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Some observations on filters with

properties defined by open covers

Rodrigo Hernández-Gutiérrez, Paul J. Szeptycki

Abstract. We study the relation between the Hurewicz and Menger properties of

filters considered topologically as subspaces of P(ω) with the Cantor set topology.

Keywords: filters; Menger property; Hurewicz property

Classification: 54D20, 54D80

1. Introduction

A filter F on a non-empty set X is a subset F ⊂ P(X) such that: (a) ∅ /∈ F ,
(b) if x, y ∈ F then x∩y ∈ F , and (c) if x ∈ F and x ⊂ y ⊂ X , then y ∈ F . Since
the power set P(ω) can be identified with the Cantor set ω2 via characteristic
functions, a filter on a countable set can be thought of as a subspace of the
Cantor set. The topology of filters on ω has recently attracted much interest (see
[16], [9] and [15]). Also, in Chapter 4 of [1] it is possible to find an extensive study
of measure and category theoretic properties of filters.

In this note we would like to study covering properties of filters defined via
the selection principles introduced in [12]. Henceforth, we restrict our discussion
to Lindelöf topological spaces. For such a topological space X , let O be the
collection of open covers of X . A cover U ∈ O is a ω-cover if X /∈ U and for every
S ∈ [X ]<ω there is U ∈ U with S ⊂ U . A cover U ∈ O is a γ-cover if it is infinite
and for every x ∈ X the set {U ∈ U : x 6∈ U} is finite. The collection of ω-covers
and γ-covers are denoted by Ω and Γ, respectively. Clearly, Γ ⊂ Ω ⊂ O. Given
families A and B of open covers and a topological space X , consider the following
definitions from [12]:

• X is S1(A,B) if given {Un : n < ω} ⊂ A, for each n < ω there is Un ∈ Un

such that {Un : n < ω} ∈ B,
• X is Sfin(A,B) if given {Un : n < ω} ⊂ A, for each n < ω there is
Vn ∈ [Un]<ω such that

⋃

{Vn : n < ω} ∈ B,
• X is Ufin(A,B) if given {Un : n < ω} ⊂ A, for each n < ω there is
Vn ∈ [Un]<ω such that {

⋃

Vn : n < ω} ∈ B.

This provides 3 × 3 × 3 = 27 possibly different classes of topological spaces.
Some of these properties are null and some reduce to others, see Figures 1, 2 and 3
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of [12] or Figure 1 of [21]. The final diagram obtained is the following, which is
called the Scheepers diagram.

Ufin(O, Γ) // Ufin(O, Ω) // Sfin(O,O)
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As we will see in the next section, the strongest possible properties that a filter
may satisfy are Sfin(Ω, Ω) and Ufin(O, Γ). In particular, it is impossible for a
filter to satisfy any of the 6 properties at the front of the 3-dimensional Scheepers
diagram. Also, following standard terminology we have the following

• X is called Menger if X is Sfin(O,O), and
• X is called Hurewicz if X is Ufin(O, Γ).

In Section 3, existence of filters with these properties will be established, and
in the final section we show that the FUF-filters of Reznichenko and Sipacheva
always have the Hurewicz property.

See [20] for a history of the Menger and Hurewicz properties and [22] for the
current status of existence of sets of reals with these properties. It is also inter-
esting that the Menger property has been used to prove the existence of a non
countable dense homogeneous filter (see [5]).

2. Reductions and relations

From this point on, we will restrict our attention to filters defined on countable
sets (and most of the times, on ω) that contain the Frechét filter of cocountable
sets. Recall that a set I ⊂ P(X) is an ideal if I∗ = {A ⊂ X : X \ A ∈ I} is
a filter. In this situation, we say that the ideal I and filter I∗ are dual. Moreover,
the function that takes each set in P(X) to its complement is a homeomorphism
so in fact an ideal is homeomorphic to its dual filter. Thus, we may sometimes
talk about ideals instead of filters when the ideal description is simpler.

For each Y ⊂ ω, let Y ↑= {X ⊂ ω : Y ⊂ X}. The set Y ↑ is always closed, if Y
is in a filter F then Y ↑ is contained in F and if Y is finite then Y ↑ is also open.

