
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium.
Mathematica

Mathew Omonigho Omeike
Stability and Boundedness of Solutions of a Certain System of Third-order Nonlinear
Delay Differential Equations

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 54 (2015),
No. 1, 109–119

Persistent URL: http://dml.cz/dmlcz/144371

Terms of use:
© Palacký University Olomouc, Faculty of Science, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144371
http://dml.cz


Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 54, 1 (2015) 109–119

Stability and Boundedness of Solutions
of a Certain System of Third-order
Nonlinear Delay Differential Equations

M. O. OMEIKE

Department of Mathematics, Federal University of Agriculture
Abeokuta, Nigeria

e-mail: moomeike@yahoo.com

(Received July 26, 2014)

Abstract

In this paper a number of known results on the stability and bound-
edness of solutions of some scalar third-order nonlinear delay differential
equations are extended to some vector third-order nonlinear delay differ-
ential equations.
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1 Introduction

The delay differential equation considered here is of the form
...

X +AẌ +BẊ +H(X(t− r(t))) = P (t), (1.1)

in which X ∈ Rn, P : R → Rn, A and B are real n × n constant matrices,
0 ≤ r(t) ≤ γ, γ is a positive constant which will be determined later, and the
dots indicate differentiation with respect to t. The equation is the vector version
for the system of real third-order delay differential equations

...
xi +

n∑
k=1

aikẍk+

n∑
k=1

bikẋk+hi(x1(t−r(t)), x2(t−r(t)), . . . , xn(t−r(t))) = pi(t),

i = 1, 2, . . . , n, in which aik, bik are constants. It will be assumed as basic
throughout what follows that H ∈ C′(Rn) and P ∈ C(R) are such that solutions
of (1.1) exist corresponding to any pre-assigned initial conditions. Here, C′(Rn)
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is the family of all functions once continuously differentiable on Rn and C(R) is
the family of all functions continuous on R.
The study of (1.1) is concerned primarily with the problems of stability and

boundedness of solutions of (1.1).
In the case n = 1, these problems have been investigated (see [3, 4, 5, 6, 10,

11, 14]) for a general scalar delay differential equation of the form
...
x +aẍ+ bẋ+ h(x(t− r(t))) = p(t)

(a, b constants). Their investigation shows that the stability and the ultimate
boundedness of solutions can be established if h′(x) is bounded and if a, b, h(x)
satisfy some suitable generalization of the Routh–Hurwitz conditions

a > 0, b > 0, ab− c > 0

for the asymptotic stability of the solution x = 0 of the linear system
...
x +aẍ+ bẋ+ cx = 0

with constant coefficients. The object of the present paper is to provide anal-
ogous results for n-dimensional equation (1.1) following the arguments used in
some of the papers mentioned above.

Notation and definitions
Given any X,Y in Rn the symbol 〈X,Y 〉 will be used to denote the usual scalar
product in Rn, that is 〈X,Y 〉 =∑n

i=1 xiyi; thus ‖X‖2 = 〈X,X〉. The matrix A
is said to be positive definite when 〈AX,X〉 > 0 for all nonzero X in Rn.
The following notations (see [5, 15]) will be useful in subsequent sections.

For x ∈ Rn, |x| is the norm of x. For a given r > 0, t1 ∈ R,

C(t1) = {φ : [t1 − r, t1] → Rn/φ is continuous}.
In particular, C = C(0) denotes the space of continuous functions mapping the
interval [−r, 0] into Rn and for φ ∈ C, ‖φ‖ = sup−r≤θ≤0 |φ(0)|. CH will denote
the set of φ such that ‖φ‖ ≤ H. For any continuous function x(u) defined on
−h ≤ u < A, A > 0, and any fixed t, 0 ≤ t < A, the symbol xt will denote the
restriction of x(u) to the interval [t− r, t], that is, xt is an element of C defined
by xt(θ) = x(t+ θ), −r ≤ θ ≤ 0.

2 Some preliminary results

In this section, we shall state the algebraic results required in the proofs of our
main results. The proofs are not given since they are found in [1, 2, 7, 8, 9, 13].

