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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 3 , P AGES 3 9 1 – 4 0 7

SEVERAL RESULTS ON SET-VALUED
POSSIBILISTIC DISTRIBUTIONS

Ivan Kramosil and Milan Daniel

When proposing and processing uncertainty decision-making algorithms of various kinds
and purposes, we more and more often meet probability distributions ascribing non-numerical
uncertainty degrees to random events. The reason is that we have to process systems of uncer-
tainties for which the classical conditions like σ-additivity or linear ordering of values are too
restrictive to define sufficiently closely the nature of uncertainty we would like to specify and
process. In cases of non-numerical uncertainty degrees, at least the following two criteria may
be considered. The first criterion should be systems with rather complicated, but sophisticated
and nontrivially formally analyzable uncertainty degrees, e. g., uncertainties supported by some
algebras or partially ordered structures. Contrarily, we may consider easier relations, which
are non-numerical but interpretable on the intuitive level. Well-known examples of such struc-
tures are set-valued possibilistic measures. Some specific interesting results in this direction are
introduced and analyzed in this contribution.

Keywords: probability measures, possibility measures, non-numerical uncertainty degrees,
set-valued uncertainty degrees, possibilistic uncertainty functions, set-valued
entropy functions

Classification: 03E72, 28E99, 68T37, 94A17

1. INTRODUCTION

Since the very origins of modern mathematics, measure theory may be viewed as almost
a synonym for mathematical theory of size quantification with the most general and
abstract structures in which sizes take their values. On the other hand, the structures
over quantity degrees should be rich and flexible enough to enable us to define and
process non-trivial deductions with non-trivial results on quantity degrees and their
relationships.

In measure theory and, consequently, in probability theory, the sizes of sets and un-
certainty (in the sense of randomness as well as of fuzziness and possibility degrees)
are quantified by numbers, going from finite natural to rational and then real (or, per-
haps, complex-valued) numbers. The development of real-valued probability theory has
reached its peak in Kolmogorov axiomatic theory of probability as systematically ex-
plained and applied in, e. g., [4, 6].
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From a different angle, the correctness and legality of applying classical probability
theory and its consequences (mathematical statistics, Shannon entropy, and informa-
tion theory. . . ) on problems from real life are based on the assumption that certain
non-trivial conditions are satisfied and verified (such as the precise knowledge of a pri-
ori probabilities, statistical independence of certain random variables and/or precisely
known type and degrees of their dependencies together with the detailed conditional
probabilities. . . ). Even though an enormous amount of work has already been completed
within the framework of classical probability theory and statistics, and reasonable pro-
cessing has taken place of input probabilistic data non completely given or known, there
are demands for qualitatively different alternative tools for uncertainty (in the sense of
randomness as well as fuzziness) processing.

Qualitatively different models of uncertainty quantification and processing, even if
still with numerical degrees, are real-valued fuzzy sets, defined by mappings taking the
basic space Ω into the unit interval [0, 1], hence extending the binary-valued character-
istic functions of a standard set, to functions with values in the closed interval [0, 1].

Zadeh’s pioneering idea of fuzzy sets emerged in 1965 in [5, 12] and, as soon after as in
1967 J. A. Goguen entered the scene with another step of fuzzy sets with non-numerical
membership degrees. In particular, J. A. Goguen considered uncertainty in the sense of
fuzziness degrees, i. e., as elements of a complete lattice. Let us recall that complete
lattice is defined as a p. o. set (partially ordered set) in which supremum and infimum
are defined for each nonempty subset.

Up to this point, we have recalled models for uncertainty quantification and processing
where the uncertainty degrees take their values in more and more general and less
intuitive structures (natural numbers, rationals, real numbers, lattices, semilattices. . . ),
so that set-valued possibility degrees occurring in the title of this text seem to be a rather
strong step backward, which deserves a rather persuasive explanation. When quantifying
sizes by numbers we have to keep in mind that this approach introduces into the model
the complete ordering of numbers, which need not correspond to the sizes of pieces of
uncertainty in question. Among the structures working with uncertainties, and also
keeping in mind the idea to classify incomparable set-quantified degrees of uncertainty
with the same values of real-valued measures, set-valued possibilistic measures seem to
be sufficiently elastic and resilient to be taken as an intuitively acceptable non-numerical
size-quantifying mathematical model.

Let us survey, very briefly, the contents of particular sections of this paper. Our
goal will be to minimize the quantity and complexity of preliminaries necessary for a
less than fully-oriented reader to understand the text. In Section 2 we introduce the
structures for quantifying uncertainty (or uncertainties) by set values. It is perhaps
worth mentioning now that probability measure and probability theory are based on the
standard combination of set-valued uncertainty quantification (random events are sets)
with the standard real-valued quantification of set-valued random events.

In Section 3 we introduce three alternative ways to define mappings, keeping at least
some properties of conditional probabilities. This problem seems to be promising for
some new and interesting results. In Section 4 we define and analyze set-valued entropy
function over set-valued possibilistic function with the goal of solving the problem aris-
ing when the possibilistic distribution takes the maximum value 1T ( =X) for at least
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two different arguments. Analogously to the case of real-valued probability measure the
Shannon entropy function [10] takes the maximum value 1T ( =X); hence the qualities
of this entropy function cannot be used as a tool for partially ordering different alter-
natives of possibilistic distribution when choosing the best one for the application in
question. Very roughly speaking, the idea is to modify the space of values in which
set-valued entropy function takes its values, in such a way that the supremum value of
the set-valued entropy function is taken for just one value ω0 from the basic space Ω
of the possibilistic distribution in question. This goal will be achieved by introducing
a sophisticated equivalence relation on the basic possibilistic space of our model, for
which the supremum is reached in only one value in the resulting factor space. In other
words, the unit entropy value for the entropy function does not menace our application
of set-valued entropy functions.

Finally, in Section 5 we consider the compositions of set-valued possibilistic distribu-
tions.

