# Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 

Abd El-Mohsen Badawy<br>On a Construction of ModularGMS-algebras

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 54 (2015), No. 1, 19-31

Persistent URL: http://dml.cz/dmlcz/144365

## Terms of use:

© Palacký University Olomouc, Faculty of Science, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# On a Construction of Modular GMS-algebras 

Abd El-Mohsen BADAWY<br>Department of Mathematics, Faculty of Science, Tanta University Tanta, Egypt<br>e-mail: abdelmohsen.mohamed@science.tanta.edu.eg

(Received April 19, 2013)


#### Abstract

In this paper we investigate the class of all modular $G M S$-algebras which contains the class of $M S$-algebras. We construct modular $G M S$ algebras from the variety $\underline{\mathbf{K}}_{2}$ by means of $\underline{K}_{2}$-quadruples. We also characterize isomorphisms of these algebras by means of $\underline{K}_{2}$-quadruples.


Key words: $M S$-algebras, $G M S$-algebras, $K_{2}$-algebras, Kleene algebras, isomorphisms.
2010 Mathematics Subject Classification: 06D05, 06D30

## 1 Introduction

T. S. Blyth and J. C. Varlet [2] have studied the variety of $M S$-algebras as a common abstraction of de Morgan algebras and Stone algebras. D. Ševčovič [12] investigated a larger variety of algebras containing $M S$-algebras, the socalled generalized $M S$-algebras ( $G M S$-algebras). In such algebras the distributive identity need not be necessarily satisfied. In [4] T. S. Blyth and J. C. Varlet presented a construction of some $M S$-algebras from the subvariety $\mathbf{K}_{2}$ (the socalled $K_{2}$-algebras) from Kleene algebras and distributive lattices. This was a construction by means of triples which were successfully used in construction of Stone algebras (see [6], [7]), distributive $p$-algebras (see [9]), modular $p$-algebras (see [10]), etc. T. S. Blyth and J. V. Varlet [5] improved their construction from [4] by means of quadruples and they showed that each member of $\mathbf{K}_{2}$ can be constructed in this way. In [8] M. Haviar presented a simple quadruple construction of $K_{2}$-algebras which works with pairs of elements only. He also proved that there exists a one-to-one correspondence between locally bounded $K_{2}$-algebras and decomposable $K_{2}$-quadruples. Recently, A. Badawy, D. Guffová and M. Haviar [1] introduced the class of decomposable $M S$-algebras. They
presented a triple construction of decomposable $M S$-algebras. Moreover, they proved that there exists a one-to-one correspondence between the decomposable $M S$-algebras and the decomposable $M S$-triples.

The aim of this paper is to investigate a subvariety of $G M S$-algebras containing the variety of $M S$-algebras, the so-called modular $G M S$-algebras. We construct modular $G M S$-algebras from the variety $\underline{\mathbf{K}}_{2}\left(\underline{K}_{2}\right.$-algebras) from Kleene algebras and modular lattices by means of $\underline{K}_{2}$-quadruples. Also we define an isomorphism between two $\underline{K}_{2}$-quadruples and we show that two $\underline{K}_{2}$-algebras are isomorphic if and only if their associated $\underline{K}_{2}$-quadruples are isomorphic.

## 2 Preliminaries

An $M S$-algebra is an algebra $\left(L ; \vee, \wedge,{ }^{\circ}, 0,1\right)$ of type $(2,2,1,0,0)$ where $(L ; \vee, \wedge$, $0,1)$ is a bounded distributive lattice and the unary operation ${ }^{\circ}$ satisfies

$$
x \leq x^{\circ \circ}, \quad(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, \quad 1^{\circ}=0 .
$$

The class MS of all $M S$-algebras forms a variety. The members of the subvariety $\mathbf{M}$ of MS defined by the identity $x=x^{\circ \circ}$ are called de Morgan algebras and the members of the subvariety $\mathbf{K}$ of $\mathbf{M}$ defined by the identity $x \wedge x^{\circ} \leq y \vee y^{\circ}$ are called Kleene algebras. The subvariety $\mathbf{K}_{2}$ of MS is defined by the additional two identities

$$
x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}, \quad x \wedge x^{\circ} \leq y \vee y^{\circ} .
$$

The class $\mathbf{S}$ of all Stone algebras is a subvariety of MS and is characterized by the identity $x \wedge x^{\circ}=0$. The subvariety $\mathbf{B}$ of $\mathbf{M S}$ characterized by the identity $x \vee x^{\circ}=1$ is the class of Boolean algebras.

A generalized de Morgan algebra (or $G M$-algebra) is a universal algebra $\left(L ; \vee, \wedge,{ }^{-}, 0,1\right)$ where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice and the unary operation of involution - satisfies the identities

$$
G M_{1}: x=x^{--}, \quad G M_{2}:(x \wedge y)^{-}=x^{-} \vee y^{-}, \quad G M_{3}: 1^{-}=0
$$

A modular $G M$-algebra $L$ is a $G M$-algebra where $(L ; \vee, \wedge, 0,1)$ is a modular lattice. A modular generalized Kleene algebra (modular $G K$-algebra) $L$ is a modular $G M$-algebra satisfying the identity $x \wedge x^{\circ} \leq x \vee y^{\circ}$.

A generalized $M S$-algebra (or $G M S$-algebra) is a universal algebra ( $L ; \vee, \wedge,{ }^{\circ}$, $0,1)$ where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice and the unary operation ${ }^{\circ}$ satisfies the identities

$$
G M S_{1}: x \leq x^{\circ \circ}, \quad G M S_{2}:(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, \quad G M S_{3}: 1^{\circ}=0
$$

The class of all $G M$-algebras is a subvariety of the variety of all $G M S$ algebras.

A modular $G M S$-algebra is a $G M S$-algebra $\left(L ; \vee, \wedge,{ }^{\circ}, 0,1\right)$ where $(L ; \vee, \wedge, 0,1)$ is a modular lattice.

The class of all modular $G M S$-algebras forms a variety. The class MS is a subvariety of the variety of all modular $G M S$-algebras. Then the varieties $\mathbf{B}$, $\mathbf{M}, \mathbf{S}$ and $\mathbf{K}_{2}$ are subvarieties of the variety of all modular $G M S$-algebras.

The class $\underline{\mathbf{S}}$ of all modular $S$-algebras is a subvariety of the variety of all modular $G M S$-algebras and is characterized by the identity $x \wedge x^{\circ}=0$. It is known that the class $\mathbf{S}$ is a subvariety of $\underline{\mathbf{S}}$.

The main immediate consequences of these axioms are summarized in the following result.