Lemma 2.1 [1, 2, 7, 8, 9, 13] Let D be a real symmetric positive definite n×n
matrix, then for any X in Rn, we have

δd‖X‖2 ≤ 〈DX,X〉 ≤ Δd‖X‖2

where δd,Δd are the least and the greatest eigenvalues of D, respectively.
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Lemma 2.2 [1, 2, 7, 8, 9, 13] Let Q, D be any two real n × n commuting
symmetric matrices. Then

(i) the eigenvalues λi(QD) (i = 1, 2, . . . , n) of the product matrix QD are all
real and satisfy

min
1≤j,k≤n

λj(Q)λk(D) ≤ λi(QD) ≤ max
1≤j,k≤n

λj(Q)λk(D);

(ii) the eigenvalues λi(Q +D)(i = 1, 2, . . . , n) of the sum of matrices Q and
D are real and satisfy

{ min
1≤j≤n

λj(Q)+ min
1≤k≤n

λk(D)} ≤ λi(Q+D) ≤ { max
1≤j≤n

λj(Q)+ max
1≤k≤n

λk(D)}.

Lemma 2.3 [1, 2, 7, 8, 9, 13] Let H(X) be a continuous vector function and
that H(0) = 0 then

d

dt

∫ 1

0

〈H(σX), X〉 dσ = 〈H(X), Ẋ〉.

Lemma 2.4 Let H(X) be a continuous vector function and that H(0) = 0 then

δh‖X‖2 ≤ 2

∫ 1

0

〈H(σX), X〉 dσ ≤ Δh‖X‖2

where δh,Δh are the least and the greatest eigenvalues of Jh(X) (Jacobian ma-
trix of H), respectively.

3 Stability

First, we will give the stability criteria for the general autonomous delay differ-
ential system. We consider

x′ = f(xt), xt(θ) = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (3.1)

where f : CH → Rn is a continuous mapping, f(0) = 0,

CH := {φ ∈ C([−r, 0],Rn) : ‖φ‖ ≤ H}
and for H1 < H, there exists L > 0, with |f(φ)| ≤ L when ‖φ‖ ≤ H1. Here,
C([−r, 0],Rn) is the family of all vector functions mapping [−r, 0] into Rn.
Definition 3.1 [3, 5, 6, 11, 12] An element ψ ∈ C is in the ω−limit set of φ, if
x(t, 0, φ) is defined on [0,∞) and there is a sequence {tn}, tn → ∞, as n→ ∞,
with ‖xtn(φ)−ψ‖ → 0 as n→ ∞ where xtn(φ) = x(tn+θ, 0, φ) for −r ≤ θ ≤ 0.
x(t; 0, φ) is a motion of a system at t ∈ R if and only if x(0) = φ.

Definition 3.2 [3, 5, 6, 11, 12] A set Q ⊂ CH is an invariant set if for any
φ ∈ Q, the solution of (3.1), x(t, 0, φ), is defined on [0,∞), and xt(φ) ∈ Q for
t ∈ [0,∞).



112 M. O. OMEIKE

Lemma 3.3 (see [3, 5, 6, 11, 12]) If φ ∈ CH is such that the solution xt(θ) of
(3.1) with x0(φ) = φ is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞),
then Ω(φ) (the ω−limit set of φ) is a nonempty, compact, invariant set and

dist(xt(φ),Ω(φ)) → 0, as t→ ∞.

Lemma 3.4 (see [3, 5, 6, 11, 12]) Let V (φ) : CH → R be a continuous functional
satisfying a local Lipschitz condition. V (0) = 0 and such that

(i) W1(|φ(0)|) ≤ V (φ) ≤W2(‖φ(0)‖) where W1(r),W2(r) are wedges.

(ii) V ′
(3.1)(φ) ≤ 0, for φ ∈ CH.

Then the zero solution of (3.1) is uniformly stable. If we define

Z = {φ ∈ CH : V ′
(3.1)(φ) = 0},

then the zero solution of (3.1) is asymptotically stable, provided that the largest
invariant set in Z is Q = {0}.
Before we state our result in this section, we write equation (1.1) with P ≡ 0

as

Ẋ = Y

Ẏ = Z

Ż = −AZ −BY −H(X) +

∫ t

t−r(t)
Jh(X)Y ds.