Starting from the Scheepers diagram, we first rule out some properties that
behave in a trivial way when we restrict to filters. Let us enumerate some known
results about separable and metrizable spaces that we will use in our analysis.
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Lemma 2.1. (i) [12, Theorem 2.2] Every σ-compact set is Hurewicz.

(ii) [12, Theorem 3.1] If X is Menger (Hurewicz) and Y ⊂ X is closed, then

Y is Menger (Hurewicz, respectively) as well.

(iii) If X is Menger (Hurewicz) and K is σ-compact, then X×K is also Menger

(Hurewicz, respectively).
(iv) [12, Theorem 3.1] The continuous image of a Menger (Hurewicz) space is

also Menger (Hurewicz, respectively).
(v) [12, p. 255] If a space is the countable union of Menger (Hurewicz) spaces,

then it is Menger (Hurewicz) as well.

(vi) The space ωω is not Menger.

(vii) [12, Theorem 2.3] The Cantor set is not S1(Γ,O).

Lemma 2.2. [12, Theorem 3.9] A separable metrizable space X is Sfin(Ω, Ω) if

and only if Xn is Menger for each 0 < n < ω.

Now let F be a filter on ω. If F is not the Frechét filter, then there is x ∈ F
that is coinfinite. Then x↑ is a closed copy of the Cantor set contained in F .
Thus, by (vii) in Lemma 2.1, F is not S1(Γ,O). With this observation, six of the
properties of the Scheepers diagram are impossible for filters. Moreover, we have
the following observation.

Proposition 2.3. [3, Claim 20] If a filter F is Menger (Hurewicz) then for all

0 < n < ω, Fn is Menger (Hurewicz, respectively).

Proof: For 0 < n < ω, let φ : F × P(ω)n → P(ω)n be given by
φ(〈F, x0 , . . . , xn−1〉) = 〈F ∪ x0, . . . , F ∪ xn−1〉. Then φ is continuous and its
image is Fn. Then the result follows from Lemma 2.1. �

Thus, we are left with essentially two non-trivial properties of filters: Menger
and Hurewicz. Let us start out by considering some simple results obtained from
cardinality considerations. For f, g ∈ ωω, denote f ≤∗ g if and only if there is
N < ω such that if N ≤ n < ω, then f(n) ≤ g(n). A family B ⊂ ωω is (i)
bounded if there is g ∈ ωω with f ≤∗ g for every f ∈ B, (ii) dominating if for
every f ∈ ωω there is g ∈ B with f ≤∗ g. Recall the following classic result by
Hurewicz.

Proposition 2.4 ([10]). Let X be a 0-dimensional separable metric space. Then

(a) X is Menger if and only if every continuous image of X in ωω is not

dominating,

(b) X is Hurewicz if and only if every continuous image of X in ωω is bounded.

Let us recall that b is the size of the smallest non-Hurewicz set of reals and d

is the size of the smallest non-Menger set of reals (see [4] for an introduction to
small cardinal numbers). Now, all (non-Frechét) filters are of size c but there is
still a natural and meaningful substitute for cardinality. Recall that a subset B
of a filter F is a base (of F) if for all x ∈ F there is y ∈ B with y ⊂ x.

Lemma 2.5. (a) Let F be a filter with base B. If B is Menger (Hurewicz)
then F is also Menger (Hurewicz, respectively).
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(b) If B is a set with the finite intersection property and every finite power

of B is Menger (Hurewicz), then the filter generated by B is also Menger

(Hurewicz, respectively).

Proof: For (a), let φ : B × P(ω) → P(ω) given by φ(〈x, y〉) = x ∪ y. Then the
conclusion follows from Lemma 2.1 and the fact that φ is a continuous function
with image F .

Now, let B have the finite intersection property. For each n < ω, let φn : Bn →
B be defined by φn(〈x0, . . . , xn−1〉) = x0 ∩ . . . ∩ xn−1. Then notice that the filter
generated by B has base

⋃

{φn[Bn] : n < ω} so by part (a) and Lemma 2.1, we
are done. �

Proposition 2.6. b is the minimal character of a filter that is not Hurewicz.