Lemma 2.1 Let L be a GMS-algebra. Then we have
(1) $0^{\circ}=1$,
(2) $x \leq y$ implies $x^{\circ} \geq y^{\circ}$,
(3) $x^{\circ}=x^{000}$,
(4) $(x \vee y)^{\circ}=x^{\circ} \wedge y^{\circ}$,
(5) $(x \wedge y)^{\circ \circ}=x^{\circ \circ} \wedge y^{\circ \circ}$,
(6) $(x \vee y)^{\circ \circ}=x^{\circ \circ} \vee y^{\circ \circ}$.

Consequently, if $L$ is a modular $G M S$-algebra, then the set $L^{\circ \circ}=\left\{x \in L: x^{\circ \circ}=\right.$ $x\}$ is a modular $G M$-algebra and a subalgebra of $L$ such that the mapping $x \mapsto x^{\circ \circ}$ is a homomorphism of $L$ onto $L^{\circ \circ}$, and $D(L)=\left\{x \in L: x^{\circ}=0\right\}$ is a filter of $L$, the elements of which are called dense.

For an arbitrary lattice $L$, the set $F(L)$ of all filters of $L$ ordered under set inclusion is a lattice. It is known that $F(L)$ is a modular lattice if and only if $L$ is modular. Let $a \in L ;[a)$ denotes the filter of $L$ generated by $a$.

For any modular $G M S$-algebra $L$, the relation $\Phi$ defined by

$$
x \equiv y(\Phi) \quad \Leftrightarrow \quad x^{\circ \circ}=y^{\circ \circ}
$$

is a congruence relation on $L$ and $L / \Phi \cong L^{\circ \circ}$ holds. Each congruence class contains exactly one element of $L^{\circ 0}$ which is the largest element in the congruence class, the largest element of $[x] \Phi$ is $x^{\circ 0}$ which is denoted by $\max [x] \Phi$. Hence $\Phi$ partition $L$ into $\left\{F_{c}: c \in L^{\circ \circ}\right\}$, where $F_{c}=\left\{x \in L: x^{\circ \circ}=c\right\}$. Obviously, $F_{0}=\{0\}$ and $F_{1}=\left\{x \in L: x^{\circ \circ}=1\right\}=D(L)$.

Now we introduce certain modular $G M S$-algebras, which are called $\underline{K}_{2}{ }^{-}$ algebras.

Definition 2.2 A modular $G M S$-algebra $L$ is called a $\underline{K}_{2}$-algebra if $L^{00}$ is a distributive lattice and $L$ satisfies the identities $x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}$ and $x \wedge x^{\circ} \leq$ $y \vee y^{\circ}$.

The class $\underline{\mathbf{K}}_{2}$ of all $\underline{K}_{2}$-algebras contains the class $\mathbf{K}_{2}$. Clearly, the classes $\underline{\mathbf{S}}, \mathbf{S}, \mathbf{M}, \mathbf{K}$ and $\mathbf{B}$ are subclasses of the class $\underline{\mathbf{K}}_{2}$.

Theorem 2.3 Let $L \in \underline{\mathbf{K}}_{2}$. Then
(1) $x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right)$ for every $x \in L$,
(2) $L^{\circ \circ}=\left\{x \in L: x=x^{\circ \circ}\right\}$ is a Kleene algebra,
(3) $L^{\wedge}=\left\{x \wedge x^{\circ}: x \in L\right\}=\left\{x \in L: x \leq x^{\circ}\right\}$ is an ideal of $L$,
(4) $L^{\vee}=\left\{x \vee x^{\circ}: x \in L\right\}=\left\{x \in L: x \geq x^{\circ}\right\}$ is a filter of $L$,
(5) $D(L)=\left\{x \in L: x^{\circ}=0\right\}$ is a filter of $L$ and $D(L) \subseteq L^{\vee}$.

Proof (1) Since $x \leq x^{\circ \circ}$, then by modularity of $L$ we get

$$
\begin{aligned}
x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right) & =\left(x^{\circ \circ} \wedge x^{\circ}\right) \vee x \\
& =\left(x \wedge x^{\circ}\right) \vee x \text { by Definition } 2.2 \\
& =x
\end{aligned}
$$

(2) It is obvious.
(3) Clearly $0 \in L^{\wedge}$. Let $x, y \in L^{\wedge}$. Then $x \leq x^{\circ}$ and $y \leq y^{\circ}$. By Definition 2.2, we get $x=x \wedge x^{\circ} \leq y \vee y^{\circ}=y^{\circ}$. It follows that $x^{\circ} \geq y^{\circ \circ} \geq y$. Then $x^{\circ} \wedge y^{\circ} \geq x, y$ implies $x^{\circ} \wedge y^{\circ} \geq x \vee y$. Now

$$
(x \vee y) \wedge(x \vee y)^{\circ}=(x \vee y) \wedge\left(x^{\circ} \wedge y^{\circ}\right)=x \vee y
$$

Consequently $x \vee y \leq(x \vee y)^{\circ}$ and $x \vee y \in L^{\wedge}$. Let $x \in L^{\wedge}$ be such that $z \leq x$ for some $z \in L$. Then $z \leq x \leq x^{\circ} \leq z^{\circ}$. Hence $z \in L^{\wedge}$. Then $L^{\wedge}$ is an ideal of $L$.
(4) By duality of (3).
(5) It is obvious.

Corollary 2.4 Let $L$ be a modular GMS-algebra. Then for all $x \in L$ the following conditions are equivalent:
(1) $x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right)$,
(2) $x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}$.

Now we reformulate the definition of polarization given in [Definition 1(iii), 11] as follows.

Definition 2.5 Let $K$ be a Kleene algebra and $D$ be a modular lattice with 1 . A mapping $\varphi: K \rightarrow F(D)$ is called a polarization if $\varphi$ is a $(0,1)$-homomorphism such that $a \varphi=D$ for every $a \in K^{\vee}$ and $a \varphi$ is a principal filter of $D$ for every $a \in K^{\wedge}$.

## 3 The triple associated with a $\underline{K}_{2}$-algebra

Let $L \in \underline{\mathbf{K}}_{2} . L^{\vee}$ is a filter of $L$, and $L^{\vee}$ is a modular lattice with the largest element 1. So $F\left(L^{\vee}\right)$ is also a modular lattice. Consider the map $\varphi(L): L^{\circ \circ} \rightarrow$ $F\left(L^{\vee}\right)$ defined by the following way

$$
a \varphi(L)=\left\{x \in L^{\vee}: x \geq a^{\circ}\right\}=\left[a^{\circ}\right) \cap L^{\vee}, \quad a \in L^{\circ \circ} .
$$

Lemma 3.1 Let $L \in \underline{\mathbf{K}}_{2}$. Then $\varphi(L)$ is a polarization of $L^{\circ \circ}$ into $F\left(L^{\vee}\right)$.

