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Abstract. Let µn−1(G) be the algebraic connectivity, and let µ1(G) be the Laplacian
spectral radius of a k-connected graph G with n vertices and m edges. In this paper, we
prove that

µn−1(G) >
2nk2

(n(n− 1)− 2m)(n+ k − 2) + 2k2
,

with equality if and only if G is the complete graph Kn or Kn − e. Moreover, if G is
non-regular, then

µ1(G) < 2∆ −

2(n∆− 2m)k2

2(n∆ − 2m)(n2 − 2n+ 2k) + nk2
,

where ∆ stands for the maximum degree of G. Remark that in some cases, these two
inequalities improve some previously known results.

Keywords: k-connected graph; non-regular graph; algebraic connectivity; Laplacian spec-
tral radius; maximum degree

MSC 2010 : 05C50, 15A18

1. Introduction

In this paper we consider undirected simple graphs. Let G be a graph with vertex

set V (G) = {v1, v2, . . . , vn} and edge set E(G). For i ∈ {1, 2, . . . , n}, let NG(vi) and

dG(vi) denote the neighborhood (the set of vertices adjacent to vertex vi) and the

degree of vertex vi in G, respectively. We also use ∆(G) and δ(G) to denote the

This work was supported by China Postdoctoral Science Foundation (No. 2015M572252),
Guangxi Natural Science Foundation (No. 2014GXNSFBA118008) and NSFC (Nos.
11501133, 11301096, 11171102).
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maximum and minimum degree of vertices in G, respectively. Recall that a graph G

is regular if ∆(G) = δ(G). The distance between two vertices vi and vj (i 6= j)

in G is the number of edges in a shortest path connecting vi and vj . The diameter

of G, written D(G), is the maximum distance over all pairs of vertices in G. The

(vertex) connectivity of G, denoted by κ(G), is the minimum number of vertices

whose removal disconnects G or reduces it to a single vertex. A graph G is k-

connected if κ(G) > k. A 1-connected graph is precisely a nontrivial connected

graph.

The Laplacian matrix of a graph G is L(G) = D(G) − A(G), where A(G) is the

adjacency matrix of G and D(G) = diag(dG(v1), dG(v2), . . . , dG(vn)) is the diagonal

matrix of vertex degrees in G. Observe that L(G) is a positive semi-definite matrix,

and so all its eigenvalues are non-negative real numbers, which are also called the

Laplacian eigenvalues of G and usually ordered as

µ1(G) > . . . > µn−1(G) > µn(G).

It is well known that µn(G) = 0 and the algebraic multiplicity of zero as an eigen-

value of G is exactly the number of connected components in G, which implies that

µn−1(G) > 0 if and only if G is connected (see, e.g., [1]). Fiedler [4] further showed

that if G a non-complete graph then µn−1(G) 6 κ(G), and based on these facts

he defined µn−1(G) as the algebraic connectivity of G. It is worth pointing out

that, besides connectivity, µn−1(G) has also close relations to other important graph

invariants, such as isoperimetric number, maximum cut, expanding properties, inde-

pendence number, genus, diameter, mean distance, and bandwidth-type parameters,

for more details we refer the reader to [1], [4], [8] and the latest comprehensive

review [2].

There have also been many attempts to find a lower bound for µn−1(G) based

on simple properties of the graph G, such as the number of vertices, number of

edges, minimum degree, and diameter. Fiedler [4] first showed that for a graph G

on n vertices with δ(G) = δ,

µn−1(G) > 2δ − n+ 2.

Later in [9], Mohar proved that if G is a connected graph on n vertices with the

diameter D(G) = D, then

(1.1) µn−1(G) >
4

nD
.

Recently, in [7], Lu, Zhang and Tian showed that

(1.2) µn−1(G) >
2n

(n(n− 1)− 2m)D + 2
,
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where m is the number of edges in G. The equality holds in (1.2) if and only if

G = Kn or G = P3 (the path on 3 vertices). Notice that the lower bounds (1.1)

and (1.2) are incomparable. In fact, it is not difficult to check that for graphs with

m > n(n− 2)/4+1, the lower bound (1.2) is better than (1.1), while for graphs with

m 6 n(n− 2)/4, the lower bound (1.1) is better than (1.2).

Another important and well-studied Laplacian eigenvalue of a graph G is the

largest Laplacian eigenvalue µ1(G), which is also called the Laplacian spectral radius

of G. There is a nice relation between the Laplacian spectral radius and the algebraic

connectivity of G, that is, µ1(G) + µn−1(G) = n, where G is the complement of G.