(3.2)

We shall constantly refer to (3.2) subsequently in our discussion.
The following will be our main stability result for (3.2).

Theorem 3.5 Consider (3.2), let H(0) = 0 and suppose that

(i) 0 ≤ r(t) ≤ γ (γ > 0), r′(t) ≤ ξ, and 0 < ξ < 1;

(ii) the matrices A,B and Jh(X) (Jacobian matrix of H(X)) are symmetric
and positive definite, and furthermore the eigenvalues λi(A), λi(B) and
λi(Jh(X)) (i = 1, 2, . . . , n) of A,B and Jh(X), respectively satisfy,

0 < δa ≤ λi(A) ≤ Δa (3.3)

0 < δb ≤ λi(B) ≤ Δb (3.4)

0 < δh ≤ λi(Jh(X)) ≤ Δh, for X ∈ Rn, (3.5)

where δa, δb, δh,Δa,Δb,Δh are finite constants;

(iii) the matrices A,B and Jh(X) commute pairwise.

Then the zero solution of (3.2) is asymptotically stable, provided

γ < min

{
2(βδa − 1)

βΔh
,
2(δb − βΔh)(1− ξ)

Δh(2 + β − ξ)

}
.
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Proof Using the equivalent system form (3.2), our main tool is the following
Lyapunov functional, V1(Xt, Yt, Zt) defined as

2V1(Xt, Yt, Zt) = 2

∫ 1

0

〈H(σX), X〉dσ + 〈AY, Y 〉+ β〈Y,BY 〉

+ β〈Z,Z〉+ 2〈Y, Z〉+ 2β〈Y,H(X)〉+ μ

∫ 0

−r(t)

∫ t

t+s

〈Y (θ), Y (θ)〉dθds, (3.6)

where
1

δa
< β <

δb
Δh

.

Since

μ

∫ 0

−r(t)

∫ t

t+s

〈Y (θ), Y (θ)〉dθds

is non-negative, we have

2V1(Xt, Yt, Zt) ≥ 2

∫ 1

0

〈H(σX), X〉dσ + 〈AY, Y 〉+ β〈Y,BY 〉

+ β〈Z,Z〉+ 2〈Y, Z〉+ 2β〈Y,H(X)〉

= 2

∫ 1

0

〈H(σX), X〉dσ − β〈B−1H(X), H(X)〉

+ β‖B 1
2Y +B− 1

2H(X)‖2 + β‖Z + β−1Y ‖2 + 〈(A− β−1I)Y, Y 〉.

Using Lemmas 2.1,2.2 and 2.4, and since β‖B 1
2Y +B− 1

2H(X)‖2 ≥ 0, we have

2V1(Xt, Yt, Zt) ≥ 2

∫ 1

0

∫ 1

0

σ〈{I − βB−1Jh(σX)
}
Jh(στX)X,X〉dσdτ

+ β‖Z + β−1Y ‖2 + 〈(A− β−1I)Y, Y 〉
≥ (1− βδ−1

b Δh)δh‖X‖2 + β‖Z + β−1Y ‖2 + (δa − β−1)‖Y ‖2.

Hence there is a constant K > 0 (small enough) such that

V1(Xt, Yt, Zt) ≥ K
(‖X‖2 + ‖Y ‖2 + ‖Z‖2) .

Next, our target is to show that V1(Xt, Yt, Zt) satisfies the second condition of
Lemma 3.4. From (3.2), (3.6) and using Lemma 2.3, we have

d

dt
V1(Xt, Yt, Zt) = −〈(βA− I)Z,Z〉 − 〈{B − βJh(X)}Y, Y 〉

+

∫ t

t−r(t)
〈Y, Jh(X)Y 〉ds+ β

∫ t

t−r(t)
〈Z, Jh(X)Y 〉 ds

+ μr(t)〈Y, Y 〉 − μ(1− r′(t))
∫ t

t−r(t)
〈Y (θ), Y (θ)〉 dθ. (3.7)
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On using Lemmas 2.1 and 2.2, and the identity 2|〈U, V 〉| ≤ ‖U‖2 + ‖V ‖2, we
obtain,

d

dt
V1(Xt, Yt, Zt) ≤ −

(
δb − βΔh − 1

2
Δhγ − μγ

)
‖Y ‖2

− (βδa − 1− 1
2βγΔh

) ‖Z‖2
+
{

1
2βΔh +

1
2Δh − μ(1− ξ)