Proof: The fact that all filters of character less than b are Hurewicz follows
directly from Lemma 2.5 and the fact that any set of size less than b is Hurewicz.
Now we construct a non-Hurewicz filter of size b.

Let {fα : α < b} be an unbounded family with respect to ≤∗. Let F be the
filter on ω × ω generated by the sets of the form Fα = {〈n, m〉 : m ≥ fα(n)} with
α < b.

For each n, m < ω, let U(n, m) = {x ⊂ ω × ω : m = min{k < ω : 〈n, k〉 ∈ x}}.
Then Un = {U(n, m) : m < ω} is an open cover of F for each n < ω.

Assume there is a γ-cover of F of the form U = {U(n, 0) ∪ . . . ∪ U(n, g(n)) :
n < ω} for some g : ω → ω. Let β < b be such that fβ 6≤∗ g. Then there is a
set B ∈ [ω]ω such that g(n) < fβ(n) for all n < ω. Then Fβ /∈ U(n, m) for any
n ∈ B and m < g(n). This implies that U is not a γ-cover. This contradiction
proves that F is not Hurewicz. �

Using almost the same proof we have the following.

Proposition 2.7. d is the minimal character of a filter that is not Menger.

Thus, filters of small character are trivial examples of filters that are Menger
or Hurewicz. Another trivial way of obtaining Menger or Hurewicz examples of
filters is by considering Fσ filters ((i) in Lemma 2.1). For example, every countably
generated filter is Fσ . See [11] for examples of Fσ ideals. Then we would like to
find filters that are Menger or Hurewicz, that are not Fσ and such that their
characters are at least d or b, respectively. The interesting question we leave open
is the following.

Question 2.8. Does there exist a Menger filter of character d that is not

Hurewicz?

Before starting to give consistent answers to the two questions above, we would
like to mention a relation between filters and a certain notion of forcing. For every
filter F on ω, MF denotes the Mathias forcing with respect to F . It is shown
in [3] that some properties of this forcing notion are equivalent to F being either
Menger or Hurewicz.
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It turns out that Menger filters are those called Canjar filters in [7] and
Hurewicz filters are called strongly Canjar in [8]. In Proposition 3 of [7], a combi-
natorial characterization of Canjar filters is given. Also, there are constructions
of Canjar MAD families, Canjar ideals and Canjar ultrafilters using additional
assumptions.

Since ultrafilters are non-meager ([1, Theorem 4.1.1]), it follows from Proposi-
tion 2.4 that there are no Hurewicz ultrafilters. This is mentioned in [8, Corol-
lary 14] in the language of Canjar filters. According to [7, Proposition 2], d = c

implies there is a Canjar (thus, Menger) ultrafilter. Moreover, the characteri-
zation from [7] mentioned above implies that a Menger ultrafilter is a P -point.
Thus, Menger ultrafilters consistently do not exist.

Finally, let us recall that the well-known Hurewicz theorem states that if X ⊂
P(ω) is an analytic set, then either X is Fσ or X contains a closed copy of ωω
([13, 21.18]). Since the Menger property is hereditary to closed sets and ωω is
not Menger (Lemma 2.1), it follows that the examples we are looking for must be
non-analytic.

3. Menger and Hurewicz examples

A relatively easy way to define a Menger filter in ZFC is as follows: Given a
set X ⊂ ω2, we define the ideal IX to be the ideal (in the countable set 2<ω)
generated by finite unions of branches Cx = {x↾n: n < ω} where x ∈ X . This
definition is due to Nyikos [18]. Also, denote by FX the filter dual to IX . If
t ∈ 2<ω, let 〈t〉 = {x ∈ ω2 : t ⊂ x}.

Lemma 3.1. Let U be an ω-cover of some set X ⊂ ω2. Then there exists a

countable ω-cover V that refines U and such that its elements are sets of the form

〈t0〉 ∪ . . . ∪ 〈tk〉 such that {t0, . . . , tk} ⊂ 2m for some m < ω.

