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INEQUALITIES INVOLVING HEAT POTENTIALS

AND GREEN FUNCTIONS

Neil A. Watson, Christchurch

(Received June 27, 2013)

Abstract. We take some well-known inequalities for Green functions relative to Laplace’s
equation, and prove not only analogues of them relative to the heat equation, but general-
izations of those analogues to the heat potentials of nonnegative measures on an arbitrary
open set E whose supports are compact polar subsets of E. We then use the special case
where the measure associated to the potential has point support, in the following situation.
Given a nonnegative supertemperature on an open set E, we prove a formula for the asso-
ciated Riesz measure of any point of E in terms of a limit inferior of the quotient of the
supertemperature and the Green function for E with a pole at that point.
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In his book, Doob [1], Theorem 1.VII.3, presented some inequalities, and their

consequences, pertaining to the Green function for Laplace’s equation on any open

set that possesses such a function. However, he did not give a corresponding result for

Green functions relative to the heat equation, but merely remarked [1], page 299, that

“We shall use the fact (cf. Theorem VII.3) that GD(ξ, ·) and GD(·, η) are bounded

outside neighborhoods of their poles”. In this note, we will prove a generalization

of the analogue for the heat equation of [1], Theorem 1.VII.3, and use it to prove

an analogue of [1], Theorem 1.VIII.10.

Notation and terminology will generally follow [2], but we also need the definition

of a coheat ball. Let

W (x, t) =





(4πt)−n/2 exp
(
−
|x|2

4t

)
if t > 0,

0 if t 6 0
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denote the fundamental temperature on R
n+1. For any point q0 = (y0, s0) ∈ R

n+1

and any positive number c, the set

Ω∗(q0; c) = {(x, t) ∈ R
n+1 : W (x− y0, t− s0) > (4πc)−n/2}

= {(x, t) ∈ R
n+1 : |x− y0|

2 < 2n(t− s0) log(c/(t− s0)), s0 < t < s0 + c}

is called the coheat ball with centre q0 and radius c. It is the reflection of the heat

ball in the hyperplane Rn × {s0}. In the sequel, we shall write τ(c) for (4πc)−n/2.

Given a point p0 ∈ E, we denote by Λ(p0;E) the set of points p for which there is

a polygonal path in E that joins p0 to p, along which the temporal variable is strictly

decreasing. By a polygonal path, we mean a path which is the union of finitely many

line segments. We also denote by Λ∗(p0;E) the set of points p for which there is

a polygonal path in E joining p0 to p, along which the temporal variable is strictly

increasing.

Theorem 1. Let E be an open set, and let GEµ be the heat potential of a nonneg-

ative measure µ whose support F is a compact polar subset of E. For any positive

number c such that the closed coheat ball satisfies Ω
∗
(q; c) ⊆ E for all q ∈ F , we put

Υ = Υ(F, c) =
⋃

q∈F

Ω∗(q; c).

(a) If K is a compact subset of E such that Υ ⊆ K, and v is a nonnegative

supertemperature on E \K such that

(1) lim inf
p→r

v(p) > GEµ(r)

for quasi-every point r ∈ ∂K, then v > GEµ on E \K.

(b) If v is a nonnegative supertemperature on E such that v > GEµ quasi-

everywhere on Υ, then v > GEµ on E.

(c) If L is a subset of E that contains Υ, then RL
GEµ = R̂L

GEµ = GEµ on E.

(d) If u is a nonnegative supertemperature on E that is positive on ∂Υ, then there

is a constant α such that GEµ 6 αu on E \Υ.

(e) The heat potential GEµ is bounded on E \Υ.

(f) If GEν is a heat potential, and ν(Λ(q;E)) > 0 for every point q ∈ F , then there

is a constant α such that GEµ 6 αGEν on E \Υ.

(g) Given any point r ∈
⋂

q∈F

Λ(q;E), there is a constant α such that GEµ 6

αGE(·; r) on E \Υ.
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P r o o f. (a) We first suppose that condition (1) holds for all points r ∈ ∂K. We

define a nonnegative function w on E by putting

w =

{
(GEµ) ∧ v on E \K,

GEµ on K.

In view of condition (1) and [2], Lemma 7.20, w is a supertemperature on E. Since F

is compact we have µ(F ) < ∞, and so Gµ is a heat potential on R
n+1, by [2],

Theorem 6.18. We denote by h the greatest thermic minorant of Gµ on E. By [2],

Theorem 6.31, the Riesz measure associated with Gµ is µ itself, and so the Riesz

Decomposition Theorem [2], Theorem 6.34, shows that Gµ = GEµ+h on E. We put

u = Gµ−w on E\F . Since Gµ is a temperature on Rn+1\F by [2], Theorem 6.25, the

function u is a subtemperature on E \F , and on K \F we have u = Gµ−GEµ = h.