}∫ t
t−r(t)〈Y (θ), Y (θ)〉 dθ. (3.8)

If we choose μ = (β+1)Δh

2(1−ξ) ,

d

dt
V1(Xt, Yt, Zt) ≤ −

{
δb − βΔh − (2 + β − ξ)

2(1− ξ)
Δhγ

}
‖Y ‖2

−
(
βδa − 1− 1

2
βγΔh

)
‖Z‖2,

and choosing

γ < min

{
2(βδa − 1)

βΔh
,
2(δb − βΔh)

Δh(2 + β − ξ)

}
,

there is a constant D > 0 such that

d

dt
V1(Xt, Yt, Zt) ≤ −D (‖Y ‖2 + ‖Z‖2) .

Hence the result follows. �

Example 1 As a special case of system (1.1) (for P (t) = 0), let us take n = 2
that

X =

(
x1(t)
x2(t)

)
, A =

(
8 0
0 10

)
, B =

(
1 0
0 3

)
and

H(X(t− r(t))) =

(
tan−1 x1(t− r(t)) + 2x1(t− r(t))
tan−1 x2(t− r(t)) + 2x2(t− r(t))

)
.

Thus,

H(X(t)) =

(
tan−1 x1(t) + 2x1(t)
tan−1 x2(t) + 2x2(t)

)
and Jh(X) =

(
2 + 1

1+x2
1

0

0 3 + 1
1+x2

2

)
.

If we take r(t) = 1
22+t2 , then 0 ≤ 1

22+t2 < γ, and that r′(t) = −2t
(22+t2)2 ≤ ξ,

0 < ξ < 1. Clearly, A, B and Jh(X) are symmetric and commute pairwise.
That is,

AB =

(
8 0
0 30

)
= BA,

AJh(X) =

(
16 + 8

1+x2
1

0

0 30 + 10
1+x2

2

)
= Jh(X)A
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and

BJh(X) =

(
2 + 1

1+x2
1

0

0 9 + 3
1+x2

2

)
= Jh(X)B.

Then, by easy calculation, we obtain eigenvalues of the matrices A,B and Jh(X)
as follows:

λ1(A) = 8, λ2(A) = 10, λ1(B) = 1, λ2(B) = 3,

λ1(Jh(X)) = 2 +
1

1 + x21
, λ2(Jh(X)) = 3 +

1

1 + x21
.

It is obvious that δa = 8, Δa = 10, δb = 1, Δb = 3, δh = 2, Δh = 4. If we
choose β = 1

6 and ξ =
1
2 , we must have that γ < min{1, 1

20}.
Thus, all the conditions of Theorem 3.5 are satisfied.

4 Boundedness

First, consider a system of delay differential equations

ẋ = F (t, xt), xt(θ) = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (4.1)

where F : R × CH → Rn is a continuous mapping and takes bounded set into
bounded sets.
The following lemma is a well-known result obtained by Burton [5].

Lemma 4.1 [3, 5, 6, 11, 12] Let V (t, φ) : R×CH → R be continuous and locally
Lipschitz in φ. If

(i) W (|x(t)|) ≤ V (t, xt) ≤W1(|x(t)|) +W2

(∫ t
t−r(t)W3(|x(s)|)ds

)
, and

(ii) V̇(4.1) ≤ −W3(|x(s)|) +M ,

for some M > 0, where W (r), Wi(i = 1, 2, 3) are wedges, then the solutions of
(4.1) are uniformly bounded and uniformly ultimately bounded for bound B.

To study the boundedness of solutions of (1.1) for which P (t) 	= 0, we would
need to write Eq. (1.1) in the form

Ẋ = Y

Ẏ = Z

Ż = −AZ −BY −H(X) +

∫ t

t−r(t)
Jh(X)Y ds+ P (t).