Hence, it is not surprising at all that the importance of one of these eigenvalues

implies the importance of the other. For more about the Laplacian spectral radius

of graphs one can refer to [1], [8].

It is well-known that µ1(G) 6 2∆(G) with equality if and only if G is a bipartite

regular graph. Then it is natural to ask how small 2∆(G)−µ1(G) can be when G is

non-regular. Let G be a connected non-regular graph on n vertices with ∆(G) = ∆

and D(G) = D. Shi [11] proved that

µ1(G) < 2∆− 2

(2D + 1)n
.

Later in [6], Li, Shiu and Chang improved Shi’s bound as follows:

µ1(G) < 2∆− 1

nD
.

Recently, Ning, Li and Lu [10] further showed that

(1.3) µ1(G) < 2∆− 1

n(D − 1/4)
.

In this paper, we continue to investigate the bounds for the algebraic connectivity

and the Laplacian spectral radius of graphs. In Section 2, we present sharp lower

bounds on the algebraic connectivity for k-connected graphs, which, in some cases,

improve the bounds (1.1) and (1.2). In Section 3, we give upper bounds on the

Laplacian spectral radius for k-connected non-regular graphs, which, in some cases,

improve the bound (1.3).
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2. The algebraic connectivity of k-connected graphs

In this section, we give sharp lower bounds on µn−1(G) for a k-connected graph G,

using some ideas of Lu, Zhang and Tian [7].

As usual, let Kn denote the complete graph on n vertices and let Kn − e denote

the graph obtained from Kn by deleting its arbitrary edge e. We denote by G the

complement of the graph G.

Theorem 2.1. If G is a k-connected graph with n vertices and m edges, then

(2.1) µn−1(G) >
2nk2

(n(n− 1)− 2m)(n+ k − 2) + 2k2
,

with equality holding if and only if G = Kn or G = Kn − e.

P r o o f. Consider first the complete graph Kn. Note that m(Kn) = n(n − 1)/2

and µn−1(Kn) = n. Then a trivial calculation shows that the statement holds for the

case of the complete graph. Hence, in what follows, we only consider non-complete

graphs.

Let x = (xv1 , xv2 , . . . , xvn)
T ∈ R

n \ {0} be an eigenvector of L(G) corresponding

to µn−1(G). Then µn−1(G)x = L(G)x, and consequently,

(2.2) µn−1(G) =
xTL(G)x

xTx
=

∑

vivj∈E(G)(xvi − xvj )
2

∑

vi∈V (G) x
2
vi

.

Noting that µn(G) = 0 with eigenvector j = {1, 1, . . . , 1}T, we have x ⊥ j, and so
∑

vi∈V (G)

xvi = 0. Using this fact and some calculation, it follows from (2.2) that

(2.3) µn−1(G) =
2n

∑

vivj∈E(G)(xvi − xvj )
2

∑

vi∈V (G)

∑

vj∈V (G)(xvi − xvj )
2
.

Moreover, observing that
∑

vivj∈E(G)

(xvi −xvj )
2 6= 0 (since G is connected), from (2.3)

we obtain

µn−1(G) =
n
∑

vivj∈E(G)(xvi − xvj )
2

∑

vivj∈E(G)(xvi − xvj )
2 +

∑

vivj∈E(G)(xvi − xvj )
2

(2.4)

=
n

1 +
∑

vivj∈E(G)(xvi − xvj )
2/

∑

vivj∈E(G)(xvi − xvj )
2
.

Suppose that u, v are two vertices satisfying xu = max
16i6n

xvi and xv = min
16i6n

xvi ,

respectively. Clearly, xv < 0 < xu. Since G is k-connected, by Menger’s Theorem
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(see, e.g., [3]), there are k independent (i.e., pairwise internally disjoint) paths joining

u and v in G, say, P (1), P (2), . . . , P (k). In particular, let

P (t) := v
(t)
1 v

(t)
2 . . . v

(t)
lt

, t = 1, 2, . . . , k,

where v
(t)
1 = u, v

(t)
lt

= v, and all other vertices in these k paths are distinct. It is

easy to see that

(2.5)
k
∑

t=1

|V (P (t))| =
k

∑

t=1

lt 6 n+ 2k − 2,

with equality holding if and only if V (P (1)) ∪ V (P (2)) ∪ . . .∪ V (P (k)) = V (G). Now

using Cauchy-Schwarz inequality together with this inequality, we get

∑

vivj∈E(G)

(xvi − xvj )
2 >

k
∑

t=1

∑

vivj∈E(P (t))

(xvi − xvj )
2(2.6)

>

k
∑

t=1

1

|E(P (t))|

(lt−1
∑

i=1

(x
v
(t)
i

− x
v
(t)
i+1

)

)2

=

k
∑

t=1

1

|V (P (t))| − 1
(xu − xv)

2

>
k2

∑k

t=1(|V (P (t))| − 1)
(xu − xv)

2

>
k2

n+ k − 2
(xu − xv)

2.