2. SET-VALUED POSSIBILISTIC DISTRIBUTIONS

Let Ω and X be nonempty sets, let P(X) be the set of all subsets of X (the power-set
over X), let π : Ω → P(X) be a mapping ascribing to each ω ∈ Ω a subset π(ω) ⊂ X
(i. e., π(ω) ∈ P(X)). The mapping π is called a set-valued (or precisely P(X)-valued)
possibilistic distribution on Ω, if

⋃
ω∈Ω π(ω) = X.

For each A ⊂ Ω, set Π(A) =
⋃
ω∈A π(ω). The mapping Π : P(Ω) → P(X) is called

the P(X)-valued possibilistic measure induced on P(Ω) by the set-valued possibilistic
distribution π on Ω. The important characteristic of the P(X)-valued possibilistic dis-
tribution π (and of the related P(X)-valued possibilistic measure Π induced by π) is
the so-called possibilistic (or Sugeno) entropy defined by the Sugeno integral I(π). For
the particular case of the set-valued possibilistic distribution π on Ω defined above, the
definition reads as follows:

I(π) =
⋃
ω∈Ω

[Π(Ω \ {ω}) ∩ π(ω)] ⊂ X. (2.1)

E. g., in the simplest case when Ω = X and π(ω) = {ω}, we obtain that Π(A) =⋃
ω∈A π(ω) =

⋃
ω∈A{ω} = A. For the entropy I(π) we obtain that

I(π) =
⋃
ω∈Ω

[Π(Ω \ {ω}) ∩ π(ω)] =
⋃
ω∈Ω

((Ω \ {ω}) ∩ {ω}) = ∅; (2.2)

let us recall that the empty subset of X denotes the zero element of the complete lattice
(as a matter of fact, complete Boolean algebra) 〈P(X),⊆〉.

Fact 2.1. Let Ω and X be nonempty sets, and π : Ω → P(X) be a P(X)-valued
possibilistic distribution on Ω such that, for each ω1, ω2, ω1 6= ω2, π(ω1) ∩ π(ω2) = ∅
holds. Then we obtain that Π(A) ∩Π(B) = ∅ holds for each A,B ⊂ X,A ∩B = ∅.



394 I. KRAMOSIL AND M. DANIEL

P r o o f . An easy calculation yields that

Π(A) ∩Π(B) =

(⋃
ω∈A

π(ω)

)
∩

( ⋃
ω∈B

π(ω)

)

=
⋃
ω1∈B

[( ⋃
ω∈A

π(ω)

)
∩ π(ω1)

]
=
⋃
ω1∈B

⋃
ω∈A

(π(ω1) ∩ π(ω)) = ∅, (2.3)

as the sets A and B are disjoint. The assertion is proven. �

Lemma 2.2. Let Ω and X be nonempty sets, and π : Ω → P(X) be a P(X)-valued
possibilistic distribution on Ω. Then I(π) = ∅ iff π(ω1) ∩ π(ω2) = ∅ for each ω1, ω2 ∈ Ω,
ω1 6= ω2.

P r o o f . If π(ω1) ∩ π(ω2) = ∅ for each ω1, ω2 ∈ Ω, ω1 6= ω2, then

I(π) =
⋃
ω∈Ω

[π(Ω \ {ω}) ∩ π(ω)] =
⋃
ω∈Ω

[π(Ω \ {ω}) ∩Π({ω})] = ∅ (2.4)

holds, due to Fact 2.1.
On the other hand, let ω1, ω2 ∈ Ω, ω1 6= ω2, be such that π(ω1) ∩ π(ω2) 6= ∅. Then

ω2 ∈ Ω \ {ω1} holds, so that

Π(Ω \ {ω1}) ∩ π(ω1) ⊃ π(ω2) ∩ π(ω1) 6= ∅; (2.5)

consequently,

I(π) ⊃ Π(Ω \ {ω1}) ∩ π(ω1) ⊃ π(ω2) ∩ π(ω1) 6= ∅, (2.6)

follows. The assertion is proven. �

Theorem 2.3. Let Ω and X be nonempty sets, and π1, π2 be P(X)-valued possibilistic
distributions such that, for each ω ∈ Ω, π1(ω) ⊂ π2(ω) holds. Then I(π1) ⊂ I(π2) holds.

P r o o f . By definition,

I(π1) =
⋃
ω∈Ω

[π1(Ω \ {ω}) ∩ π2(ω)]. (2.7)

For each ω ∈ Ω, the inclusion

Π1(Ω \ {ω}) =
⋃

ω∗∈Ω\{ω}

π1(ω∗) ⊂
⋃

ω∗∈Ω\{ω}

π2(ω∗) = Π2(Ω \ {ω}) (2.8)

is valid, as π1(ω∗) ⊆ π2(ω∗) holds for each ω∗ ∈ Ω. Consequently, the inclusion

Π1(Ω \ {ω}) ∩ π1(ω) ⊂ Π2(Ω \ {ω}) ∩ π2(ω) (2.9)

holds for each ω ∈ Ω, so that the inclusion I(π1) ⊂ I(π2) immediately follows. The
assertion is proven. �
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The following fact is almost trivial, but it seems worth being explicitly recalled. In the
space of set-valued possibilistic distributions it may easily happen that π1(ω) ⊂ π2(ω)
holds for each ω ∈ Ω, at least for some ω ∈ Ω this inclusion is strict (i. e., π1(ω) 6= π2(ω),
but the identity

⋃
ω∈Ω π1(ω) =

⋃
ω∈Ω π2(ω) = X is valid.

This property qualitatively differentiates a possibilistic case from a finite probability
distribution, where the inequality p1(ωi) ≤ p2(ωi) for each i = 1, 2, . . . , together with∑n
i=1 p1(ωi) =

∑n
i=1 p2(ωi) = 1 implies that the probability distributions p1 and p2 are

indentical on {ω1, ω2, . . . , ωn}.

Lemma 2.4. Let Ω, X be nonempty sets, let π : Ω → P(X) be a P(X)-valued possi-
bilistic distribution. If there are ω1, ω2 ∈ Ω, ω1 6= ω2, such that π(ω1) = π(ω2) = X,
then I(π) = X = 1P(X).