(4.2)

Thus our main theorem in this section is stated with respect to Eq.(4.2) as
follows:
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Theorem 4.2 If the conditions of Theorem 3.5 hold, and

‖P (t)‖ ≤ m, (4.3)

where m is a positive constant, then the solutions of equation (4.2) are uniformly
bounded and uniformly ultimately bounded provided γ satisfies

γ < min

{
2δh(δaδb −Δh)

Δh(ΔaΔb −Δh)
,
2(βδa − 1)

Δh(β +Δa)
,

2(δb − βΔh)(1− ξ)

Δh {(1 + Δ2
a)(1− ξ) + 2 + β +Δ2

a + (ΔaΔb −Δh)}
}
,

Proof Consider the function

V = V1(Xt, Yt, Zt) + V2(Xt, Yt, Zt), (4.4)

where V1(Xt, Yt, Zt) is defined as (3.6) and V2(Xt, Yt, Zt) defined as

2V2(Xt, Yt, Zt) = 2

∫ 1

0

〈AH(σX), AX〉dσ + 〈B(AB −ΔhI)X,X〉
+ 2〈AY,H(X)〉+ 〈ΔhY, Y 〉
+ 2〈(AB −ΔhI)X,Z +AY 〉+ 〈A(Z +AY ), Z +AY 〉. (4.5)

This we can rewrite

2V2(Xt, Yt, Zt) = 2

∫ 1

0

〈AH(σX), AX〉dσ − 〈AΔ−1
h H(X), AH(X)〉

+ 〈ΔhY +H(X), Y +AΔ−1
h H(X)〉+ 〈ΔhA

−1(AB −ΔhI)X,X〉
+ 〈(AB −ΔhI)X +A2Y +AZ,A−1(AB −ΔhI)X +AY + Z〉

= 2

∫ 1

0

∫ 1

0

σ〈{I −Δ−1
h Jh(σX)

}
A2J(τσX)X,X〉 dσdτ

+ ‖A− 1
2 (AB −ΔhI)X +A

3
2Y +A

1
2Z‖2

+ ‖Δ 1
2

h (Y +Δ−1
h AH(X))‖2 + 〈ΔhA

−1(AB −ΔhI)X,X〉.
However,

2

∫ 1

0

∫ 1

0

σ〈{I −Δ−1
h Jh(σX)

}
A2J(τσX)X,X〉 dσdτ ≥ 0

and 〈ΔhA
−1(AB −ΔhI)X,X〉 ≥ ΔhΔ

−1
a (δaδb −Δh)‖X‖2. Thus,

2V2(Xt, Yt, Zt) ≥ ΔhΔ
−1
a (δaδb −Δh)‖X‖2 + ‖Δ 1

2

h (Y +Δ−1
h AH(X))‖2

+ ‖A− 1
2 (AB −ΔhI)X +A

3
2Y +A

1
2Z‖2.

It follows that V2(Xt, Yt, Zt) is positive definite.
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From (3.6), (3.7), (3.8), (4.2) and Lemma2.3, we find

d

dt
V1(Xt, Yt, Zt) ≤ −

(
δb − βΔh − 1

2
Δhγ − μγ

)
‖Y ‖2

−
(
βδa − 1− 1

2
βγΔh

)
‖Z‖2 +

{
1

2
βΔh +

1

2
Δh − μ(1− ξ)

}

×
∫ t

t−r(t)
〈Y (θ), Y (θ)〉dθ + (‖Y ‖+ β‖Z‖)m. (4.6)

Also from (4.2), (4.5) and Lemma 2.3 we obtain,

d

dt
V2(Xt, Yt, Zt) = −〈(AB −ΔhI)X,H(X)〉 − 〈A(ΔhI − Jh(X))Y, Y 〉

+

∫ t

t−r(t)
〈(AB −ΔhI)X, Jh(X)Y 〉 ds+

∫ t

t−r(t)
〈AZ, Jh(X)Y 〉 ds

+

∫ t

t−r(t)
〈A2Y, Jh(X)Y 〉 ds+ 〈P (t), (AB −ΔhI)X +A2Y +AZ〉

Also using Lemmas 2.1 and 2.2, the identity 2|〈U, V 〉| ≤ (‖U‖2 + ‖V ‖2), and
the fact that 〈A(ΔhI − Jh(X))Y, Y 〉 ≥ 0 we find that

d

dt
V2(Xt, Yt, Zt) ≤ −

{
δh(δaδb −Δh)− 1

2
Δh(ΔaΔb −Δh)r(t)

