform. For a given

real sequence f(tn) it is defined as

(2.1) L{f}(s) = h

∞
∑

k=1

f(tk)(1 − hs)k−1

for all points s ∈ C at which the series converges. More detailed information on its

connection with the standard Laplace transform and other properties can be found,

e.g., in [1] or [3].

As shown in [3], applying (2.1) to (1.1), (1.2) yields the Laplace transform of the

solution in a form

(2.2) L{y}(s) = (sαI −A)−1y0 = P−1(sαI − J)−1Py0,

where (sαI − J)−1 is a diagonal block matrix. The number of blocks corresponding

to every eigenvalue λi (i = 1, . . . ,m) is equal to its geometric multiplicity pi and

their form is given by the upper triangular matrix

(2.3)











(sα − λi(A))
−1 (sα − λi(A))

−2 . . . (sα − λi(A))
−rq

0 (sα − λi(A))
−1 . . . (sα − λi(A))

−rq+1

...
...

. . .
...

0 0 . . . (sα − λi(A))
−1











,

where q = 1, . . . , pi and rq is the size of the block.

Now, we recall the notion of stability and asymptotic stability adapted for the

linear system (1.1):

Definition 2.1. The fractional difference system (1.1) is said to be

(a) stable if for any y0 ∈ R
d there exists K > 0 such that the solution y(tn) of (1.1),

(1.2) satisfies ‖y(tn)‖ 6 K for all n = 1, 2, . . .,

(b) asymptotically stable if for any y0 ∈ R
d the solution y(tn) of (1.1), (1.2) satisfies

‖y(tn)‖ → 0 as n → ∞.

For the sake of lucidity, we restate and reformulate the main results of [3] con-

cerning the stability of (1.1):

Theorem 2.1. Let 0 < α < 1. The fractional difference system (1.1) is

(a) asymptotically stable, if all eigenvalues of A lie inside the region

Sα,h = {z ∈ C : z = h−α(1 − w)α, w ∈ C, |w| > 1},
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(b) not stable, if there exists an eigenvalue of A lying inside the region

Uα,h = {z ∈ C : z = h−α(1− w)α, w ∈ C, |w| < 1}.

R em a r k 2.1. In [3], the sets Sα,h and Uα,h are described by means of modulus

and phase of z. We note that both forms are equivalent as can be verified by

calculations in the complex plane.

Theorem 2.1 does not discuss the case when an eigenvalue lies on the boundary

curve Ψ separating Sα,h and Uα,h, which is given by

(2.4) Ψ = {z ∈ C : z = h−α(1− w)α, w ∈ C, |w| = 1}

(see Figure 1). The only result of [3] concerning eigenvalues lying on Ψ discusses the

case of the zero eigenvalue:

O

1

2h

−
1

2h

1

2h

1

h

3

2h

Uα,h

Ψ

Sα,h

Re(λ)

Im(λ)

Figure 1. Stability plot for α = 1/2.

Theorem 2.2. Let 0 < α < 1, let A have the zero eigenvalue λ1 = 0 and let

all its nonzero eigenvalues belong to Sα,h. Denote by r̂ ∈ Z
+ the maximal size of

Jordan blocks corresponding to λ1. The fractional difference system (1.1) is

(a) asymptotically stable, if r̂ < α−1,

(b) stable, but not asymptotically stable, if r̂ = α−1,

(c) not stable, if r̂ > α−1.
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3. Main result

Investigating the stability of (1.1) with eigenvalues of A lying on Ψ requires a dif-

ferent approach than that utilized in [3]. In particular, we cannot employ the radius

of convergence nor Wiener’s theorem. We overcome this inconvenience by the tech-

nique suggested in [8].

Theorem 3.1. Let 0 < α < 1 and let A be a d × d matrix. Let λ ∈ Ψ \ {0} be

the eigenvalue of A with algebraic multiplicity d and geometric multiplicity p 6 d

(p ∈ Z
+). The fractional difference system (1.1) is

(a) stable but not asymptotically stable if p = d,

(b) not stable if p < d.