On the other hand, we have

(2.7)
∑

vivj∈E(G)

(xvi − xvj )
2 6

(n(n− 1)

2
−m

)

(xu − xv)
2.

Obviously, (2.1) follows from (2.4), (2.6) and (2.7) directly.

Now, we discuss the sharpness of the bound (2.1). Suppose the equality in (2.1)

holds. Then the inequalities in (2.6) and (2.7) must be equalities. In particular, by

the first inequality in (2.6), we get

(2.8) xvi − xvj = 0,

for any edge vivj ∈ E(G) \ (E(P (1)) ∪ E(P (2)) ∪ . . . ∪ E(P (k))). By the second

inequality in (2.6), for t = 1, 2, . . . , k and i = 1, 2, . . . , lt − 1, we have

(2.9) x
v
(t)
i

− x
v
(t)
i+1

= ct > 0,
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where ct is a constant. By the last two inequalities in (2.6), we obtain

(2.10) |V (P (1))| = |V (P (2))| = . . . = |V (P (k))| = n− 2

k
+ 2,

which also implies that (see (2.5))

(2.11) V (G) \ (V (P (1)) ∪ V (P (2)) ∪ . . . ∪ V (P (k))) = ∅.

In addition, from (2.7), for any edge vivj ∈ E(G), we have

(2.12) (xvi − xvj )
2 = (xu − xv)

2.

Now, using the conditions (2.8)–(2.12), we first show that |V (P (t))| = lt = 3 holds

for each t ∈ {1, 2, . . . , k}, which (together with (2.10) and (2.11)) implies that

k = n− 2 and V (G) = {u, v, v(1)2 , v
(2)
2 , . . . , v

(n−2)
2 }.

Indeed, by (2.10), we obtain lt > 3. If lt > 4, then uv
(t)
lt−1 ∈ E(G) (because if

uv
(t)
lt−1 ∈ E(G), then from (2.8) we have x

v
(t)
lt−1

= xu, but by (2.9) we get xv
(t)
lt−1

=

xu− (lt−2)ct < xu, a contradiction). Thus, from (2.12) we can deduce that xv
(t)
lt−1

=

xv, again contradicting (2.9), which implies that xv
(t)
lt−1

− xv = ct > 0.

Further, we claim that v
(1)
2 , v

(2)
2 , . . . , v

(n−2)
2 are pairwise adjacent, implying G =

Kn − e. In fact, from (2.9) it follows that xv < x
v
(1)
2

, x
v
(2)
2

, . . . , x
v
(n−2)
2

< xu, which

implies that for any 1 6 i < j 6 n− 2,

(

x
v
(i)
2

− x
v
(j)
2

)2
< (xu − xv)

2.

Comparing this with (2.12), we have v
(i)
2 v

(j)
2 ∈ E(G), the claim then holds.

Conversely, note that µn−1(Kn − e) = n − 2. Then it is easy to check that the

equality in (2.1) holds when G = Kn − e.

This completes the proof of the theorem. �

Notice that if G is k-connected, then δ(G) > k, and so 2m > nδ(G) > nk (with

equality only if G is regular). Thus, we obtain the following corollary immediately.
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Corollary 2.2. If G is a k-connected graph with n vertices, then

(2.13) µn−1(G) >
2nk2

n(n− k − 1)(n+ k − 2) + 2k2
,

with equality holding if and only if G = Kn.

Note also that substituting the condition that “G is a k-connected graph” for

“G is a graph with κ(G) = k”, Theorem 2.1 still holds (so does Corollary 2.2).

Therefore, from Corollary 2.2 we may obtain an upper bound for the connectivity

κ(G) of a graph G involving its algebraic connectivity µn−1(G) as follows:

Corollary 2.3. Let G be a non-complete graph with n vertices. Then

(2.14) µn−1(G) 6 κ(G) 6 n

√

nµn−1(G)

nµn−1(G) + 2(n− µn−1(G))
.

The first inequality in (2.14) is the famous Fiedler’s inequality [4] and the character-

ization for the case of equality can be found in [5].

Remark 2.4. It is easy to see that for any k-connected graph G with n vertices,

D(G) 6
n+ k − 2

k
.