Since h is bounded on K, u is bounded on K \F . Furthermore, whenever p ∈ E \K

and q ∈ F we have G(p; q) 6 τ(c) because Ω∗(q; c) ⊆ Υ ⊆ K, and hence

u(p) 6 Gµ(p) =

∫

F

G(p; q) dµ(q) 6 τ(c)µ(F ) < ∞

for all p ∈ E \ K. Thus u is upper bounded on E \ K, and hence on E \ F .

Since F is closed and polar, it follows from [2], Theorem 7.14, that u can be extended

to a subtemperature u on E. Since u 6 Gµ on E \ F , and F is Lebesgue null,

we have Gµ − u > 0 almost everywhere on E. Both sides of this last inequality

are supertemperatures on E, and so the inequality holds everywhere on E by [2],

Theorem 3.59. Thus u 6 Gµ on E, which implies that u 6 h on E, in view of [2],

Definition 3.65. On E \K we therefore have

Gµ− ((GEµ) ∧ v) 6 Gµ−GEµ,

so that v > GEµ as required.

We now consider the general case, where (1) holds only for every r ∈ ∂K \ Z,

where Z is a polar set. We choose a heat potential v0 on E such that v0 = ∞ on Z.

Then for each ε > 0, the function v + εv0 is a nonnegative supertemperature on

E \ K such that lim inf
p→r

(v + εv0)(p) > GEµ(r) for every point r ∈ ∂K. Therefore

v + εv0 > GEµ on E \ K by the case proved above. Making ε → 0+, we see that

v > GEµ except, possibly, on the polar subset of E \K where v0 = ∞. Since polar

sets are Lebesgue null, it follows from [2], Theorem 3.59, that v > GEµ everywhere

on E \K.

(b) Since lim inf
p→r, p∈E\Υ

v(p) > v(r) > GEµ(r) for quasi-every point r ∈ ∂Υ, it follows

from part (a) with K = Υ that v > GEµ on E\Υ. Thus v > GEµ almost everywhere

on E, and hence everywhere on E by [2], Theorem 3.59.
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(c) Since R̂L
GEµ 6 RL

GEµ 6 GEµ on E, it suffices to prove that the smoothed

reduction majorizes GEµ on E. The smoothed reduction is a nonnegative supertem-

perature on E, and equal to GEµ on the open subset Υ = Υ(F, c) of L. There-

fore, for any d < c we have R̂L
GEµ > GEµ on

⋃
q∈F

Ω
∗
(q; d) \ F . We now show that⋃

q∈F

Ω
∗
(q; d) = Υ(F, d), and because

Υ(F, d) ⊆
⋃

q∈F

Ω
∗
(q; d) ⊆ Υ(F, d),

it suffices to show that
⋃
q∈F

Ω
∗
(q; d) is a closed set. Let {pj} be a convergent sequence

of points in that union, with limit p′ = (x′, t′). For each j, we choose a point qj ∈ F

such that pj ∈ Ω
∗
(qj ; d). Since F is compact, the sequence {qj} has a subsequence

{qjk} which converges to a point q
′ = (y′, s′) ∈ F . If pjk = qjk for infinitely many

values of k, then p′ = q′ ∈ Ω
∗
(q′; d). On the other hand, if pjk = qjk for only finitely

many values of k, then we choose a number k0 such that pjk 6= qjk whenever k > k0.

Putting pjk = (xk, tk) and qjk = (yk, sk), we have

|xk − yk|
2 6 2n(tk − sk) log

( d

tk − sk

)

whenever k > k0. If tk − sk → 0 as k → ∞, then xk − yk → 0 as well, and so

p′ = q′ ∈ Ω
∗
(q′; d). Otherwise, making k → ∞ we obtain

|x′ − y′|2 6 2n(t′ − s′) log
( d

t′ − s′

)
,

so that again p′ ∈ Ω
∗
(q′; d). Thus the union in question is a closed set, and hence

is equal to Υ(F, d). It follows that R̂L
GEµ > GEµ on Υ(F, d) \ F , and hence quasi-

everywhere on Υ(F, d) because F is polar. Therefore R̂L
GEµ > GEµ on E, by part (b).