P r o o f. Let y(tn) be the solution of (1.1), (1.2) and let λ be the only eigenvalue

of A. Considering (2.2) and (2.3), we can see that the Laplace transform of y(tn)

can be written as a linear combination

(3.1) L{y}(s) =

d
∑

j=1

bjGj(s)

where bj (j = 1, . . . , d) are constant real d-vectors and

(3.2) Gj(s) =
1

(sα − λ)j
, j = 1, . . . , d.

Obviously, Gj(s) has a pole λ
1/α of order j, hence we can write it in the form

(3.3) Gj(s) =
Fj(s)

(s− λ1/α)j
, j = 1, . . . , d,

where Fj(s) = L{fj}(s) is a complex function analytic on C and fj(tn) is a suitable

auxiliary sequence. Utilizing the binomial formula (see, e.g., [11]), we can find the

inverse Laplace transform of the term 1/(s− λ1/α)j . Indeed, we have

(3.4)
1

(s− λ1/α)j
=

(

−h

1− hs− 1 + hλ1/α

)j

=

(

h(1− hλ1/α)−1

1− (1 − hs)/(1− hλ1/α)

)j

= hj(1 − hλ1/α)−j
∞
∑

k=0

(

j + k − 1

k

)(

1− hs

1− hλ1/α

)k

= h

∞
∑

k=1

(

j + k − 2

k − 1

)

hj−1

(1 − hλ1/α)j+k−1
(1− hs)k−1

= L

{(

j + n− 2

n− 1

)

hj−1

(1− hλ1/α)j+n−1

}

(s).
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We are not able to determine the inverse Laplace transform of Fj(s), i.e. fj(tn),

nevertheless for the stability analysis it suffices to show that a particular value

|Fj(λ
1/α)| = |L{fj}(λ

1/α)| is a finite positive real number. Combining (3.2) and

(3.3), we obtain

Fj(s) =
(s− λ1/α)j

(sα − λ)j
(= L{fj}(s)), j = 1, . . . , d,

which implies

(3.5) |L{fj}(λ
1/α)| =

∣

∣

∣

∣

lim
s→λ1/α

(

s− λ1/α

sα − λ

)j∣
∣

∣

∣

=

∣

∣

∣

∣

(

lim
s→λ1/α

s− λ1/α

sα − λ

)j∣
∣

∣

∣

=

∣

∣

∣

∣

(

lim
s→λ1/α

1

αsα−1

)j∣
∣

∣

∣

=
|λ1/α−1|j

αj
> 0.

a) Let d = p, i.e., let algebraic and geometric multiplicities of λ be equal. In this

case, we have bj = 0 for j = 2, . . . , d in (3.1), hence

lim
n→∞

‖y(tn)‖ = lim
n→∞

‖b1L
−1{G1}(tn)‖ = ‖b1‖ lim

n→∞
|L−1{G1}(tn)|

= ‖b1‖ lim
n→∞

∣

∣

∣

∣

L−1

{

F1(s)
1

s− λ1/α

}

(tn)

∣

∣

∣

∣

= ‖b1‖ lim
n→∞

∣

∣

∣

∣

f1(tn)
1

(1− hλ1/α)n

∣

∣

∣

∣

= ‖b1‖ lim
n→∞

h

∣

∣

∣

∣

n
∑

k=1

f1(tk)
1

(1− hλ1/α)n−k+1

∣

∣

∣

∣

= ‖b1‖ lim
n→∞

1

|1− hλ1/α|n

∣

∣

∣

∣

h

n
∑

k=1

f1(tk)(1− hλ1/α)k−1

∣

∣

∣

∣

= ‖b1‖|L{f1}(λ
1/α)| lim

n→∞

1

|1− hλ1/α|n

= ‖b1‖|L{f1}(λ
1/α)| = ‖b1‖

|λ1/α|1−α

α
> 0,

where we utilize the convolution theorem for discrete Laplace transform (see, e.g., [3],

Lemma 14), (3.4), (2.1), (3.5) and the fact that λ ∈ Ψ implies |1 − hλ1/α| = 1 (see

(2.4)). It follows that for d = p the system (1.1) is stable but not asymptotically

stable.

b) Now let d > p, therefore there exists an integer u (2 6 u 6 d) such that bj 6= 0

for j = 1, . . . , u (for nonzero initial vector y0). Thus we get

lim
n→∞

‖y(tn)‖ = lim
n→∞

∥

∥

∥

∥

u
∑

j=1

bjL
−1{Gj}(tn)

∥

∥

∥

∥

.