Proof It is easy to check that $0 \varphi(L)=[1), 1 \varphi(L)=L^{\vee}$ and $(a \wedge b) \varphi(L)=$ $a \varphi(L) \cap b \varphi(L)$. Now we show that $(a \vee b) \varphi(L)=a \varphi(L) \vee b \varphi(L)$. Since $a, b \leq a \vee b$, then $a \varphi(L) \vee b \varphi(L) \subseteq(a \vee b) \varphi(L)$. For the converse, let $t \in(a \vee b) \varphi(L)=$ $\left[a^{\circ} \wedge b^{\circ}\right) \cap L^{\vee}$. Put $x=a \vee\left(a^{\circ} \wedge t\right)$. Then $x^{\circ}=a^{\circ} \wedge\left(a \vee t^{\circ}\right)=\left(a^{\circ} \wedge a\right) \vee\left(a^{\circ} \wedge t^{\circ}\right) \leq$ $a \vee\left(a^{\circ} \wedge t\right)=x$ since $L^{\circ \circ}$ is distributive and $t^{\circ} \leq t$. Thus $x \in L^{\vee}$. Moreover,

$$
a^{\circ} \wedge\left(b^{\circ} \vee x\right)=a^{\circ} \wedge\left(b^{\circ} \vee\left(a \vee\left(a^{\circ} \wedge t\right)\right)\right)=\left(a^{\circ} \wedge\left(a \vee b^{\circ}\right)\right) \vee\left(a^{\circ} \wedge t\right) \leq t
$$

since $a^{\circ} \wedge\left(a \vee b^{\circ}\right)=\left(a^{\circ} \wedge a\right) \vee\left(a^{\circ} \wedge b^{\circ}\right) \leq t$. Now, $t \in\left[a^{\circ}\right) \vee\left[b^{\circ} \vee x\right) \subseteq$ $\left[a^{\circ}\right) \vee\left(\left[b^{\circ}\right) \cap L^{\vee}\right)$. But $t \in L^{\vee}$ and $F(L)$ is a modular lattice, hence

$$
t \in\left(\left[a^{\circ}\right) \vee\left(\left[b^{\circ}\right) \cap L^{\vee}\right)\right) \cap L^{\vee}=\left(\left[a^{\circ}\right) \cap L^{\vee}\right) \vee\left(\left[b^{\circ}\right) \cap L^{\vee}\right)=a \varphi(L) \vee b \varphi(L)
$$

Thus $\varphi(L)$ is $(0,1)$-lattice homomorphism. If $a \in L^{\circ \circ}$, then $\left(a \vee a^{\circ}\right) \varphi(L)=$ $\left[a^{\circ} \wedge a\right) \cap L^{\vee}=L^{\vee}$ and $\left(a \wedge a^{\circ}\right) \varphi(L)=\left[a^{\circ} \vee a\right)$. Then $\varphi$ is a polarization.

Definition 3.2 A triple $(K, D, \varphi)$ is said to be a $\underline{K}_{2}$-triple if
(1) $(K ; \vee, \wedge, 0,1)$ is a Kleene algebra,
(2) $D$ is a modular lattice with 1 ,
(3) $\varphi: K \rightarrow F(D)$ is a polarization.

Let $L$ be a $\underline{K}_{2}$-algebra. Then $\left(L^{\circ \circ}, L^{\vee}, \varphi(L)\right)$ is the triple associated with $L$ and this triple is a $\underline{K}_{2}$-triple.

Lemma 3.3 Let $(K, D, \varphi)$ be a $\underline{K}_{2}$-triple. Then we have

$$
a \varphi \cap(b \varphi \vee c \varphi)=(a \varphi \cap b \varphi) \vee(a \varphi \cap c \varphi) \text { for every } a, b, c \in K
$$

Lemma 3.4 Let $(K, D, \varphi)$ be a $\underline{K}_{2}$-triple. Then we have
(i) for every $a \in K$ and for every $y \in D$ there exists an element $t \in D$ such that

$$
a \varphi \cap[y)=[t),
$$

(ii) for every $a \in K$ and for every $y \in D$ there exists an element $t \in a^{\circ} \varphi$ such that

$$
a \varphi \vee[y)=a \varphi \vee[t),
$$

(iii) for every $a, b \in K$ and for every $y \in D$ there exists an element $t \in D$ such that

$$
\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[y)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[y)\right)=[t) .
$$

Proof For any $a \in K$, there is $d_{a} \in D$ such that $\left(a \wedge a^{\circ}\right) \varphi=a \varphi \cap a^{\circ} \varphi=\left[d_{a}\right)$ as $a \wedge a^{\circ} \in K^{\wedge}$ and $\varphi$ is a polarization. Recall that $F(D)$ is a modular lattice.
(i). For all $a \in K, a \wedge a^{\circ} \in K^{\wedge}, a \vee a^{\circ} \in K^{\vee}$. Then there exists $d_{a} \in D$ such that $a \varphi \cap a^{\circ} \varphi=\left[d_{a}\right)$ and $a \varphi \vee a^{\circ} \varphi=\left(a \vee a^{\circ}\right) \varphi=D$. Therefore, there exist elements $x_{1} \in a \varphi$ and $z_{1} \in a^{\circ} \varphi$ such that $x_{1}, z_{1} \leq d_{a}$ and $x_{1} \wedge z_{1} \leq y$.

We notice that $x_{1} \vee z_{1} \in a \varphi \cap a^{\circ} \varphi$. Hence $x_{1} \vee z_{1}=d_{a}$. We claim $t=x_{1} \vee y$. Clearly $t \in a \varphi \cap[y)$. Conversely, let $v \in a \varphi \cap[y)$. Then

$$
\begin{aligned}
v & \geq\left(v \wedge x_{1}\right) \vee y \\
& =\left(\left(v \wedge x_{1}\right) \vee\left(x_{1} \wedge z_{1}\right)\right) \vee y \\
& =\left(\left(\left(v \wedge x_{1}\right) \vee z_{1}\right) \wedge x_{1}\right) \vee y \text { by modularity of } D \\
& =\left(d_{a} \wedge x_{1}\right) \vee y \\
& =x_{1} \vee y \text { as }\left(v \wedge x_{1}\right) \vee z_{1}=d_{a} \geq x_{1} .
\end{aligned}
$$