Proof: Fix n < ω for the moment. For each x = 〈x0, . . . , xn−1〉 ∈ Xn, choose
any U(x) ∈ U such that {x0, . . . , xn−1} ⊂ U(x). Then there is m < ω such that
〈xi↾m〉 ⊂ U(x) for all i < n. Let V (x) =

⋃

{〈xi↾m〉 : i < n}. Then the collection
{V (x)n : x ∈ Xn} is an open cover of Xn. Thus, there is a countable collection
Vn ⊂ {V (x) : x ∈ Xn} such that the nth powers of Vn cover Xn. The cover we
are looking for is V =

⋃

{Vn : n < ω}. �

An open cover U of a space X is said to be a groupable ω-cover if there is a
partition U =

⋃

{Un : n < ω} where each Un is finite and for all F ∈ [X ]<ω, for
all but finitely many n < ω there is U ∈ Un with F ⊂ U . The class of groupable
ω-covers is denoted by Ωgp.

Lemma 3.2 ([14]). A separable metrizable space X has all its finite powers

Hurewicz if and only if it is Sfin(Ω, Ωgp).

In the following result, item (b) can be essentially obtained from [7, Proposi-
tion 14] and [3]. However, we include a direct proof that uses only topological
notions.
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Theorem 3.3. Let X ⊂ ω2. Then

(a) X is Fσ if and only if FX is Fσ,

(b) every finite power of X is Menger if and only if FX is Menger, and

(c) every finite power of X is Hurewicz if and only if FX is Hurewicz.

Proof: First, consider [X ]<ω with the Vietoris topology and define the set

G =
{

〈F, Y 〉 ∈ [X ]<ω × P(2<ω) : Y ⊂
⋃

{Cx : x ∈ F}
}

Assume that 〈F, Y 〉 ∈ ([X ]<ω × P(2<ω)) \ G. Then there is s ∈ Y with s /∈
⋃

{Cx : x ∈ F}. Then {〈G, Z〉 : G ⊂ X \ 〈s〉, s ∈ Z} is an open set that contains
〈F, Y 〉 and is disjoint from G. Thus, G is closed in [X ]<ω × P(2<ω). Notice that
IX is the projection of G into the second coordinate. Then by Lemma 2.1 we
have that FX has each of the properties in turn if every finite power of X has the
corresponding one.

Now assume that IX is Fσ . Then according to Mazur’s theorem (see [11,
Theorem 1.5]) there exists a lower semicontinuous submeasure φ : P(2<ω) →
[0,∞] with IX = {A ⊂ 2<ω : φ(A) < ∞}. This means that (a) φ(∅) = 0,
(b) φ(A) ≤ φ(B) if A ⊂ B, (c) φ(A ∪ B) ≤ φ(A) + φ(B), (d) φ(F ) < ∞ if
F ∈ [2<ω]<ω and (e) φ(A) = limn→∞ φ(A ∩ 2n). For n < ω, define Un =

⋃

{〈s〉 :
φ({s↾m: m ≤ |s|}) > n}, this is an open set of ω2. Then it is enough to notice
that X = ω2 \

⋂

{Un : n < ω}. Thus, (a) holds.
In order to prove (b), according to Lemma 2.2 it is enough to prove that X

is Sfin(Ω, Ω) assuming that FX is Menger. Let {Un : n < ω} be a sequence
of ω-covers of X . By Lemma 3.1, we may assume that for each U ∈ Un there
is m(U) < ω and {t(U, 0), . . . , t(U, kU )} ⊂ 2m(U) such that U =

⋃

{〈t(U, i)〉 :
i ≤ kU}.

Fix n < ω for a moment. For each U ∈ Un, define

xU = 2m(U) \ {t(U, 0), . . . , t(U, kU )}.