200



It follows from the series of equalities in a) that |L−1{G1}(tn)| is bounded, so we

turn our attention to the stability behaviour of functions L−1{Gj}(tn) for j > 1.

Employing a technique similar to that used in the case j = 1 and the asymptotic

expansion of a binomial coefficient (see, e.g., [11]), we can write

lim
n→∞

|L−1{Gj}(tn)| = lim
n→∞

∣

∣

∣

∣

fj(tn)

(

j + n− 2

n− 1

)

hj−1

(1− hλ1/α)j+n−1

∣

∣

∣

∣

= lim
n→∞

h

∣

∣

∣

∣

n
∑

k=1

fj(tk)

(

j + n− k − 1

n− k

)

hj−1

(1− hλ1/α)j+n−k

∣

∣

∣

∣

= lim
n→∞

(

hj−1

|1− hλ1/α|j+n−1

∣

∣

∣

∣

h

n
∑

k=1

(

j + n− k − 1

n− k

)

fj(tk)(1 − hλ1/α)k−1

∣

∣

∣

∣

)

> lim
n→∞

∣

∣

∣

∣

hj

(

j + n− 2

n− 1

)

fj(t1)− hjfj(t1) + hj
n
∑

k=1

fj(tk)(1− hλ1/α)k−1

∣

∣

∣

∣

=

∣

∣

∣

∣

hj lim
n→∞

(

j + n− 2

n− 1

)

fj(t1)− hjfj(t1) + hj−1L{fj}(λ
1/α)

∣

∣

∣

∣

=

∣

∣

∣

∣

hjfj(t1) lim
n→∞

(n− 1)j−1

(j − 1)!
− hjfj(t1) + hj−1L{fj}(λ

1/α)

∣

∣

∣

∣

= ∞.

Since the vectors bj (j = 1, . . . , u) depend on the choice of y0, we conclude that

‖y(tn)‖ tends to infinity for some y0 and therefore (1.1) is not stable. �

Theorem 3.1 supplements Theorems 2.1 and 2.2 and completes the stability analy-

sis of (1.1). Considering (2.2), (2.3) and a basic matrix calculus, it enables us to

summarize the results:

Corollary 3.1. Let 0 < α < 1 and λi ∈ C (i = 1, . . . ,m) be distinct eigenvalues

of a d× d matrix A. Further, denote Λ = {λi, i = 1, . . . ,m}, ΛS = {λi : λi ∈ Sα,h}

and ΛΨ = {λi : λi ∈ Ψ}. The fractional difference system (1.1) is

(a) asymptotically stable, if and only if Λ = ΛS ∪ (ΛΨ ∩ {0}) and the maximal size

of the Jordan blocks corresponding to the zero eigenvalue is less than α−1,

(b) stable, if and only if Λ = ΛS ∪ ΛΨ and all nonzero elements of ΛΨ have the

same algebraic and geometric multiplicities and the maximal size of the Jordan

blocks corresponding to the zero eigenvalue is less than or equal to α−1.
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4. Concluding remarks

We have completed the stability analysis of the fractional difference system (1.1)

by investigation of the case of eigenvalues lying on the boundary curve Ψ. This result

enables us to write the stability assertions for (1.1) in the form of equivalences such

as Corollary 3.1. We can rephrase this corollary for the scalar case as follows: The

equation ∇α
hy(tn) = λy(tn) (0 < α < 1) is stable if and only if λ ∈ Sα,h ∪ Ψ and

asymptotically stable if and only if λ ∈ Sα,h ∪ {0}.

The discussed stability behaviour corresponds with the results achieved for the

continuous analogue of (1.1) in [14], where, among other similarities, the zero eigen-

value also represents the only point of the boundary curve that allows asymptotic

stability.

In [9] the author performed the stability analysis of the continuous fractional

differential system involving the Caputo fractional derivative. We note that the

results and techniques presented in this paper and in [3] can also be utilized for

stability analysis of the discrete counterpart of this problem with corresponding

results.
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