(d) Whenever p ∈ E \Υ and q ∈ F , we have G(p; q) 6 τ(c) because Ω∗(q; c) ⊆ Υ,

and hence

GEµ(p) =

∫

F

GE(p; q) dµ(q) 6

∫

F

G(p; q) dµ(q) 6 τ(c)µ(F ) < ∞

for all p ∈ E \Υ. Furthermore, because u > 0 and u is lower semicontinuous on ∂Υ,

it has a positive minimum over ∂Υ. We can therefore find a positive constant α such

that GEµ 6 αu on ∂Υ. Hence

α lim inf
p→r, p∈E\Υ

u(p) > αu(r) > GEµ(r)
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for all points r ∈ ∂Υ. Now part (a), with K = Υ, shows that αu > GEµ on E \Υ,

and hence on E \Υ.

(e) This follows from part (d) by taking u = 1.

(f) By [2], Theorem 6.11, GE(q; p) > 0 if and only if p ∈ Λ(q;E). Therefore the

condition ν(Λ(q;E)) > 0 implies that

∫

Λ(q;E)

GE(q; p) dν(p) > 0.

Thus GEν > 0 on F , so that the set D = {p ∈ E : GEν(p) > 0} is an open superset

of F because GEν is lower semicontinuous on E. If we choose d < c such that

Υ(F, d) ⊆ D, then part (d) implies that there is a constant α such that GEµ 6 αGEν

on E \Υ(F, d) ⊇ E \Υ(F, c).

(g) If ν is a point mass at r, then ν(Λ(q;E)) = ν({r}) > 0 for all q ∈ F , so that

the result follows from part (f). �

E x am p l e. Let ω be a nonnegative Borel measure on R
n whose support is

a Lebesgue null compact set K. Then the Gauss-Weierstrass integral w of ω exists

and is a temperature on the set D = R
n × ]0,∞[. If we put E = R

n+1 and

u =

{
w on D,

0 on R
n × ]−∞, 0],

then u is the heat potential of a measure supported by the set F = K ×{0}, in view

of [2], Example 6.14. Moreover, [2], Theorem 7.55, shows that the thermal capacity

of F is zero, so that F is polar by [2], Theorem 7.46. Hence Theorem 1 can be used

to show that:

(a) The temperature w is bounded on D \Υ.

(b) If Gν is a heat potential, and ν(Rn × ]−∞, 0[) > 0, then there is a constant α

such that w 6 αGν on D \Υ.

(c) Given any point r ∈ R
n × ]−∞, 0[, there is a constant α such that w 6 αG(·; r)

on D \Υ.

The special case of Theorem 1 where F is a singleton is analogous to a result for

classical superharmonic functions given by Doob in [1], Theorem 1.VII.3. Using this

special case, we now prove a result analogous to [1], Theorem 1.VIII.10. The first

part was given in [1], page 307.
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Theorem 2. If v is a nonnegative supertemperature on an open set E, and ν is

its associated Riesz measure, then for each point q ∈ E we have

inf
Λ∗(q;E)

v

GE(·; q)
= ν({q}) and lim

c→0+

(
inf

Ω∗(q;c)

v

GE(·; q)

)
= ν({q}).

P r o o f. We put D = Λ∗(q;E), and note that D = {p ∈ E : GE(p; q) > 0} by [2],

Theorem 6.7. We also put

α = inf
D

v

GE(·; q)
.

The function v − αGE(·; q) is a supertemperature on E \ {q} which is nonnegative

on D by the definition of α, and hence is nonnegative everywhere on E \ {q}. It

therefore follows from [2], Theorem 7.14, that v − αGE(·; q) has a unique extension

to a supertemperature u on E. Then v = αGE(·; q) + u on E \ {q}, and hence on E

because both sides are supertemperatures on E. This implies that ν({q}) > α. If

ν({q}) = β > α, then v > βGE(·; q) on E, so that

v

GE(·; q)
> β > α

on D, contrary to the definition of α. Hence ν({q}) = α.

We now put

γ = lim
c→0+

(
inf

Ω∗(q;c)

v

GE(·; q)

)
.

The part just proved shows that γ > ν({q}). If γ > ν({q}), we choose δ such

that γ > δ > ν({q}). Then there is d > 0 such that v > δGE(·; q) on Ω∗(q; d). If

0 < e < d, then Ω
∗
(q; e) ⊆ E and v > δGE(·; q) on Ω

∗
(q; e)\{q}, so that v > δGE(·; q)

on E, by the case F = {q} of Theorem 1 (b). So

inf
D

v

GE(·; q)
> δ,

and hence ν({q}) > δ by the first part of this result. This contradicts our choice

of δ. �
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