P r o o f . Let ω1, ω2 ∈ Ω, ω1 6= ω2, be such that π(ω1) = π(ω2) = X, consider the set
Π(Ω \ {ω1}) ∩ π(ω1). Then ω2 ∈ Ω \ {ω1} holds, hence,

Π(Ω \ {ω1}) =
ω∗∈Ω\{ω1}∨

π(ω∗) ⊃ π(ω2) = X (2.10)

holds and Π(Ω \ {ω1}) = X follows. Replacing mutually ω1 and ω2 we obtain that
Π(Ω \ {ω2}) = X holds as well, hence,

X = Π(Ω \ {ωj}) ∩ π(ωj) =
⋃
ω∈Ω

[Π(Ω \ {ω}) ∩ π(ω)] = I(π) (2.11)

holds for any j and the assertion is proven. �

Denote by Q the set of all P(X)-valued possibilistic distributions on Ω. If π1, π2 are
P(X)-possibilistic distributions on Ω such that π1(ω) ⊂ π2(ω) holds for each ω ∈ Ω, we
write π1 ≤ π2 and say that π1 is majorized by π2 or that π2 is an upper bound for π1.
As proved in Theorem 2.3 if π1 ≤ π2 holds, then I(π1) ⊆ I(π2) holds as well.

The inverse implication does not hold in general, i. e., if I(π1) ⊆ I(π2) is valid,
then π1 ≤ π2 need not hold. Indeed, let Ω = {ω1, ω2}, let π1(ω1) = π2(ω2) = X,
π1(ω2) = π2(ω1) = ∅, so that neither π1 ≤ π2 nor π2 ≤ π1 holds. For entropy I(π1) we
obtain that

I(π1) =
⋃
ω∈Ω

[Π1(Ω \ {ω}) ∩ π2(ω)]

= [Π1(Ω \ {ω1}) ∩ π1(ω1)] ∪ [Π1(Ω \ {ω2}) ∩ π1(ω2)]
= (π1(ω2) ∩ π1(ω1)) ∪ (π1(ω1) ∩ π1(ω2))
= (∅ ∩X) ∪ (X ∩ ∅) = ∅. (2.12)

For I(π2) the calculations and the results are the same, so that I(π1) = I(π2), but
neither π1 ≤ π2 nor π2 ≤ π1 holds.
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Lemma 2.5. Let π be a P(X)-valued distribution on Ω. Then for each S ⊂ P(Ω) the
relation

Π
(⋃
S
)

= Π
(⋃
{A : A ∈ S}

)
=

T∨{
π(ω) : ω ∈

⋃
S
}

=
⋃
{{π(ω) : ω ∈ A} : A ∈ S}

=
T∨
{Π(A) : A ∈ S} =

⋃
{Π(A) : A ∈ S} (2.13)

holds.

P r o o f . Obvious. �

Let us denote by Q(Ω, X) the space of all P(A)-valued possibilistic distributions over
the space Ω, in symbols,

Q(Ω, X) = { π : π : Ω→ P(X),
⋃
{π(ω) : ω ∈ Ω} = 1T = X }. (2.14)

Let ≤∗ be the binary relation, on Q(Ω, X), i. e., the subset of the Cartesian product
Q(Ω, X) × Q(Ω, X) defined in this way: for each π1, π2 ∈ Q(Ω, X), π1 <

∗ π2 holds iff
π1(ω) ⊆ π2(ω) holds for each ω ∈ Ω. It is possible that π1 <

∗ π2 holds for two P(X)-
distribution π1, π2 such that π1(ω) ⊂ π2(ω) is the case for some ω ∈ Ω and, of course,
π1(ω∗) ⊆ π2(ω∗) holds for two P(X)-distributions π1, π2 such that π1(ω) ⊂ π2(ω) is the
case for some ω ∈ Ω and, of course, π1(ω∗) ⊆ π2(ω∗) holds for each ω∗ ∈ Ω.

Lemma 2.6. The ordered pair D = 〈Q(Ω, X),≤∗〉 is a p. o. set which defines a complete
upper semilattice, so that for each nonempty subset E ⊂ D the supremum π(E) =∨D{π : π ∈ E} is defined. Given explicitly, πE is the mapping which takes Ω into P(X)
in such a way that for each ω ∈ Ω

πE(ω) =
⋃
{π ∈ E : π(ω)}. (2.15)

This mapping obviously defines a π-valued possibilistic distribution on Ω.

P r o o f . Obvious. �

However, the situation with the infimum of a set E of P(X)-distributions is not
dual to

∨D
E. We may define the mapping M(E) : Ω → P(X) in such a way that,

for each ω ∈ Ω, M(E)(ω) =
⋂
{π(ω) : π ∈ E}, but this mapping does not meet the

condition
∨D{M(E)(ω) : ω ∈ Ω} = 1P(X) = X. Indeed, let E = {π1, π2} be such

that π1(ω) = 1P(X) for ω ∈ Ω0, ∅ 6= Ω0 6= Ω, and π2(ω) = 1P(X) for ω ∈ Ω \ Ω0,
π2(ω) = ∅P(X) for ω ∈ Ω. Obviously, M(E)(ω) = ∅P(X) for each ω ∈ Ω, so that
M(E) is not a P(X)-distribution. Neither the operation of P(X)-valued complements,
defined by πC(ω) = X \ π(ω) yields the results meeting the conditions imposed on
P(X)-distributions.
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Lemma 2.7. Let E ⊂ Q be a nonempty set of P(X)-distributions, for each π ∈ Q let
Ππ : P(Ω) → P(X) denote the corresponding induced P(X)-possibilistic measure on
P(Ω). Then, for each A ⊂ Ω, the relation ΠπE (A) =

∨T {Ππ(A) : π ∈ E} holds.