Hence $v \geq x_{1} \vee y=t$, and therefore $a \varphi \cap[y)=[t)$.
(ii). It is enough to show that $a^{\circ} \varphi \cap(a \varphi \vee[y))=[t)$, for some $t \in D$ since then $t \in a^{\circ} \varphi$ and $[t) \vee a \varphi=\left(a^{\circ} \varphi \cap(a \varphi \vee[y))\right) \vee a \varphi=(a \varphi \vee[y)) \cap\left(a^{\circ} \varphi \vee a \varphi\right)=a \varphi \vee[y)$, from modularity of $F(D)$. Let $x_{1} \in a \varphi, z_{1} \in a^{\circ} \varphi, x_{1} \wedge z_{1} \leq y$ and $x_{1}, z_{1} \leq d_{a}$. We claim that $t=z_{1} \vee\left(x_{1} \wedge y\right)$. Evidently, $t \in a^{\circ} \varphi \cap(a \varphi \vee[y))$. Conversely, let $v \in a^{\circ} \varphi \cap(a \varphi \vee[y))$. Then $v \geq v \wedge z_{1} \in a^{\circ} \varphi$ and there is $x \in a \varphi$ with $v \geq x \wedge y \geq\left(x \wedge x_{1}\right) \wedge y$. Denote $z_{0}=v \wedge z_{1}$ and $x_{0}=x \wedge x_{1}$. Hence

$$
v \geq\left(x_{0} \wedge y\right) \vee z_{0} \geq\left(x_{0} \wedge x_{1} \wedge z_{1}\right) \vee z_{0}=\left(x_{0} \wedge z_{1}\right) \vee z_{0}=\left(x_{0} \vee z_{0}\right) \wedge z_{1}=z_{1}
$$

because $x_{0} \vee z_{0}=d_{a} \geq z_{1}$. This implies

$$
\begin{aligned}
v & \geq\left(x_{0} \wedge y\right) \vee z_{1} \\
& =\left(x_{0} \wedge y\right) \vee\left(x_{1} \wedge z_{1}\right) \vee z_{1} \\
& =\left(\left(x_{0} \vee\left(x_{1} \wedge z_{1}\right)\right) \wedge y\right) \vee z_{1} \\
& =\left(\left(x_{0} \vee z_{1}\right) \wedge x_{1} \wedge y\right) \vee z_{1} \\
& =\left(x_{1} \wedge y\right) \vee z_{1} \text { as } x_{0} \vee z_{1}=d_{a} \geq x_{1} \wedge y \\
& =t
\end{aligned}
$$

So, $v \geq t$ and $a^{\circ} \varphi \cap(a \varphi \vee[y))=[t)$.
(iii). From (ii) there exists $y_{1} \in a \varphi$ such that $\left[y_{1}\right) \vee a^{\circ} \varphi=[y) \vee a^{\circ} \varphi$. Using Lemma 3.3 and modularity of $F(D)$, we get

$$
\begin{aligned}
((a \varphi \cap & \left.\left.b^{\circ} \varphi\right) \vee[y)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[y)\right) \\
& =\left(\left(a \varphi \cap b^{\circ} \varphi\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[y)\right)\right) \vee[y) \\
& =\left(\left(a \varphi \cap b^{\circ} \varphi\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee\left[y_{1}\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(a \varphi \cap\left(a^{\circ} \varphi \vee b \varphi \vee\left[y_{1}\right)\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(\left(a \varphi \cap\left(a^{\circ} \varphi \vee b \varphi\right)\right) \vee\left[y_{1}\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(\left[d_{a}\right) \vee(a \varphi \cap b \varphi) \vee\left[y_{1}\right)\right)\right) \vee[y) \\
& =\left(b^{\circ} \varphi \cap\left(a \varphi \cap\left(b \varphi \vee\left[y_{1} \wedge d_{a}\right)\right)\right)\right) \vee[y) \\
& =\left(a \varphi \cap\left[t_{1}\right)\right) \vee[y) \\
& =\left[t_{2}\right) \vee[y) \\
& =\left[t_{2} \wedge y\right) .
\end{aligned}
$$

where $t_{1}, t_{2} \in D$ are such elements that $b^{\circ} \varphi \cap\left(b \varphi \vee\left[y_{1} \wedge d_{a}\right)\right)=\left[t_{1}\right)$ (see the proof of (ii)), $a \varphi \cap\left[t_{1}\right)=\left[t_{2}\right)$ from (i). Thus $t=t_{2} \wedge y$.

Theorem 3.5 Let $(K, D, \varphi)$ be a $\underline{K}_{2}$-triple. Then for any $a, b \in K$ and $x, y \in$ $D$ there exists an element $t \in D$ such that

$$
\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)=(a \vee b)^{\circ} \varphi \vee[t) .
$$

Proof Let $a, b \in K$ and $x, y \in D$. It is enough to show that there is $t \in D$ such that

$$
\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap(a \wedge b) \varphi=[t)
$$

because then

$$
\begin{aligned}
{[t) \vee(a \vee b)^{\circ} \varphi } & =\left(\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap(a \wedge b) \varphi\right) \vee(a \vee b)^{\circ} \varphi \\
& =\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap\left((a \wedge b) \varphi \vee(a \vee b)^{\circ} \varphi\right) \\
& =\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)
\end{aligned}
$$

by modularity of $F(D)$ and since $(a \vee b) \varphi \vee(a \vee b)^{\circ} \varphi=D$. In accordance with Lemma 3.4, we can suppose $x \in a \varphi$ and $y \in b \varphi$. Then by Lemma 3.3 and by modularity of $F(D)$,

$$
\begin{aligned}
& \left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right) \cap(a \vee b) \varphi \\
& \quad=\left(\left(a^{\circ} \varphi \vee[x)\right) \cap(a \varphi \vee b \varphi)\right) \cap\left(\left(b^{\circ} \varphi \vee[y)\right) \cap(a \varphi \vee b \varphi)\right) \\
& \quad=\left(\left(a^{\circ} \varphi \cap(a \varphi \vee b \varphi)\right) \vee[x)\right) \cap\left(\left(b^{\circ} \varphi \cap(a \varphi \vee b \varphi)\right) \vee[y)\right) \\
& \quad=\left(\left(a^{\circ} \varphi \cap a \varphi\right) \vee\left(a^{\circ} \varphi \cap b \varphi\right) \vee[x)\right) \cap\left(\left(b^{\circ} \varphi \cap a \varphi\right) \vee\left(b^{\circ} \varphi \cap b \varphi\right) \vee[y)\right) \\
& \quad=\left(\left[d_{a} \wedge x\right) \vee\left(a^{\circ} \varphi \cap b \varphi\right)\right) \cap\left(\left[d_{b} \wedge y\right) \vee\left(b^{\circ} \varphi \cap a \varphi\right)\right)
\end{aligned}
$$

where $d_{a}, d_{b}$ are as in the proof of Lemma 3.4. Denote $x_{0}=x \wedge d_{a}, y_{0}=y \wedge d_{b}$ and $x_{0} \wedge y_{0}=z$. We first show that

$$
\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right)=[p),
$$

for some $p \in D$. Since $a^{\circ} \varphi \vee b \varphi \supseteq a^{\circ} \varphi \cap b \varphi$, we can write

$$
\begin{aligned}
& \left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right) \\
& \quad=\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[z)\right) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right) \\
& \quad=[q) \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right)
\end{aligned}
$$

