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Abstract. We survey recent results concerning estimates of the principal eigenvalue of
the Dirichlet p-Laplacian and the Navier p-biharmonic operator on a ball of radius R in RN

and its asymptotics for p approaching 1 and ∞.
Let p tend to ∞. There is a critical radius RC of the ball such that the principal

eigenvalue goes to ∞ for 0 < R 6 RC and to 0 for R > RC . The critical radius is RC = 1
for any N ∈ N for the p-Laplacian and RC =

√
2N in the case of the p-biharmonic operator.

When p approaches 1, the principal eigenvalue of the Dirichlet p-Laplacian is NR−1×
(1− (p− 1) logR(p− 1))+ o(p− 1) while the asymptotics for the principal eigenvalue of the
Navier p-biharmonic operator reads 2N/R2 +O(−(p− 1) log(p− 1)).
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1. p-Laplacian

Let us consider the eigenvalue problem for the Dirichlet p-Laplacian

(1.1)

{

− div(|∇u|p−2∇u) = λ|u|p−2u in Ω,

u = 0 on ∂Ω

where p > 1 and Ω is a bounded open subset of RN , N > 1. It is well-known that

the principal eigenvalue of (1.1) is

(1.2) λ1(Ω, p)
def
= min

(

∫

Ω

|∇u|p dx
/

∫

Ω

|u|p dx
)

where the minimum is taken over all u ∈ W 1,p
0 (Ω), u 6= 0.

The author was supported by the Grant Agency of the Czech Republic, Grant No. 13-
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In the one dimensional case N = 1 the precise formula

(1.3) λ1((−R,R), p) =
1

Rp
(p− 1)

(

π

p sin(π/p)

)p

, p > 1

is known (see, e.g., [7], page 244). It implies

lim
p→1+

λ1((−R,R), p) =
1

R
, lim

p→1+

λ1((−R,R), p)− 1/R

p− 1
= ∞,

and
0 < R 6 1 ⇒ lim

p→∞

λ1((−R,R), p) = ∞,

R > 1 ⇒ lim
p→∞

λ1((−R,R), p) = 0

(see Figure 1).

When N > 2, an explicit formula for λ1(Ω, p) is not known even in the case when

Ω = BN (0, R), the open ball of radius R > 0 and centered at the origin. Using the

Cheeger constant, Kawohl and Fridman [14], Remark 5, proved the lower estimate

(1.4) λ1(BN (0, R), p) >
( N

Rp

)p

, p > 1

which together with (1.2) implies (see [14], Corollary 6)

lim
p→1+

λ1(BN (0, R), p) =
N

R
.

A more precise asymptotics for λ1(BN (0, R), p) as p → 1+ follows from the estimates

(1.5)
N

R

(p′

R

)p−1

6 λ1(BN (0, R), p) 6
N

R

(p′

R

)p−1 Γ(p+ 1 +N/p′)

Γ(p+ 1)Γ(2 +N/p′)
, p > 1

where Γ is the Gamma function and p′
def
= p/(p− 1). The estimate from below was

proved in ([8], (8.10) on page 332) and both the estimates from below and from above

in [3]. The proof of the estimate from below is based on the Picone identity [1], the

estimate from above follows from (1.2) by choosing an appropriate function u.

Moreover, it is proved in [3] that the estimates (1.5) yield the asymptotics

λ1(BN (0, R), p) =
N

R
(1− (p− 1) logR(p− 1)) + o(p− 1) as p → 1+.

This follows from the fact that both the lower and the upper bound in (1.5) are

subject to the same asymptotics.
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Figure 1. Dependence of λ1 on p—second-order case.
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On the other hand, it follows from [12], Lemma 1.5, that

0 < R < 1 ⇒ lim
p→∞

λ1(BN (0, R), p) = ∞,

R > 1 ⇒ lim
p→∞

λ1(BN (0, R), p) = 0.