We claim that Vn = {xU ↑: U ∈ Un} is a cover of FX . If F ∈ FX , then there
are x0, . . . , xk ∈ X such that 2<ω \ (Cx0

∪ . . . ∪ Cxk
) ⊂ F . Let U ∈ Un be

such that {x0, . . . , xk} ⊂ U . It then follows that 2m(U) ∩ (Cx0
∪ . . . ∪ Cxk

) ⊂
{t(U, 0), . . . , t(U, kU )}. Thus xU ⊂ 2<ω \ (Cx0

∪ . . . ∪ Cxk
) ⊂ F , which implies

that F ∈ xU↑.
Thus, since FX is Menger, for each n < ω, there is Sn ∈ [Un]<ω such that

⋃

{xU↑: U ∈ Sn, n < ω} is a cover of FX . Now it is easy to see that
⋃

{Sn : n < ω}
is an ω-cover of X . This shows (b).

To prove (c), we will use the characterization in Lemma 3.2. So assume that
FX is Hurewicz. Using the same notation as in the proof of (b), let {Un : n < ω}
be a sequence of ω-covers of X . Then following the proof, since FX is Hurewicz,
for each n < ω, there is Sn ∈ [Un]<ω such that {

⋃

{xU↑: U ∈ Sn} : n < ω} is a
γ-cover of FX . Then it is easy to see that V =

⋃

{Sn : n < ω} is a groupable
ω-cover of X with the grouping given precisely by {Sn : n < ω}. �
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In [2], it was proven that there is a set of reals of size b with all their finite
powers Hurewicz, hence

Corollary 3.4. (ZFC) There exists a Hurewicz filter of character b that is

not Fσ.

However, it is still open if there is a set of reals of size d with all their powers
Menger (Problem 3.2 from [21]). Thus, we have the following.

Question 3.5. Is there, assuming only ZFC, a Menger filter of character d that

is not Fσ?

Chaber and Pol have shown that if b = d, then there exists a non-Hurewicz set
of reals with all its finite powers Menger. A proof of the Chaber and Pol result
can be found in [20].

Using Theorem 3.3, it follows that under b = d there is a Menger filter that
is not Hurewicz and has character d. However, it turns out that the Chaber-Pol
construction can be slightly modified to give a direct construction of a filter. For
the sake of completeness, we will outline how to show this.

Proposition 3.6. If b = d there exists a Menger filter of character d that is not

Hurewicz.

Proof: Recall that [ω]ω can be considered a subspace of ωω by sending each set
to its enumerating function. First, we need a collection {xα : α < b} of infinite,
coinfinite subsets of ω such that

(∗) for every x ∈ [ω]ω, |{α < b : xα ≤∗ x or ω \ xα ≤∗ x}| < b.

We briefly describe how to obtain this family. Let {yα : α < d} ⊂ [ω]ω be a
dominating family such that ω \ yα is infinite for all α < d. Assume that we have
chosen {xα : α < β}. Let z ∈ [ω]ω be a bound of {xα, yα, ω \ yα : α < β}. The
set of all infinite, coinfinite x ⊂ ω such that x 6≤∗ z and ω \ x 6≤∗ z is comeager in
[ω]ω, so choose xβ with these properties. From this construction, property (∗) is
easily seen to hold.

Define x(α, 0) = xα and x(α, 1) = ω \ xα for all α < b. Then it is possible to
choose t ∈ b2 such that B = {x(α, t(α)) : α < b} generates a proper ideal (that
is, the union of finitely many elements of B ∪ [ω]<ω does not cover ω).

The next step is to prove that B ∪ [ω]<ω has all its finite powers Menger. This
is a non-trivial step but is exactly the same as the proof that the set constructed
in Theorem 16 of [2] has all its finite powers Menger.

Let I is the ideal generated by B ∪ [ω]<ω. Then by Lemma 2.5 we have that
I is Menger. To see that I is not Hurewicz, consider the dual filter I∗ = {ω \A :
A ∈ I}. Naturally, B′ = {x(α, 1 − t(α)) : α < b} ⊂ I∗ ⊂ [ω]ω. So we may think
that I∗ is a subset of ωω. Notice that this implies that B′ is unbounded. Thus,
I∗ is unbounded in ωω. By Proposition 2.4, we find that I∗ is not Hurewicz. �

Corollary 3.7. There exists a Menger filter that is not Hurewicz in ZFC.
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Proof: If b < d, use any non-Hurewicz filter of size b, for example the one
constructed on Proposition 2.6. By Proposition 2.7, this filter is Menger. If
b = d, use the filter from Proposition 3.6. �

In fact it is still an open problem to find a set of reals of size d that is not
Hurewicz and with all its finite powers Menger (see Problem 5.7 in [20]). Thus,
Question 2.8 remains unsolved.