P r o o f . For each A ⊂ Ω we obtain that
T∨
{Ππ(A) : π ∈ E} =

T∨
{ {
T∨
π(ω) : ω ∈ A} : π ∈ E }

=
T∨
{π(ω) : ω ∈ Ω, π ∈ E} =

T∨
{ {
T∨
π(ω) : π ∈ E} : ω ∈ A }

=
T∨
{πE(ω) : ω ∈ A} = ΠπE (A). (2.16)

The assertion is proven. �

According to the way in which P(X)-valued possibilistic measure Π on P(Ω) induced
by a P(X)-valued possibilistic distribution π on Ω is defined, the set function Π is
extensional with respect to the supremum operation

∨T on T = 〈P(X),⊆〉 in the sense
that for each nonempty system A of subsets of Ω, the identity

Π
(⋃
A
)

=
T∨
{Π(A) : A ∈ A} (2.17)

holds. In particular, for A = {A1, A2}, Π(A1)∪Π(A2) = Π(A1 ∪A2). For the operation
of infimum the relation dual to (2.17) is not the case, in general, only the inclusion
Π(A ∩ B) ⊆ Π(A) ∩ Π(B) is valid, as Π(A ∩ B) ⊂ Π(A) and Π(A ∩ B) ⊂ Π(B) holds
trivially. The difference between the values Π(A1 ∩ A2) and Π(A1) ∩ Π(A2) may range
over all the Boolean interval 〈∅, X〉 of T = 〈P(X),⊆〉. Indeed, let X = {0, 1}, let
π(ω1) = π(ω2) = 1, let A1 = {ω1}, A2 = {ω2}. Then Π(A1) = Π(A2) = 1, so that
Π(A1) ∧Π(A2) = 1, but Π(A1 ∩A2) = Π(∅) = 0.

Let us consider the simplest P(X)-valued possibilistic distribution π for which the
induced P(X)-measure Π on P(Ω) is also extensional w.r.t. the operation of infimum

∧
:

the identity mapping on P(Ω). Take Ω = X, and π(ω) = {ω} for every ω ∈ Ω, so that,
for each A ⊂ Ω, Π(A) =

⋂
A∈AΠ(A) follows, in particular, Π(A ∩ B) = Π(A) ∩ Π(B)

holds.

Definition 2.8. P(X)-valued possibilistic distribution π taking a nonempty set Ω into
the power-set P(X) over a nonempty set X is called completely extensional if, for each
nonempty system A of subsets of Ω, the relation

Π
(⋂
A
)

= Π

( ⋂
A∈A

A

)
=

⋂
A∈A

Π(A) (2.18)

holds. The P(X)-distribution π is called extensional if

Π(A ∩B) = Π(A) ∩Π(B) (2.19)

holds for each pair A,B ⊂ Ω.
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Lemma 2.9. Let π be a P(X)-valued possibilistic distribution defined on a nonempty
space Ω, taking its values in the power-set P(X) over a nonempty space X and such
that π(ω1) ∩ π(ω2) = ∅ holds for each ω1, ω2 ∈ Ω, ω1 6= ω2. Then the induced P(X)-
possibilistic measure on P(Ω) is extensional in the sense that Π(A)∩Π(B) = Π(A∩B)
is valid for each A,B ⊂ Ω.

P r o o f . First of all, let us consider the case when the sets A,B are disjoint. Then

Π(A) ∩Π(B) =

( ∨
ω1∈A

π(ω1)

)
∩

( ∨
ω2∈B

π(ω2)

)
=

⋃
〈ω1,ω2〉, ω1∈A,ω2∈B

(π(ω1) ∩ π(ω2)) = ∅

= Π(∅) = A ∩B = Π(A ∩B), (2.20)

as for each ω1 ∈ A, ω2 ∈ B, ω1 6= ω2 and π(ω1) ∩ π(ω2) = ∅ holds.
For each A,B ⊂ Ω, A = (A \B) ∪ (A ∩B), B = (B \A) ∪ (A ∩B) holds, so that

Π(A) ∩Π(B) = [Π((A \B) ∪ (A ∩B))] ∩ [Π((B \A) ∪ (A ∩B))]
= [Π(A \B) ∪Π(A ∩B)] ∩ [Π(B \A) ∪Π(A ∩B)]
= [Π(A \B) ∩Π(B \A)] ∪ [Π(A ∩B) ∩Π(B \A)]
∪ [Π(A ∩B) ∩Π(A \B)] ∪ Π(A ∩B) = Π(A ∩B), (2.21)

as

(A \B) ∩ (B \A) = (A ∩B) ∩ (B \A) = (A ∩B) ∩ (A \B) = ∅, (2.22)

so that, due to (2.20)

Π(A \B) ∩Π(B \A) = (A ∩B) ∩ (B \A) = (A ∩B) ∩ (A \B) = ∅. (2.23)

The assertion is proven. �

3. CONDITIONED SET-VALUED POSSIBILISTIC
DISTRIBUTIONS AND MEASURES

Conditioned (or conditional) probability distributions are very important tools in prob-
ability theory. Roughly speaking, conditioned probabilities enable us, on the grounds
of newly obtained evidence, to transform the probability values in such a way that the
random events incompatible with the new pieces of evidence are eliminated from evi-
dence – they obtain the zero-valued conditioned probability. Within the framework of
the standard Kolmogorov axiomatic probability theory mathematical formalization of
this transformation is very simple and well-known. Let 〈Ω,A, P 〉 be a probability space.
Hence, Ω is a nonempty space (no relationship to the support set of the possibilistic
distribution introduced above is being assumed at this moment), A is a nonempty σ-
field of subsets of Ω, and P : A → [0, 1] is a σ-additive real-valued set function. Subsets
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of Ω belonging to A are called random events; hence, to each A ∈ A the real number
P (A) ∈ [0, 1] is ascribed and called the probability of (the random event) A. Given an-
other random event B ∈ A such that P (B) > 0 holds, the conditioned probability of
(the random event) A under the condition that (the random event) B holds is denoted
by P (A|B) and defined by the well-known formula

P (A|B) = P (A ∩B) /P (B). (3.24)

This definition cannot be immediately translated into the model and language of T -
valued possibilistic distributions because of the fact that operation of division between
the values P (A ∩B) and P (B) cannot be defined in T . Let us proceed in this way: we
introduce three alternative approaches and we will examine the role of each of them
when considering conditioned possibilistic measure.