This together with (1.1) yields that

(2.15) µn−1(G) >
4k

n(n+ k − 2)
.

Clearly, when k > 2, our bound (2.13) is always better than the bound (2.15).

Moreover, for graphs with large connectivity, our bound (2.13) is better than the

bound (1.1). Indeed, when k >
√
n, it follows from (2.13) that if D > 2, then

µn−1(G) >
2k2

(n− k)(n+ k) + 2k2/n
>

2k2

n2
>

2

n
>

4

nD
.

If D = 1, then G = Kn, and hence µn−1(G) = n > 4/n.

Likewise, for graphs with large connectivity, our bound (2.1) is better than the

bound (1.2). In fact, if k >
√
n, then (n + k − 2)/k2 6 2 6 D, and from (2.1) we

have

µn−1(G) >
2n

(n(n− 1)− 2m)(n+ k − 2)/k2 + 2
>

2n

(n(n− 1)− 2m)D + 2
.

Moreover, we observe that there are more graphs achieving the bound in (2.1) than

that in (1.2).
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3. The Laplacian spectral radius of k-connected

non-regular graphs

Let Q(G) = D(G) + A(G) be the signless Laplacian matrix of a graph G and let

q1(G) be its largest eigenvalue. It is well known that (see [12])

(3.1) µ1(G) 6 q1(G).

Moreover, if G is connected, then the equality holds if and only if G is a bipartite

graph. In this section, by bounding q1(G) above, we present some upper bounds on

µ1(G) for a k-connected non-regular graph G.

Since G is k-connected, we know that Q(G) is irreducible and, by the celebrated

Perron-Frobenius Theorem, q1(G) is simple and has a unique positive unit eigenvec-

tor. Moreover, it is a well-known fact that q1(G) 6 2∆(G) with equality if and only

if G is regular (see, e.g., [1]). For non-regular graphs, we have the following result.

Theorem 3.1. Let G be a k-connected non-regular graph with n vertices,m edges

and maximum degree ∆. Then

(3.2) 2∆− q1(G) >
2(n∆− 2m)k2

2(n∆− 2m)(n2 − 2n+ 2k) + nk2
.

P r o o f. Let x = (xv1 , xv2 , . . . , xvn)
T ∈ R

n be the unique unit positive eigenvector

of Q(G) corresponding to q1(G). Then q1(G)x = Q(G)x. Moreover, noting that

xTx =
n
∑

i=1

x2
vi

= 1, we have

(3.3) q1(G) = xTQ(G)x =
∑

vivj∈E(G)

(xvi + xvj )
2.

Now we assume that u, v are two vertices satisfying xu = max
16i6n

xvi and xv =

min
16i6n

xvi , respectively. Clearly, xu > 1/
√
n > xv (since G is non-regular). Then it

follows from (3.3) that

2∆− q1(G) = 2∆−
∑

vivj∈E(G)

(xvi + xvj )
2(3.4)

= 2∆
n
∑

i=1

x2
vi
− 2

∑

vivj∈E(G)

(x2
vi
+ x2

vj
) +

∑

vivj∈E(G)

(xvi − xvj )
2

= 2

n
∑

i=1

(∆− dG(vi))x
2
vi
+

∑

vivj∈E(G)

(xvi − xvj )
2

> 2(n∆− 2m)x2
v +

∑

vivj∈E(G)

(xvi − xvj )
2.
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Noting that G is k-connected, as in the proof of Theorem 2.1, we may obtain

(see (2.6)),

(3.5)
∑

vivj∈E(G)

(xvi − xvj )
2 >

k2

n+ k − 2
(xu − xv)

2.

Combining (3.4) and (3.5), we get

2∆− q1(G) > 2(n∆− 2m)x2
v +

k2

n+ k − 2
(xu − xv)

2(3.6)

>
2(n∆− 2m)k2

2(n∆− 2m)(n+ k − 2) + k2
x2
u.

The second inequality in (3.6) follows from the fact that if a, b > 0, then

(3.7) a(x− y)2 + by2 >
abx2

a+ b
.

For convenience, set

C :=
2(n∆− 2m)k2

2(n∆− 2m)(n2 − 2n+ 2k) + nk2
.

We shall show that

(3.8) 2∆− q1(G) > C.

Consider the following two cases:

Case 1: k = 1. If x2
v > C/(2(n∆− 2m)), then from (3.4) we have

2∆− q1(G) > 2(n∆− 2m)x2
v > C,

and (3.8) holds. Now suppose that x2
v < C/(2(n∆ − 2m)). Recalling that x2

v1
+

x2
v2

+ . . .+ x2
vn

= 1, we get

x2
u >

1− x2
v

n− 1
>

1− C

2(n∆− 2m)

n− 1
.