}
‖X‖2

+
1

2
ΔaΔhr(t)‖Z‖2 + 1

2
Δ2
aΔhr(t)‖Y ‖2

+
1

2
Δh

{
(ΔaΔb −Δh) + Δa +Δ2

a

}∫ t

t−r(t)
〈Y (s), Y (s)〉 ds

+
{
(ΔaΔb −Δh)‖X‖+Δ2

a‖Y ‖+Δa‖Z‖
}
m (4.7)

Therefore, from (4.4), (4.6) and (4.7), we obtain

d

dt
V (Xt, Yt, Zt) ≤ −

{
δh(δaδb −Δh)− 1

2
Δhγ(ΔaΔb −Δh)

}
‖X‖2

−
{
δb − βΔh − γ

(
1

2
Δh +

1

2
Δ2
aΔh + μ

)}
‖Y ‖2

−
{
βδa − 1− 1

2
γΔh(β +Δa)

}
‖Z‖2

+

{
1

2
Δh

(
2 + β +Δ2

a + (ΔaΔb −Δh)
)− μ(1− ξ)

}∫ t

t−r(t)
〈Y (θ), Y (θ)〉 dθ

+
{
(ΔaΔb −Δh)‖X‖+ (1 +Δ2

a)‖Y ‖+ (β +Δa)‖Z‖
}
m.
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If we choose

μ =
Δh

{
2 + β +Δ2

a + (ΔaΔb −Δh)
}

2(1− ξ)
,

we obtain

d

dt
V (Xt, Yt, Zt) ≤ −

{
δh(δaδb −Δh)− 1

2
Δhγ(ΔaΔb −Δh)

}
‖X‖2

− 1

2(1− ξ)

{
2(δb − βΔh)(1− ξ)

− γΔh

{
(1 + Δ2

a)(1− ξ) + 2 + β +Δ2
a + (ΔaΔb −Δh)

}}‖Y ‖2

−
{
βδa − 1− 1

2
γΔh(β +Δa)

}
‖Z‖2

+
{
(ΔaΔb −Δh)‖X‖+ (1 +Δ2

a)‖Y ‖+ (β +Δa)‖Z‖
}
m.

When

γ < min

{
2δh(δaδb −Δh)

Δh(ΔaΔb −Δh)
,
2(βδa − 1)

Δh(β +Δa)
,

2(δb − βΔh)(1− ξ)

Δh {(1 + Δ2
a)(1− ξ) + 2 + β +Δ2

a + (ΔaΔb −Δh)}
}
,

we get

d

dt
V (Xt, Yt, Zt) ≤ −α(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + kα(‖X‖+ ‖Y ‖+ ‖Z‖)

= −α
2
(‖X‖2+‖Y ‖2+‖Z‖2)−α

2

{
(‖X‖ − k)2+ (‖Y ‖ − k)2+ (‖Z‖ − k)2

}
+
3α

2
k2

≤ −α
2
(‖X‖2 + ‖Y ‖2 + ‖Z‖2) + 3α

2
k2, for some k, α > 0.

This completes the proof. �

Example 2 Now, as a special case of system (1.1) (for P (t) 	= 0), let us take
n = 2 that A, B, H(X(t − r(t))) defined in Example 1 hold. If we take
r(t) = 1

2146+t2 , then 0 ≤ 1
2146+t2 < γ, and r′(t) = −2t

(2146+t2)2 ≤ ξ, 0 < ξ < 1. Let

P (t) =

(
1

1+t2

1
1+t2

)
, β =

1

6
and ξ =

1

2
,

we have that

‖P (t)‖ =
2

1 + t2
≤ 2 and γ < min

{
2

13
,
1

6
,

1

2144

}
.

Thus, all the conditions of Theorem 4.2 are satisfied.
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