So, let T = 〈P(X),⊆〉, Ω, π : Ω → P(X) be such that
⋃
ω∈Ω π(ω) = X = 1T and

Π : P(Ω) → P(X) defined by Π(A) =
⋃
ω∈A π(ω) for each A ⊂ X be as above. Given

B ⊂ Ω, let us define three mappings πi(ω|B) : Ω→ P(X) in the following way:

(i) π1(ω|B) = π(ω) ∩ Π(B), (3.25a)
(ii) π2(ω|B) = π(ω), if ω ∈ B,

π2(ω|B) = ∅ (= ∅T ), if ω ∈ Ω \B, (3.25b)
(iii) π3(ω|B) = Π(Ω \B) ∪ π(ω) = Π((Ω \B) ∪ {ω}). (3.25c)

Let us investigate simple properties of these three mappings. Define, for each i =
1, 2, 3 and each B ⊂ Ω, the mapping Πi( · |B) : P(Ω)→ P(X) for each A ⊂ Ω,

Πi(A|B) =
T∨
ω∈A

πi(ω|B) =
⋃
ω∈A

πi(ω|B). (3.26)

Hence, for each i = 1, 2, 3, we explicitly obtain that

Π1(A|B) =
⋃
ω∈A

π1(ω|B) =
⋃
ω∈A

(π(ω) ∩ Π(B)) =

(⋃
ω∈A

π(ω)

)
∩ Π(B)

= Π(A) ∩ Π(B), (3.27)

Π2(A|B) =
⋃
ω∈A

π2(ω|B) =
⋃

ω∈A∩B
π(ω) = Π(A ∩B), (3.28)

Π3(A|B) =
⋃
ω∈A

π3(ω|B) =
⋃
ω∈A

(Π(Ω \B) ∪ π(ω))

= Π(Ω \B) ∪
⋃
ω∈A

π(ω) = Π(Ω \B) ∪Π(A)

= Π((Ω \B) ∪A). (3.29)
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For the extremum values A = Ω or B = Ω we obtain that

Π1(Ω|B) = Π(Ω) ∩Π(B) = Π(B),
Π2(Ω|B) = Π(Ω ∩B) = Π(B),
Π3(Ω|B) = Π((Ω \B) ∪ Ω) = Π(Ω) = 1T ,

Π1(A|Ω) = Π(A) ∩Π(Ω) = Π(A),
Π2(A|Ω) = Π(A ∩ Ω) = Π(A),
Π3(A|Ω) = Π((Ω \ Ω) ∪A) = Π(A). (3.30)

So, π1( · |B) and π2( · |B) define T -possibilistic distributions on B (supposing that B 6=
∅), and π3( · |B) defines a T -possibilistic distribution on Ω. Moreover, if B = Ω, then
Πi( · |B) is identical with the a priori possibilistic distribution π on Ω for each i = 1, 2, 3.
Let us recall that, in standard probability theory, if B ⊂ Ω is such that P (B) = 1,
then for each A ⊂ Ω the identity P (A|B) = P (A ∩ B)/P (B) = P (A) holds. The
intuition behind this fact is quite simple – the occurrence of a certain random event
(i. e., for which the probability equals one) does not bring any new information, so that
no modification of the a priori probability measure occurs. All of the three set functions
Πi( · |B), i = 1, 2, 3, also possess this important property.

More generally, the result Πi(A|B) = Π(B) (for i = 1, 2) or Π3(A|B) = 1T holds not
only for A = Ω, but also for each A ⊇ B, as may be easily checked by inspecting the
formulas (3.27), (3.28), and (3.29).

When approaching a more detailed analysis of the three P(X)-valued mappings
πi(ω|B), i = 1, 2, 3, let us begin with the mapping π3(ω|B) defined by (3.25c) and
related conditional possibility Π3(A|B) given by (3.29).
The reason for our giving preference to π3( · |B) is the fact that π3(ω|B) is, for eachB, the
only one of the three mappings in question which meets the condition of normalization,
i. e., for which ⋃

ω∈Ω

π3(ω|B) =
⋃
ω∈Ω

(Π(Ω \B) ∪ π(ω))

= Π(Ω \B) ∪
⋃
ω∈Ω

π(ω) = Π(Ω \B) ∪X = X = 1T . (3.31)

So, the P(X)-valued entropy I(π3( · |B)) is defined and, by writing π̂(ω) instead of
π3(ω|B) in order to simplify the notation, we can write

I(π3( · |B)) = I(π̂) =
⋃
ω∈Ω

(Π3(Ω \ {ω}) ∩ π̂(ω)). (3.32)

Let ω0 ∈ Ω be such that π̂(ω0) = X. Then

I(π3( · |B)) = I(π̂) =
⋃

ω∈Ω, ω 6=ω0

Π̂((Ω \ {ω}) ∩ π̂(ω)) ∪ Π̂(Ω \ {ω0}) ∩ π̂(ω0)

=
⋃

ω∈Ω, ω 6=ω0

(X ∩ π̂(ω)) ∪ (Π̂(Ω \ {ω0}) ∩X
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=
⋃

ω∈Ω, ω 6=ω0

π̂(ω) ∪ Π̂(Ω \ {ω0}) = Π̂(Ω \ {ω0})

= Π3((Ω \ {ω0})|B). (3.33)

4. REFINED SET-VALUED ENTROPY FUNCTIONS

Let us reconsider and analyze Lemma 2.4 in more detail. According to that result, if
there are ω1, ω2 ∈ Ω, ω1 6= ω2, such that π(ω1) = π(ω2) = X, then I(π) = X = 1P(X).