The critical case R = RC
def
= 1 is not covered. In [5] we proved the estimates

(1.6)
Np

Rp
6 λ1(BN (0, R), p) 6

(p+ 1)(p+ 2) . . . (p+N)

N !Rp
, p > 1

which imply that, similarly to the one dimension,

0 < R 6 1 ⇒ lim
p→∞

λ1(BN (0, R), p) = ∞,

R > 1 ⇒ lim
p→∞

λ1(BN (0, R), p) = 0.

The estimates (1.6) can also be generalized to domains Ω other than a ball. Since

the variational characterization (1.2) implies that λ1(Ω, p) is decreasing with respect

to Ω (in the sense of the set inclusion), the upper estimate in (1.6) applies to any

bounded open subset of RN that contains an inscribed ball of radius R > 0 as well.

On the other hand, it follows from the Schwarz symmetrization (see [13]) that the

lower estimate in (1.6) holds also for any Ω such that |Ω| = |BN (0, R)|. Moreover, it
is proved in [5] that

λ1(Ω, p) >
kp

Rp

for any Ω ⊂ Bk(0, R)×R
N−k where Bk(0, R) is the open ball in R

k of radius R > 0

and centered at the origin, k ∈ {1, 2, . . . , N}. In particular, for k = 1 and R = 1

it implies lim
p→∞

λ1(Ω, p) = ∞ for any Ω situated between two parallel hyperplanes

of distance 2. However, if Ω cannot be squeezed between two parallel hyperplanes

of distance 2 but the radius of the largest inscribed ball has the radius R 6 1, the

asymptotic behavior of λ1(Ω, p) as p → ∞ is an open problem. A concrete example
of such Ω in the plane is the open equilateral triangle with the largest inscribed disc

of the radius 1.

In Figure 1 we present estimates of the principal eigenvalue λ1(BN (0, R), p) in

different dimensions N = 1, 2, 3, 4, 8, 9. The solid curve for N = 1 depicts the exact

value (1.3). For N = 2, 3 and 4 the thick dots represent approximate values of

λ1 for certain discrete values of p, which were evaluated in [6]. The dashed curves

represent lower and upper estimates from (1.5), the dotted curves visualize those

from (1.6). Finally, the dash-dotted curves illustrate the lower estimate (1.4). The

shaded regions reflect all the above mentioned estimates for λ1(BN (0, R), p).
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The well-known continuous embedding W 1,p
0 (BN (0, R)) →֒ Lp(BN (0, R)) and

the Rellich-Kondrachov Theorem (e.g., [9], Theorem 1.2.28) imply the existence

of the minimal constant C = C(p,N,R) = λ
−1/p
1 (BN (0, R), p) such that for all

u ∈ W 1,p
0 (BN (0, R))

‖u‖p 6 C(p,N,R) ‖u‖1,p

where

‖u‖p def
=

(
∫

BN (0,R)

|u|pdx
)1/p

while

‖u‖1,p def
=

(
∫

BN (0,R)

|∇u|pdx
)1/p

is an equivalent (radially symmetric) norm on W 1,p
0 (BN (0, R)). It then follows from

the estimates (1.5) and (1.6) that

R

N1/p(p′)1/p′

(Γ(p+ 1)Γ(2 +N/p′)

Γ(p+ 1 +N/p′)

)1/p

6 C(p,N,R) 6
R

N1/p(p′)1/p′

and

R
( N !

(p+ 1)(p+ 2) . . . (p+N)

)1/p

6 C(p,N,R) 6
R

N1/pp1/p
,

respectively. Consequently, for all u ∈ W 1,p
0 (BN (0, R)) we have

‖u‖p 6
R

N1/p max{p1/p, (p′)1/p′}‖u‖1,p.