Let us remark that it is also known that if d is regular, then there is a non-
Hurewicz set of reals of size d with all its powers Menger [22, Theorem 9.1].

4. FUF filters are Hurewicz

In this section we present a result of Chodounský that FUF filters are Hurewicz
(we would like to thank him for allowing us to include this result). This class of
filters was introduced by Reznichenko and Sipacheva motivated by Malykhin’s
question whether separable Fréchet topological groups are metrizable (see [19]).

The set [ω]<ω is a (Boolean) group under the symmetric difference and it is
possible to define a topological group using filters on P(ω). Let F be a filter on
P(ω). The idea is to make {[F ]<ω : F ∈ F} a base at ∅. A π-network with respect
to F is a collection X ⊂ [ω]<ω such that for every F ∈ F there is x ∈ X with
x ⊂ F . If S ⊂ X , we will say that S converges (to ∅) if for every F ∈ F the set of
x ∈ X with x 6⊂ F is finite. A filter F is FUF (Frechét-Urysohn for finite sets) if
every time X ⊂ [ω]<ω is a π-network with respect to F there exists S ⊂ X that
F -converges.

In fact, our motivation for considering these filters comes from Nyikos’s proof
that if X is S1(Ω, Γ) (usually called a γ-set), then FX is FUF [18]. From Theorem
3.3 we know that this type of filters are Hurewicz. However, we have the following:

Proposition 4.1. (David Chodounský) Every FUF filter is Hurewicz.

Proof: Let {Un : n < ω} be a sequence of open covers of a FUF filter F . For
each n < ω, let us define a cover Vn derived from Un.

Given F ∈ F and n < ω, since F ↑=
⋂

{(F ∩ k)↑ : k < ω}, there is m < ω
such that (F ∩ m)↑ is covered by finitely many elements of Un. So there exists a
countable subfamily of {x↑: x ∈ [ω]<ω} that covers F and refines finite unions of
Un; call this family Vn.

Let Xn = {x : x ↑∈ Vn} for all n < ω. The fact that Vn is a cover of F
immediately translates to the statement that Xn is a π-network with respect
to F .

Let Xn = {x(n, i) : i < ω} be an enumeration for all n < ω. Let S = {s ∈
[ω]<ω : |s| = s(0)} and for each s ∈ S let Ys =

⋃

{x(i, s(i)) : i < |s|}. Define
Y = {Ys : s ∈ S}. It is not hard to prove that Y is a π-network with respect to
F . So there exists S ⊂ Y that F -converges. Enumerate S = {Ys(i) : i < ω}.

Assume that there is m < ω such that si(0) = m for infinitely many i < ω.
This implies that x(0, m) ∈ F for all F ∈ F which is impossible.

Thus, for each n < ω, the set of all those i < ω such that si(0) = n is finite.
Then we may choose A ∈ [ω]ω such that si(0) < sj(0) whenever i, j ∈ A and i < j.
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Since clearly every subsequence of an F -convergent sequence is F -convergent, let
us assume that A = ω.

Define t ∈ ωω such that given i < ω, if sj−1 < i ≤ sj for some j < ω (and
s−1 = −1) then t(i) = sj(i). Then it is not hard to see that {x(n, t(n)) : n < ω} is
F -convergent. This immediately translates the statement that X = {x(n, t(n))↑:
n < ω} is a γ-cover of F . Finally, for each n < ω, let Wn ∈ [Un]<ω be such that
x(n, t(n))↑⊂

⋃

Wn (this follows from the definition of Vn). Then {
⋃

Wn : n < ω}
is a γ-cover of F , which is sufficient to finish the proof. �
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[10] Hurewicz W., Über Folgen stetiger Funktionen, Fund. Math. 9 (1927) 193–204.
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