This fact may be understood in the sense that the above-defined set-valued entropy
function I is a very weak, poor and rough quantitative tool when seeking for an element
ω0 ∈ Ω which could be preferred as the most expectable state of the universe Ω on
the ground of the criteria that may be formalized within the framework of possibilistic
distributions and measures taking their values in the power-set P(X).

Hence, each decision rule picking up just one ω0 ∈ Ω must be based on more input
parameters than those expressible by the values of the entropy function I(π). However,
the situation is the same in the simplest probability space 〈Ω,A, P 〉, where Ω = {ω1, ω2}
and P ({ω1}) = P ({ω2}) = 1

2 . When we have to pick up just one of the states ω1, ω2

as the better solution of the problem in question, we have to do so on the grounds of
utilizing more data and criteria than from the two values P ({ω1}) = P ({ω2}) = 1

2 . The
following lemma may be taken as a complementary formulation of the conditions when
I(π) 6= 1P(X) = X is the case.

Lemma 4.1. Let Ω, X be nonempty sets, π : Ω → P(X) be a P(X)-possibilistic
distribution on Ω, and ω0 ∈ Ω be such that π(ω0) = X. Then

I(π) = Π(Ω \ {ω0}) (4.34)

holds. Consequently, if Π(Ω \ {ω0}) ( X holds, then I(π) ( X follows.

P r o o f . For I(π) we have

I(π) =
⋃
ω∈Ω

(Π(Ω \ {ω}) ∩ π(ω)]

=
⋃

ω∈Ω, ω 6=ω0

[Π(Ω \ {ω}) ∩ π(ω)] ∪Π(Ω \ {ω0}) ∩ π(ω0). (4.35)

If ω 6= ω0, then ω0 ∈ (Ω \ {ω}) and Π(Ω \ {ω}) = X = π(ω0) holds, so that

I(π) =

 ⋃
ω∈Ω, ω 6=ω0

π(ω)

 ∪Π(Ω \ {ω0})

= Π(Ω \ {ω0}) (4.36)

is valid and the assertion is proven. �

An easy corollary of Lemma 4.1 reads as follows. Let Ω, X and π be the same as
in Lemma 4.1, and let there exist x0 ∈ X such that there is only one ω0 ∈ Ω with the
properties x0 ∈ π(ω0) and Π(Ω \ {ω0}) ( X. Then I(π) = Π(Ω \ {ω0}) ( X follows.
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Inspired by Lemma 2.4 and Lemma 4.1, we propose in [7, 8, 9] some modifications of
the space of values in which the mapping π : Ω→ T takes its values in such a way that
π(ω0) = 1T is valid for only one ω0 ∈ Ω. In [7], the mapping π, defined on Ω, takes its
values in a complete chained lattice; let us recall, for the reader’s convenience, the way
leading to this notion.

A p. o. set (partially ordered set) T = 〈T,≤〉 is called a lattice if, for each t1, t2 ∈ T ,
the elements t1 ∨ t2 and t1 ∧ t2 are defined; and T is called a complete lattice if

∨
S and∧

S are defined for each S ⊂ T , applying a convention according to which
∧
∅ =

∨
T

and
∨
∅ =

∧
T for the empty subset of T (∨ and ∧, as well as

∨
and

∧
are supremum

and infimum operations related to the partial ordering relation ≤ on T ). The element∨
T (or

∧
T ) is called the unit (element) of T (or the zero (element) of T ) and is denoted

by 1T (or ∅T ), respectively.
A complete lattice T = 〈T,≤〉 is called distributive if, for each s ∈ T and S ⊂ T , the

relations
s ∧
(∨

S
)

=
∨

(s ∧ t), s ∨
(∧

S
)

=
∧

(s ∨ t) (4.37)

are valid. A complete lattice T is called chained, if the partial ordering ≤ on T is linear:
that is, either t1 ≤ t2 or t2 ≤ t1 holds for each t1, t2 ∈ T. Consequently, for each mutually
different t1, t2 ∈ T either t1 < t2 or t2 < t1 holds.

Obviously, each complete chained lattice T = 〈T,≤〉 is distributive.
For more detail on binary relations, partial orderings and chains (linear orderings),

semilattices and lattices, Boolean algebras, and the related structures and notions cf.
[1, 3, 11] or any more recent textbook or monograph on this.

The values of possibilistic distributions are taken from complete lattices in [7], but
they are bound by the condition of chained structure, so that each two possibility degrees
are comparable by the partial ordering relation ≤ defined on T = 〈T,≤〉. In what follows,
we use a more intuitive space of values, namely, that of the power-set over the space X.
However, the conditions imposed on chained lattices need not be valid in general; that
is, the structures from [7] and that introduced in this text cannot be classified as being
a particular case or, in contrary, a generalization of each other.

Theorem 4.2. Let Ω, X be nonempty sets, and π : Ω → P(X) be a P(X)-valued
possibilistic distribution on Ω. Let ω0 ∈ Ω be such that π(ω0) = X, and Ω0 = {ω ∈
Ω : ω 6= ω0, π(ω) = X}. Define π0 : Ω → P(X) in this way: if ω ∈ Ω \ Ω0, then
π0(ω) = π(ω), if ω ∈ Ω0, then π0(ω) = ∅ (= 0P(X)). Then

I(π0) = Π(Ω \ {ω0}). (4.38)

P r o o f . By definition,

I(π0) =
⋃
ω∈Ω

[Π0(Ω \ {ω}) ∩ π0(ω)]

=
⋃

ω∈Ω\Ω0

[Π0(Ω \ {ω}) ∩ π0(ω)

∪
⋃
ω∈Ω0

[Π0(Ω \ {ω}) ∩ π0(ω)]. (4.39)
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The last line in (4.39) is identical with ∅, as π0(ω) = ∅ for each ω ∈ Ω0, so that, as π0(ω)
and π(ω) are identical for each ω ∈ Ω \ Ω0, we obtain that

I(π0) = Π(Ω \ {ω0}) ∩ π(ω0) ∪
⋃

ω∈(Ω\Ω0)\{ω0}

[Π(Ω \ {ω}) ∩ π(ω)]. (4.40)

If ω ∈ (Ω\Ω0)\{ω0} is the case, then ω0 ∈ Ω\{ω} thus Π(Ω\{ω}) = X holds, moreover,
π(ω0) = X holds as well. Consequently, we can reformulate (4.40) as

I(π0) =

 ⋃
ω∈(Ω\Ω0)\{ω0}

(π(ω) ∩X) ∪ (Π(Ω \ {ω0}) ∩X


= Π(Ω \ {ω0}). (4.41)

The assertion is proven. �

Let us consider another example of restricted set-valued possibilistic distributions,
which may be viewed as a more severe application of the reduction principle leading
from π to π0 in Theorem 4.2.