where $[q)=\left(\left(a \varphi \cap b^{\circ} \varphi\right) \vee[z)\right) \cap\left(a^{\circ} \varphi \vee b \varphi \vee[z)\right)$, by Lemma 3.4 (iii). Evidently $[q) \supseteq[z)$. Hence by modularity we get

$$
\begin{aligned}
{[q) } & \cap\left(\left(a^{\circ} \varphi \cap b \varphi\right) \vee[z)\right) \\
& =\left([q) \cap a^{\circ} \varphi \cap b \varphi\right) \vee[z) \\
& =\left([q) \cap\left(a^{\circ} \wedge b\right) \varphi\right) \vee[z) \\
& =\left[t_{1}\right) \vee[z) \text { where }[q) \cap\left(a^{\circ} \wedge b\right) \varphi=\left[t_{1}\right) \text { by Lemma 4.3(i) } \\
& =\left[t_{1} \wedge z\right) \\
& =[p) \text { where } p=t_{1} \wedge z .
\end{aligned}
$$

Since $[p) \supseteq[z) \supseteq\left[x_{0}\right),\left[y_{0}\right)$ and $F(D)$ is modular, we have

$$
\begin{aligned}
\left(\left[x_{0}\right) \vee\right. & \left.\left(a^{\circ} \varphi \cap b \varphi\right)\right) \cap\left(\left[y_{0}\right) \vee\left(b^{\circ} \varphi \cap a \varphi\right)\right) \\
& =\left([p) \cap\left(\left[x_{0}\right) \vee\left(a^{\circ} \varphi \cap b \varphi\right)\right)\right) \cap\left([p) \cap\left(\left[y_{0}\right) \vee\left(b^{\circ} \varphi \cap a \varphi\right)\right)\right) \\
& =\left(\left([p) \cap\left(a^{\circ} \varphi \cap b \varphi\right)\right) \vee\left[x_{0}\right)\right) \cap\left(\left([p) \cap\left(b^{\circ} \varphi \cap a \varphi\right)\right) \vee\left[y_{0}\right)\right) \\
& =\left([v) \vee\left[x_{0}\right)\right) \cap\left([w) \vee\left[y_{0}\right)\right) \text { for some } v, w \in D \\
& =\left[\left(u \wedge x_{0}\right) \vee\left(w \wedge y_{0}\right)\right) \\
& =[t),
\end{aligned}
$$

where $[v)=[p) \cap a^{\circ} \varphi \cap b \varphi,[w)=[p) \cap b^{\circ} \varphi \cap a \varphi$ and $t=\left(u \wedge x_{0}\right) \vee\left(w \wedge y_{0}\right) \in D$.

## $4 \quad \underline{K}_{2}$-construction

In this section we generalize the construction of [3, 4] from the so-called $K_{2^{-}}$ algebras to $\underline{K}_{2}$-algebras. Also we prove that there exists a one-to-one correspondence between $\underline{K}_{2}$-algebras and $\underline{K}_{2}$-quadruples.

Definition 4.1 A $\underline{K}_{2}$-quadruple is $(K, D, \varphi, \gamma)$ where
(i) $(K, D, \varphi)$ is a $\underline{K}_{2}$-triple, and
(ii) $\gamma$ is a monomial congruence on $D$, that is every $\gamma$ class $[y] \gamma$ has a largest element ( $\max [y] \gamma$ ).

Let $L \in \underline{\mathbf{K}}_{2}$. Then $\left(L^{\circ \circ}, L^{\vee}, \varphi(L)\right)$ is a $K_{2}$-triple. Let $\gamma(L)$ be the restriction of the congruence $\Phi$ on $L^{\vee}$. Since $\max [x] \gamma=x^{\circ \circ}$, for every $x \in L^{\vee}$. Then $\gamma(L)$ is a monomial congruence on $L^{\vee}$. We say that $\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is the quadruple associated with $L$ and this quadruple is a $\underline{K}_{2}$-quadruple.

Theorem 4.2 Let $(K, D, \varphi, \gamma)$ be a $\underline{K}_{2}$-quadruple. Then

$$
L=\left\{\left(a, a^{\circ} \varphi \vee[x)\right): a \in K, x \in D, \max [x] \gamma \in a^{\circ} \varphi\right\}
$$

is a $\underline{K}_{2}$-algebra if we define

$$
\begin{aligned}
\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(b, b^{\circ} \varphi \vee[y)\right) & =\left(a \wedge b,\left(a^{\circ} \varphi \vee[x)\right) \vee\left(b^{\circ} \varphi \vee[y)\right)\right), \\
\left(a, a^{\circ} \varphi \vee[x)\right) \vee\left(b, b^{\circ} \varphi \vee[y)\right) & =\left(a \vee b,\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)\right), \\
\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} & =\left(a^{\circ}, a \varphi\right), \\
1_{L} & =(1,[1)), \\
0_{L} & =(0, D) .
\end{aligned}
$$

Moreover, $L^{\circ \circ} \cong K$.
Proof Let $F_{d}(D)$ denote the dual lattice to the modular lattice $F(D)$ of all filters of $D$. Evidently, $L$ is a subset of the direct product $K \times F_{d}(D)$. We show
first that $L$ is a sublattice of $K \times F_{d}(D)$. Let $\left(a, a^{\circ} \varphi \vee[x)\right),\left(b, b^{\circ} \varphi \vee[y)\right) \in L$. Then

$$
\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(b, b^{\circ} \varphi \vee[y)\right)=\left(a \wedge b,(a \wedge b)^{\circ} \varphi \vee[x \wedge y)\right) \in L
$$

because of $\varphi$ is a lattice homomorphism and

$$
\max [x \wedge y] \gamma=\max [x] \gamma \wedge \max [y] \gamma \in a^{\circ} \varphi \vee b^{\circ} \varphi=(a \wedge b)^{\circ} \varphi
$$

Moreover,

$$
\begin{aligned}
& \left(a, a^{\circ} \varphi \vee[x)\right) \vee\left(b, b^{\circ} \varphi \vee[y)\right) \\
& \quad=\left(a \vee b,\left(a^{\circ} \varphi \vee[x)\right) \cap\left(b^{\circ} \varphi \vee[y)\right)\right) \\
& \quad=\left(a \vee b,(a \vee b)^{\circ} \varphi \vee[t)\right) \text { for some } t \in D, \text { by Theorem 3.5. }
\end{aligned}
$$