Then from (3.6) we obtain

2∆− q1(G) >
2(n∆− 2m)

2(n∆− 2m)(n− 1) + 1
x2
u

>
2(n∆− 2m)

(2(n∆− 2m)(n− 1) + 1)(n− 1)

(

1− C

2(n∆− 2m)

)

=
2(n∆− 2m)

2(n∆− 2m)(n2 − 2n+ 2) + n

2(n∆− 2m)(n2 − 2n+ 2) + n− 1

2(n∆− 2m)(n− 2n+ 1) + n− 1
> C,

as desired, completing the proof of Case 1.
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Case 2: k > 2. Notice that there are at least k vertices in NG(v) since k 6

δ(G) 6 dG(v). We choose k of them, say w1, w2, . . . , wk. Here u may be wt for

some t ∈ {1, 2, . . . , k}; if this is the case, without loss of generality, assume that
u = wk. As in Case 1, if x

2
v > C/(2(n∆ − 2m)), then (3.8) holds. If

k−1
∑

t=1
x2
wt

>

C(1 + (k − 1)/(2(n∆− 2m))), then from (3.4) and (3.7), we get

2∆− q1(G) > 2(n∆− 2m)x2
v +

k−1
∑

t=1

(xwt
− xv)

2

=

k−1
∑

t=1

(2(n∆− 2m)

k − 1
x2
v + (xwt

− xv)
2
)

>

k−1
∑

t=1

2(n∆− 2m)

2(n∆− 2m) + k − 1
x2
wt

> C,

and (3.8) holds as well. Now suppose that

x2
v <

C

2(n∆− 2m)
and

k−1
∑

t=1

x2
wt

6 C
(

1 +
k − 1

2(n∆− 2m)

)

.

Then

x2
u >

1− x2
v −

k−1
∑

t=1
x2
wt

n− k
>

1− 2(n∆− 2m) + k

2(n∆− 2m)
C

n− k
.

Thus, from (3.6) we have

2∆− q1(G) >
2(n∆− 2m)k2

2(n∆− 2m)(n+ k − 2) + k2
x2
u

>
2(n∆− 2m)k2

(2(n∆− 2m)(n+ k − 2) + k2)(n− k)

(

1− 2(n∆− 2m) + k

2(n∆− 2m)
C
)

=
2(n∆− 2m)k2

2(n∆− 2m)(n2 − 2n+ 2k) + nk2
= C.

This completes the proof of the theorem. �

Using (3.1) and (3.2), we easily obtain the following upper bound on µ1(G) for

a k-connected non-regular graph G.
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Corollary 3.2. Let G be a k-connected non-regular graph with n vertices,

m edges and maximum degree ∆. Then

(3.9) µ1(G) < 2∆− 2(n∆− 2m)k2

2(n∆− 2m)(n2 − 2n+ 2k) + nk2
.

It is not difficult to check that the upper bound in (3.9) is decreasing strictly with

respect to (n∆ − 2m). On the other hand, for a k-connected non-regular graph G,

we observe that 2m 6 (n − 1)∆(G) + δ(G). Thus, from Corollary 3.2, we have the

following result immediately.

Corollary 3.3. Let G be a k-connected non-regular graph with n vertices, max-

imum degree ∆ and minimum degree δ. Then

(3.10) µ1(G) < 2∆− 2(∆− δ)k2

2(∆− δ)(n2 − 2n+ 2k) + nk2
.

Further, using the fact that ∆− δ > 1, from Corollary 3.3 we obtain the following

simplified version of Corollary 3.2.

Corollary 3.4. Let G be a k-connected non-regular graph with n vertices and

maximum degree ∆. Then

(3.11) µ1(G) < 2∆− 2k2

2(n2 − 2n+ 2k) + nk2
.

Remark 3.5. It is easy to verify that when k >
√
n (n > 6), our bound (3.11)

is always better than the bound (1.3). Indeed, when k >
√
n, it follows from Corol-

lary 3.4 that if D > 2 then

µ1(G) < 2∆− 1

n2/k2 + n/2
< 2∆− 1

7n/4
6 2∆− 1

n(D − 1/4)
;

if D = 1 then G = Kn, and consequently,

µ1(G) < 2∆− 1

(n2 − 2)/(n− 1)2 + n/2
< 2∆− 1

3n/4
= 2∆− 1

n(D − 1/4)
.

Acknowledgement. The authors would like to thank the anonymous referees

for their positive comments on this paper.
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