Theorem 4.3. Let Ω, X be nonempty spaces, and π : Ω → P(X) be a P(X)-valued
possibilistic distribution on Ω. Further let π(ω0) = X holds for a certain element ω0 ∈ Ω,
and π(ω) ⊂ X0 ( X for a certain proper subset X0 of X and for each ω ∈ Ω, ω 6= ω0.
Then I(π) ⊆ X0 holds, and the equality take place when there is ω1 ∈ Ω such that
π(ω1) = X0.

P r o o f . By definition,

I(π) =
⋃
ω∈Ω

[Π(Ω \ {ω}) ∩ π(ω)]

=
⋃

ω∈Ω,ω 6=ω0

[Π(Ω \ {ω}) ∩ π(ω)] ∪ [Π(Ω \ {ω0}) ∩ π(ω0)]

=
⋃

ω∈Ω,ω 6=ω0

(X ∩ π(ω)) ∪ [Π(Ω \ {ω0}) ∩X]

=
⋃

ω∈Ω,ω 6=ω0

π(ω) ∪ Π(Ω \ {ω0})

= Π(Ω \ {ω0}) ∪ Π(Ω \ {ω0}) = Π(Ω \ {ω0}) ⊂ X0 (4.42)

as the relation Π(Ω \ {ω}) = X holds for each ω 6= ω0. The inclusion I(π) ⊂ X0 easily
follows, with the equality in the particular case of π(ω1) = X0 for some ω1 ∈ Ω. �

It is worth explicitly mentioning, that for each P(X)-valued possibilistic distribution
π : Ω → P(X) we may obtain reduced possibilistic distribution π0, setting π0(ω0) =
π(ω0) = X, and π0(ω) = π(ω) ∩ X0 for a fixed proper subset X0 ⊂ X and for each
ω ∈ Ω, ω 6= ω0.
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5. COMPOSITIONS OF SET-VALUED POSSIBILISTIC
DISTRIBUTIONS

Let Ω and X be nonempty sets, and H be a nonempty parameter set. For each i ∈ H,
let πi : Ω → P(X) be a P(X)-valued possibilistic distribution on Ω; that is, for each
ω ∈ Ω, πi(ω) ⊂ X and

⋃
ω∈Ω πi(ω) = X holds. Let πH be the following P(X)-valued

mapping defined on Ω: for each ω ∈ Ω,

πH(ω) =
⋃
i∈H

πi(ω). (5.43)

This mapping is called the supremum of the P(X)-valued possibilistic distribution over
the parameter set H. Instead of πH =

⋃
i∈H πi we also write

∨H
πi or

∨
i∈H πi (the

symbol for supremum being used in order to save the symbol
⋃

of set union just for
subsets of the spaces Ω and X). In order to apply (2.1) we obtain for the P(X)-valued
entropy of πi, i ∈ H, the value

I(πi) =
⋃
ω∈Ω

[Πi(Ω \ {ω}) ∩ πi(ω)]. (5.44)

The mapping πH obviously meets the conditions imposed on P(X)-valued possibilistic
distribution, so that the related entropy value I(πH) is defined by

I(πH) =
⋃
ω∈Ω

[ΠH(Ω \ {ω}) ∩ πH(ω)]. (5.45)

Here Πi is the P(X)-valued possiblistic measure on P(Ω) defined by the distribution πi
on Ω, and ΠH is the P(X)-valued possibilistic measure defined by the distribution πH

on Ω. Applying Theorem 2.3 on πi and πH , the inclusion I(πi) ⊆ I(πH) holds for each
i ∈ H; so the inclusion

⋃
i∈H I(πi) ⊆ I(πH) is also valid. The equality need not hold,

as the following very simple example demonstrates.
Let there be Ω = {ω1, ω2}, let X 6= ∅, π1 : Ω → P(X) be defined by π1(ω1) = X,

π1(ω2) = ∅, and π2 : Ω → P(X) be defined by π2(ω1) = ∅, π2(ω2) = X. For both
i = 1, 2, the identity

⋃
ω∈Ω πi(ω) = X obviously holds. Moreover

I(π1) =
⋃
ω∈Ω

(Π1(Ω \ {ω}) ∩ π1(ω))

= (Π1(Ω \ {ω1}) ∩ π1(ω)) ∪ (Π1(Ω \ {ω2}) ∩ π1(ω2))
= (π1(ω2) ∩ π1(ω1)) ∪ (π1(ω1) ∩ π1(ω2))
= (∅ ∩X) ∪ (X ∩ ∅) = ∅. (5.46)

Analogously, we obtain that I(π2) = ∅, hence, I(π1) ∪ I(π2) = ∅. For π1 ∨ π2 we obtain
that

(π1 ∨ π2)(ω1) = π1(ω1) ∪ π2(ω1) = X ∪ ∅ = X, (5.47)
(π1 ∨ π2)(ω2) = π1(ω2) ∪ π2(ω2) = ∅ ∪X = X, (5.48)

and I(π1 ∨ π2) = X 6= ∅ = I(π1) ∪ I(π2).
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Let Ω, X be nonempty spaces, and π1, π2 : Ω → P(X) be P(X)-valued possibilistic
distributions on Ω such that Π1 ⊆ Π2 holds; hence, the inclusion π1(ω) ⊆ π2(ω) is
valid for each ω ∈ Ω. As proved in Section 2, in this case I(π1) ⊆ I(π2) follows and
π1(ω) ⊆ π2(ω) is valid for each ω ∈ Ω. Consequently, I(π1 ∨π2) = I(π2) = I(π1)∪ I(π2)
follows.