Now we prove that $\max [x] \gamma \in a^{\circ} \varphi$ and $\max [y] \gamma \in b^{\circ} \varphi$ implies $\max [t] \gamma \in(a \vee$ $b)^{\circ} \varphi$. From the proof of Theorem 3.5, $t=\left(v \wedge x_{0}\right) \vee\left(w \wedge y_{0}\right)$ where $v \in a^{\circ} \varphi$, $w \in b^{\circ} \varphi, x_{0}=x \wedge d_{a}$ and $y_{0}=y \wedge d_{a}$. Then

$$
t=\left(v \wedge x \wedge d_{a}\right) \vee\left(w \wedge y \wedge d_{b}\right)=\left(x \wedge v_{0}\right) \vee\left(y \wedge w_{0}\right)
$$

where $v_{0}=v \wedge d_{a} \in a^{\circ} \varphi$ and $w_{0}=w \wedge d_{b} \in b^{\circ} \varphi$. Then

$$
\max [t] \gamma \geq\left(\max [x] \gamma \wedge \max \left[v_{0}\right] \gamma\right) \vee\left(\max [y] \gamma \wedge\left[w_{0}\right] \gamma\right) \in a^{\circ} \varphi \cap b^{\circ} \varphi=(a \vee b)^{\circ} \varphi,
$$

because of $\max \left[v_{0}\right] \gamma \geq v_{0} \in a^{\circ} \varphi$ and $\max \left[w_{0}\right] \gamma \geq w_{0} \in b^{\circ} \varphi$ implies $\max \left[v_{0}\right] \gamma \in$ $a^{\circ} \varphi$ and $\max \left[w_{0}\right] \gamma \in b^{\circ} \varphi$, respectively. Then $\left(a \vee b,(a \vee b)^{\circ} \varphi \vee[t)\right) \in L$. Therefore $L$ is a sublattice of $K \times F_{d}(D)$. Hence $L$ is a modular lattice. The order of $L$ is given by

$$
\left(a, a^{\circ} \varphi \vee[x)\right) \leq\left(b, b^{\circ} \varphi \vee[y)\right) \text { iff } a \leq b \text { and } a^{\circ} \varphi \vee[x) \supseteq b^{\circ} \varphi \vee[y)
$$

$L$ is bounded and

$$
(0, D) \leq\left(a, a^{\circ} \varphi \vee[x)\right) \leq(1,[1))
$$

In addition,

$$
\begin{aligned}
\left(a, a^{\circ} \varphi \vee[x)\right) & \leq\left(a, a^{\circ} \varphi\right)=\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ \circ}, \\
\left(\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(b, b^{\circ} \varphi \vee[y)\right)\right)^{\circ} & =\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} \vee\left(b, b^{\circ} \varphi \vee[y)\right)^{\circ}, \\
(1,[1))^{\circ} & =(0, D) .
\end{aligned}
$$

Then $L$ is a modular $G M S$-algebra. Also we get

$$
\begin{aligned}
\left(a, a^{\circ} \varphi\right. & \vee[x)) \wedge\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} \\
& =\left(a \wedge a^{\circ}, a^{\circ} \varphi \vee[x) \vee a \varphi\right) \\
& =\left(a \wedge a^{\circ}, a^{\circ} \varphi \vee a \varphi\right) \text { as }[x) \subseteq a \varphi \vee a^{\circ} \varphi=D \\
& =\left(a, a^{\circ} \varphi\right) \wedge\left(a^{\circ}, a \varphi\right) \\
& =\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ \circ} \wedge\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ},
\end{aligned}
$$

and

$$
\left(a, a^{\circ} \varphi \vee[x)\right) \wedge\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ} \leq\left(b, b^{\circ} \varphi \vee[y)\right) \vee\left(b, b^{\circ} \varphi \vee[y)\right)^{\circ} .
$$

Hence $L \in \underline{\mathbf{K}}_{2}$. Now,

$$
L^{\circ \circ}=\left\{\left(a, a^{\circ} \varphi \vee[x)\right)^{\circ \circ}:\left(a, a^{\circ} \varphi \vee[x)\right) \in L\right\}=\left\{\left(a, a^{\circ} \varphi\right): a \in K\right\} \cong K
$$

under the isomorphism $\left(a, a^{\circ} \varphi\right) \mapsto a$. Then $L^{\circ \circ}$ is a Kleene algebra. Therefore $L$ is a $\underline{K}_{2}$-algebra.

Corollary 4.3 From Theorem 4.2, we have
(1) $L^{\vee}=\left\{\left(a, a^{\circ} \varphi \vee[x)\right) \in L: a \in K^{\vee}, x \in D\right\}$,
(2) $D(L)=\{(1,[x)): x \in[1] \gamma, x \in D\}$.

Corollary 4.4 Let $(K, D, \varphi, \gamma)$ be a $\underline{K}_{2}$-quadruple. Then
(1) If $D$ is a distributive lattice, then $L$ described by Theorem 4.2 is a $K_{2}$ algebra;
(2) If $K$ is a Boolean algebra and $\gamma=\iota$, then $L$ described by Theorem 4.2 is a modular $S$-algebra;
(3) If $K$ is a Boolean algebra, $D$ is a distributive lattice and $\gamma=\iota$, then $L$ described by Theorem 4.2 is a Stone algebra.

We say that $L \in \underline{\mathbf{K}}_{2}$ from Theorem 4.2 is associated with the $\underline{K}_{2}$-quadruple ( $K, D, \varphi, \gamma$ ) and the construction of $L$ described in Theorem 4.2 will be called a $\underline{K}_{2}$-construction.

Theorem 4.5 Let $L \in \underline{\mathbf{K}}_{2}$. Let $\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ be the $\underline{K}_{2}$-quadruple associated with $L$. Then $L_{1}$ associated with $\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ is isomorphic to $L$.

Proof For every $x \in L, x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right)$ and by modularity of $F(L)$, we observe
$x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)=\left(\left[x^{\circ \circ}\right) \cap L^{\vee}\right) \vee\left[x \vee x^{\circ}\right)=L^{\vee} \cap\left(\left[x^{\circ \circ}\right) \vee\left[x \vee x^{\circ}\right)\right)=L^{\vee} \cap[x)$.
We shall prove that the mapping $f: L \rightarrow L_{1}$ defined by

$$
x f=\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)\right)=\left(x^{\circ \circ}, L^{\vee} \cap[x)\right)
$$

is the described isomorphism. Obviously $x f \in L_{1}$, since $\max \left[x \vee x^{\circ}\right] \gamma(L)=$ $\left(x \vee x^{\circ}\right)^{\circ \circ}=x^{\circ \circ} \vee x^{\circ} \in\left[x^{\circ \circ}\right) \cap L^{\vee}=x^{\circ} \varphi(L)$. For every $x, y \in L$,

$$
\begin{aligned}
(x \wedge y) f & =\left((x \wedge y)^{\circ \circ},(x \wedge y)^{\circ} \varphi(L) \vee\left[(x \wedge y) \vee(x \wedge y)^{\circ}\right)\right) \\
& =\left((x \wedge y)^{\circ \circ},(x \wedge y) \cap L^{\vee}\right) \\
x f \wedge y f & =\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)\right) \wedge\left(y^{\circ \circ}, y^{\circ} \varphi(L) \vee\left[y \vee y^{\circ}\right)\right) \\
& =\left(x^{\circ \circ} \wedge y^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right) \vee y^{\circ} \varphi(L) \vee\left[y \vee y^{\circ}\right)\right) .
\end{aligned}
$$