2. p-biharmonic operator

We also study the Navier p-biharmonic (fourth-order) eigenvalue problem

(2.1)

{

∆(|∆u|p−2∆u) = λ|u|p−2u in BN (0, R),

u = ∆u = 0 on ∂BN (0, R)

where p > 1. The principal eigenvalue of (2.1) is

(2.2) λ1(BN (0, R), p)
def
= min

∫

BN (0,R) |∆u|pdx
∫

BN (0,R) |u|pdx

where the minimum is taken over all u ∈ W 2,p(BN (0, R)) ∩W 1,p
0 (BN (0, R)), u 6= 0

(see [10]).
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A precise formula for λ1(BN (0, R), p) is not known even in one dimension. The

estimates

(2.3)
(2N

R2

)p(
√

πΓ(p′)

Γ(p′ + 1/2)
− 1

p′

)1−p

6 λ1(BN (0, R), p) 6
(2N

R2

)p( 2Γ(p′ + 1 +N/2)

NΓ(N/2)Γ(p′ + 1)

)p−1

, p > 1

were proved in [2] using [4]. These estimates imply the asymptotics

λ1(BN (0, R), p) =
2N

R2
+O(−(p− 1) log(p− 1)) as p → 1+.

On the other hand, using the Picone identity for the p-biharmonic operator due

to Jaroš [11] and the variational characterization (2.2), respectively, the lower and

the upper estimate,

(2.4)
(2N

R2

)p 1√
πΓ(p)/[Γ(p+ 1/2)]− 1/p

6 λ1(BN (0, R), p) 6
(2N

R2

)p 2Γ(p+ 1 +N/2)

NΓ(N/2)Γ(p+ 1)

were proved in [4]. They yield that, similarly to the second-order case, there is

a critical radius RC =
√
2N such that

0 < R 6 RC ⇒ lim
p→∞

λ1(BN (0, R), p) = ∞,

R > RC ⇒ lim
p→∞

λ1(BN (0, R), p) = 0.

However, here the critical radius does depend on the dimension.

In Figure 2 we present estimates for the principal eigenvalue in different dimen-

sions N = 1, 2, 3, and 4. The dashed curves represent lower and upper estimates

from (2.3), the dotted curves visualize those from (2.4). The shaded regions reflect

all the above mentioned estimates for λ1.

Again, the well-known continuous embeddingW 2,p(BN (0, R))∩W 1,p
0 (BN (0, R)) →֒

Lp(BN (0, R)) and the Rellich-Kondrachov Theorem imply the existence of the

minimal constant C = C(p,N,R) = λ
−1/p
1 (BN (0, R), p) such that for all u ∈

W 2,p(BN (0, R)) ∩W 1,p
0 (BN (0, R))

‖u‖p 6 C(p,N,R) ‖u‖2,p

where

‖u‖p def
=

(
∫

BN (0,R)

|u|pdx
)1/p
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Figure 2. Dependence of λ1 on p—fourth-order case.

and

‖u‖2,p def
=

(
∫

BN (0,R)

|∆u|pdx
)1/p

is an equivalent (radially symmetric) norm on W 2,p(BN (0, R))∩W 1,p
0 (BN (0, R)). It

follows from the estimates (2.3) and (2.4) that

R2

2N

(NΓ(N/2)Γ(p′ + 1)

2Γ(p′ + 1 +N/2)

)1/p′

6 C(p,N,R) 6
R2

2N

(

√
πΓ(p′)

Γ(p′ + 1/2)
− 1

p′

)1/p′

and

R2

2N

(NΓ(N/2)Γ(p+ 1)

2Γ(p+ 1 +N/2)

)1/p

6 C(p,N,R) 6
R2

2N

(

√
πΓ(p)

Γ(p+ 1/2)
− 1

p

)1/p

,
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respectively. Consequently, for all u ∈ W 2,p(BN (0, R)) ∩W 1,p
0 (BN (0, R)) we have

‖u‖p 6
R2

2N
min

{(

√
πΓ(p)

Γ(p+ 1/2)
− 1

p

)1/p

,
(

√
πΓ(p′)

Γ(p′ + 1/2)
− 1

p′

)1/p′
}

‖u‖2,p.
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