Let us mention two almost immediate consequences of the relations proven above.

Lemma 5.1. Let Ω, X be nonempty sets, and π : Ω → P(X) be a P(X)-valued pos-
sibilistic distribution on Ω such that there exist different elements ω1, ω2 ∈ Ω for which
the intersection π(ω1) ∩ π(ω2) defines a nonempty subset of X. Then the P(X)-valued
entropy function I ascribes to π the nonempty (i. e., nonzero in the sense of the structure
T on P(Ω)) value

I(π) =
⋃
ω∈Ω

(Π(Ω \ {ω}) ∩ π(ω)) 6= ∅. (5.49)

P r o o f . As ω1 6= ω2, the membership relations ω2 ∈ Ω \ {ω1} and ω1 ∈ Ω \ {ω2} are
valid. Hence, the relation

I(π) ⊇ π(ω1) ∩ π(ω2) 6= ∅ (5.50)

holds and the assertion is proven. �

Lemma 5.2. Let Ω and X be nonempty sets, and π1, π2 : Ω→ P(X) be P(X)-valued
possibilistic distributions on Ω such that π1(ω1) = X, π1(ω) = ∅, if ω 6= ω1, π2(ω2) = X,
π2(ω) = ∅, if ω 6= ω2. Then

∅ = I(π1) ∪ I(π2) ( I(π1 ∨ π2) ⊇ X. (5.51)

P r o o f . I(π1) = ∅, as π1(ω1) ∩ π1(ω) = ∅ for any ω ∈ Ω different from ω1 (cf.
Lemma 2.2); similarly also holds I(π2) = ∅. Thus we have ∅ = I(π1) = I(π2) =
I(π1)∪I(π2). Analogously to (5.47) and (5.48) we have two different elements ω1, ω2 ∈ Ω
for which (π1∨π2)(ω1)∩(π1∨π2)(ω2) = X 6= ∅, thus the right-hand side of (5.51) follows
from (5.49): I(π1 ∨ π2) =

⋃
ω∈Ω(Π(Ω \ {ω}) ∩ π(ω)) ⊇ π(ω1) ∩ π(ω2) = X. �

Let Ω and X be nonempty sets, and G be a nonempty parameter set. For each i ∈ G,
let πi : Ω → P(X) be a P(X)-possibilistic distribution on Ω; hence, πi(ω) ⊂ X and⋃
ω∈Ω πi(ω) = X hold for each i ∈ G. Let πG : Ω→ P(X) be the following P(X)-valued

mapping defined on Ω: for each ω ∈ Ω,

πG(ω) =
⋂
i∈G

πi(ω). (5.52)

The following lemma is obvious, but worth being introduced explicitly.

Lemma 5.3. Let there exist ω0 ∈ Ω such that for each i ∈ G, πi(ω0) = X. Then the
mapping πG : Ω → P(X) defined by (5.52), meets the conditions imposed on P(X)-
valued possibilistic distributions.
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6. CONCLUSIONS

According to what we said in the introductory section, our aim was to introduce and
analyze some possibilistic distributions and related possibilistic measures with non-
numerical, but intuitive enough uncertainty (in the sense of fuzziness and vagueness)
degrees – as the simplest structure for these purposes we have taken the classical Boolean
algebra over the power-set of all subsets of a basic set Ω, together with sizes of elements
of Ω and their collections quantified by subsets of another space X. The contents of par-
ticular sections as scheduled in the introduction have been more or less tightly kept; that
is why we do not feel it is necessary to repeat them now, rather focusing our attention
on some inspirations for further developments.

First, worthy of interest are set-valued distributions taking values in power-sets of
particular sets X; they are both interesting and important. E. g., take a map of a
region with different subregions colored in different colors, yielding some information on
different regions due to the system of colors known to the user.

More theoretical, but still interesting enough are the problems of incomplete set-
valued possibilistic distributions and measures. In [7], we proposed possibilistic dis-
tributions π : Ω → P(X) and possibilistic measures Π : P(Ω) → P(X) as complete
mappings, so that for each ω ∈ Ω and each A ⊂ Ω the values π(ω) ∈ P(X) and
Π(A) =

⋃
ω∈A π(ω) are defined. However, only the value P (

⋃
A∈S A) for a finite system

S of a disjoint subsystem of A may be defined and computed from values of P on A in
probability spaces 〈Ω,A, P 〉 with finitely additive probability measure P on a finite field
A. Hence, only probability spaces which can be fully described by relative frequencies
of their results can be fully defined by probability spaces and, if this is the case, finitely
additive probability measures suffice. For infinite spaces 〈Ω,A, P 〉 and for the Borel or
Lebesque subsets of real line, the Borel measure defined for semi-open interval by their
length may be in a consistent and conservative way extended to Borel or Lebesque sets,
but there are subsets of the real line which are measurable neither in the Borel nor in
the Lebesque sense, so that the system of all Borel and Lebesque subsets of the real line
measurable in the Borel or Lebesque sense remains incomplete.

As it is well-known, in the competition of set-functions in general and measures, in-
cluding the probabilistic ones, in particular much more applications in various practical
computational and technical problems have been based on set-functions based on Borel
and Lebesque real-valued measures. They are measures not defined on all subsets of the
basic space, but on those sets where their values are defined they provide an intuitive and
easy way to compute and process values. Consequently, even when set-valued distribu-
tions and measures introduced and analyzed above lead to complete measures, it should
be useful and interesting to admit the incompleteness of the resulting set-valued pos-
sibilistic distributions and measures from the very primary and axiomatic approach to
set-valued possibilistic distributions and measures. Let us hope to have an opportunity
to analyze this problem in more detail in our future work.
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