Since $x=x^{\circ \circ} \wedge\left(x \vee x^{\circ}\right), y=y^{\circ \circ} \wedge\left(y \vee y^{\circ}\right)$ and $\varphi(L)$ is a polarity (see Lemma 3.1), then by modularity of $F(L)$, we have

$$
\begin{aligned}
x^{\circ} \varphi & (L) \vee\left[x \vee x^{\circ}\right) \vee y^{\circ} \varphi(L) \vee\left[y \vee y^{\circ}\right) \\
& =(x \wedge y)^{\circ} \varphi(L) \vee\left[\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right) \\
& =\left(\left[(x \wedge y)^{\circ \circ}\right) \cap L^{\vee}\right) \vee\left[\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right) \\
& =L^{\vee} \cap\left(\left[(x \wedge y)^{\circ \circ}\right) \vee\left[\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right)\right. \\
& =L^{\vee} \cap\left[x^{\circ \circ} \wedge y^{\circ \circ} \wedge\left(x \vee x^{\circ}\right) \wedge\left(y \vee y^{\circ}\right)\right) \\
& =L^{\vee} \cap[x \wedge y) .
\end{aligned}
$$

Then $(x \wedge y) f=x f \wedge y f$. Also,

$$
\begin{aligned}
(x \vee y) f & =\left((x \vee y)^{\circ \circ},[x \vee y) \cap L^{\vee}\right) \\
& =\left(x^{\circ \circ} \vee y^{\circ \circ},[x) \cap[y) \cap L^{\vee}\right) \\
& =\left(x^{\circ \circ} \vee y^{\circ \circ},\left([x) \cap L^{\vee}\right) \cap\left([y) \cap L^{\vee}\right)\right) \\
& =\left(x^{\circ \circ},[x) \cap L^{\vee}\right) \vee\left(y^{\circ \circ},[y) \cap L^{\vee}\right) \\
& =x f \vee y f
\end{aligned}
$$

and $0 f=\left(0, L^{\vee}\right), 1 f=(1,[1))$. Then $f$ is a $(0,1)$-lattice homomorphism.
Now,

$$
\begin{aligned}
(x f)^{\circ} & =\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee\left[x \vee x^{\circ}\right)\right)^{\circ} \\
& =\left(x^{\circ}, x^{\circ \circ} \varphi(L)\right) \\
& =\left(x^{\circ},\left[x^{\circ}\right) \cap L^{\vee}\right) \\
& =x^{\circ} f,
\end{aligned}
$$

hence $f$ is a homomorphism of $\underline{K}_{2}$-algebras.
Now assume $x_{1} f=x_{2} f$. Then $\left(x_{1}^{\circ \circ},\left[x_{1}\right) \cap L^{\vee}\right)=\left(x_{2}^{\circ \circ},\left[x_{2}\right) \cap L^{\vee}\right)$. It follows that $x_{1}^{\circ \circ}=x_{2}^{\circ \circ}$ and $\left[x_{1}\right) \cap L^{\vee}=\left[x_{2}\right) \cap L^{\vee}$. Now

$$
\begin{aligned}
{\left[x_{1}\right) } & =\left[x_{1}^{\circ \circ} \wedge\left(x_{1} \vee x_{1}^{\circ}\right)\right) \\
& =\left[x_{1}^{\circ \circ}\right) \vee\left[x_{1} \vee x_{1}^{\circ}\right) \\
& =\left[x_{1}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left[x_{1} \vee x_{1}^{\circ}\right)\right) \text { as } x_{1} \vee x_{1}^{\circ} \in L^{\vee} \\
& =\left[x_{1}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left[x_{1}\right) \cap\left[x_{1}^{\circ}\right)\right) \\
& =\left[x_{2}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left[x_{2}\right) \cap\left(x_{2}^{\circ}\right)\right) \\
& =\left[x_{2}^{\circ \circ}\right) \vee\left(L^{\vee} \cap\left(x_{2} \vee x_{2}^{\circ}\right)\right) \\
& =\left[x_{2}^{\circ \circ}\right) \vee\left[x_{2} \vee x_{2}^{\circ}\right) \text { as } x_{2} \vee x_{2}^{\circ} \in L^{\vee} \\
& =\left[x_{2}^{\circ \circ} \wedge\left(x_{2} \vee x_{2}^{\circ}\right)\right) \\
& =\left[x_{2}\right) .
\end{aligned}
$$

Consequently, $x_{1}=x_{2}$ and $f$ is injective. It remains to prove that $f$ is surjective. Let $\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee[z)\right) \in L_{1}$, that is $z^{\circ \circ}=\max [z] \gamma(L) \in x^{\circ} \varphi(L)=\left[x^{\circ \circ}\right) \cap L^{\vee}$. Then by modularity of $F(L)$ we get

$$
\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee[z)\right)=\left(x^{\circ \circ},\left(\left[x^{\circ \circ}\right) \cap L^{\vee}\right) \vee[z)\right)=\left(x^{\circ \circ}, L^{\vee} \cap\left[x^{\circ \circ} \wedge z\right)\right)
$$

Set $h=x^{\circ \circ} \wedge z$. Then $h^{\circ \circ}=x^{\circ \circ} \wedge z^{\circ \circ}=x^{\circ \circ}$ and consequently

$$
\left(x^{\circ \circ}, x^{\circ} \varphi(L) \vee[z)\right)=\left(h^{\circ \circ},[h) \cap L^{\vee}\right)=\left(h^{\circ \circ}, h^{\circ} \varphi(L) \vee\left[h \vee h^{\circ}\right)\right)=h f .
$$

Thus $f$ is an isomorphism.

## 5 Isomorphisms

In this section we define an isomorphism between two $\underline{K}_{2}$-quadruples and we show that two $\underline{K}_{2}$-algebras are isomorphic if and only if their associated $\underline{K}_{2}{ }^{-}$ quadruples are isomorphic.

Definition 5.1 An isomorphism of the $\underline{K}_{2}$-quadruples $(K, D, \varphi, \gamma)$ and ( $K_{1}, D_{1}$, $\left.\varphi_{1}, \gamma_{1}\right)$ is a pair $(f, g)$, where $f$ is an isomorphism of $K$ and $K_{1}, g$ is an isomorphism of $D$ and $D_{1}$ such that $x \equiv y(\gamma)$ iff $x g \equiv y g\left(\gamma_{1}\right)$ for all $x, y \in D$ and the diagram

commutes $\left(F(g)\right.$ stands for the isomorphism of $F(D)$ and $F\left(D_{1}\right)$ induced by $\left.g\right)$.
Theorem 5.2 Let $L, M \in \underline{\mathbf{K}}_{2}$. Then $L \cong M$ if and only if

$$
\left(L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right) \cong\left(M^{\circ \circ}, M^{\vee}, \varphi(M), \gamma(M)\right)
$$

Proof Let $\theta: L \rightarrow M$ be an isomorphism. We have two isomorphisms, $f: L^{\circ \circ} \rightarrow M^{\circ \circ}$ defined by $x f=x \theta$ and $g: L^{\vee} \rightarrow M^{\vee}$ defined by $x g=x \theta$. Now define $F(g): F\left(L^{\vee}\right) \rightarrow F\left(M^{\vee}\right)$ by $A F(g)=\{a \theta: a \in A\}$.

For every $a \in L^{\circ \circ}$, we have

$$
\begin{aligned}
(a f) \varphi(M) & =(a \theta) \varphi(M)=\left[(a \theta)^{\circ}\right) \cap M^{\vee} \\
a \varphi(L) F(g) & =\left(\left[a^{\circ}\right) \cap L^{\vee}\right) F(g)=\left\{y \theta: y \in\left[a^{\circ}\right) \cap L^{\vee}\right\}=\left[(a \theta)^{\circ}\right) \cap M^{\vee} .
\end{aligned}
$$

For $x, y \in L^{\vee}, x \equiv y(\gamma(L))$ iff $x^{\circ \circ}=y^{\circ \circ}$ iff $x^{\circ \circ} \theta=y^{\circ \circ} \theta$ iff $(x g)^{\circ \circ}=(x \theta)^{\circ \circ}=$ $x^{\circ \circ} \theta=y^{\circ \circ} \theta=(y \theta)^{\circ \circ}=(y g)^{\circ \circ}$. Hence $x g \equiv y g(\gamma(M))$. Then $(f, g)$ is a $\underline{K}_{2}{ }^{-}$ quadruple isomorphism. Conversely, we have to show that the isomorphism $(f, g)$ of $\underline{K}_{2}$-quadruples ( $\left.L^{\circ \circ}, L^{\vee}, \varphi(L), \gamma(L)\right)$ and ( $\left.M^{\circ \circ}, M^{\vee}, \varphi(M), \gamma(M)\right)$ implies the existence of an isomorphism $h: L \rightarrow M$, between $\underline{K}_{2}$-algebras $L, M$ constructed by $\underline{K}_{2}$-construction. We claim that

$$
\left(a, a^{\circ} \varphi(L) \vee[x)\right) h=\left(a f,(a f)^{\circ} \varphi(M) \vee[x g)\right)
$$

is the desired isomorphism. Firstly we note that

$$
(\max [x] \gamma(L)) g=\max [x g] \gamma(M) \text { for all } x \in L^{\vee}
$$

Then

$$
\max [x g] \gamma(M)=(\max [x] \gamma(L)) g \in\left(a^{\circ} \varphi(L)\right) F(g)=(a f)^{\circ} \varphi(M)
$$

as $\max [x] \gamma(L) \in a^{\circ} \varphi(L)$. Hence $h$ is well defined.
Since $f$ and $F(g)$ are isomorphisms, then we get

$$
\begin{aligned}
&\left(a, a^{\circ} \varphi(L) \vee[x)\right) \leq\left(b, b^{\circ} \varphi(L) \vee[y)\right) \\
& \Leftrightarrow a \leq b, a^{\circ} \varphi(L) \vee[x) \supseteq b^{\circ} \varphi(L) \vee[y) \\
& \quad \Leftrightarrow a f \leq b f,\left(a^{\circ} \varphi(L) \vee[x)\right) F(g) \supseteq\left(b^{\circ} \varphi(L) \vee[y)\right) F(g) \\
& \quad \Leftrightarrow a f \leq b f,\left(a^{\circ} \varphi(L)\right) F(g) \vee[x) F(g) \supseteq\left(b^{\circ} \varphi(L)\right) F(g) \vee[y) F(g) \\
& \quad \Leftrightarrow a f \leq b f,(a f)^{\circ} \varphi(M) \vee[x g) \supseteq(b f)^{\circ} \varphi(M) \vee[y g) \\
& \quad \Leftrightarrow\left(a f,(a f)^{\circ} \varphi(M) \vee[x g)\right) \leq\left(b f,(b f)^{\circ} \varphi(M) \vee[y g)\right) \\
& \quad \Leftrightarrow\left(a, a^{\circ} \varphi(L) \vee[x)\right) h \leq\left(b, b^{\circ} \varphi(L) \vee[y)\right) h .
\end{aligned}
$$

Thus, since $h$ is a bijection, $h$ is an isomorphism.
In a subsequent paper, we shall consider homomorphisms, subalgebras and congruence pairs of $\underline{K}_{2}$-algebras.

Acknowledgement The author would like to thank the referee for his/her useful comments and valuable suggestions given to this paper.

## References

[1] Badawy, A., Guffová, D., Haviar, M.: Triple construction of decomposable MS-algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 35-65.
[2] Birkhoff, G.: Lattice Theory. 3rd edition, Amer. Math. Soc. Colloq. Pub. 25, Amer. Math. Soc., Providence, R.I., 1967.
[3] Blyth, T. S., Varlet, J. C.: On a common abstraction of De Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh A 94 (1983), 301-308.
[4] Blyth, T. S., Varlet, J. C.: Sur la construction de certaines MS-algèbres. Portugaliea Math. 39 (1980), 489-496.
[5] Blyth, T. S., Varlet, J. C.: Corrigendum "Sur la construction de certaines MS-algèbres". Portugaliea Math. 42 (1983/84), 469-471.
[6] Chen, C. C., Grätzer, G.: Stone lattices I, Construction theorems. Canad. J. Math. 21 (1969), 884-894.
[7] Chen, C. C., Grätzer, G.: Stone lattices II, Structure theorems. Canad. J. Math. 21 (1969), 895-903.
[8] Haviar, M.: On a certain construction of MS-algebras. Portugliae Mathematica 51 (1994), 71-83.
[9] Katriňák, T.: Die Konstruktion der distributiven pseudokomplementären verbande. Math. Nachrichten 53 (1972), 85-89.
[10] Katriňák, T., Mederly, P.: Construction of modular p-algebras. Algebra Univ. 4 (1974), 301-315.
[11] Katriňák, T., Mikula, K.: On a construction of MS-algebeas. Portugliae Mathematica 45 (1978), 157-163.
[12] Ševčovič, D.: Free non-distributive Morgan-Stone algebras. New Zealand J. Math. 25 (1996), 85-94.

