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Abstract. Let L := −∆ + V be a Schrödinger operator on R
n with n > 3 and V > 0

satisfying ∆−1V ∈ L∞(Rn). Assume that ϕ : Rn
× [0,∞)→ [0,∞) is a function such that

ϕ(x, ·) is an Orlicz function, ϕ(·, t) ∈ A∞(Rn) (the class of uniformly Muckenhoupt weights).
Let w be an L-harmonic function on R

n with 0 < C1 6 w 6 C2, where C1 and C2 are
positive constants. In this article, the author proves that the mapping Hϕ,L(R

n) ∋ f 7→

wf ∈ Hϕ(Rn) is an isomorphism from the Musielak-Orlicz-Hardy space associated with
L, Hϕ,L(R

n), to the Musielak-Orlicz-Hardy space Hϕ(Rn) under some assumptions on ϕ.
As applications, the author further obtains the atomic and molecular characterizations of
the space Hϕ,L(R

n) associated with w, and proves that the operator (−∆)−1/2L1/2 is an
isomorphism of the spaces Hϕ,L(R

n) and Hϕ(Rn). All these results are new even when
ϕ(x, t) := tp, for all x ∈ R

n and t ∈ [0,∞), with p ∈ (n/(n+ µ0), 1) and some µ0 ∈ (0, 1].

Keywords: Musielak-Orlicz-Hardy space; Schrödinger operator; L-harmonic function;
isomorphism of Hardy space; atom; molecule
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1. Introduction

Let n > 3. Denote by W 1,2(Rn) the usual Sobolev space on the Euclidean space

R
n equipped with the norm (‖f‖2L2(Rn) + ‖∇f‖2L2(Rn))

1/2, where ∇f denotes the
distributional gradient of f . Let 0 6 V ∈ L1

loc(R
n) and

W 1,2
V (Rn) :=

{
u ∈W 1,2(Rn) :

∫

Rn

|u(x)|2V (x) dx <∞
}
.

The research is supported by the National Natural Science Foundation of China (Grant
No. 11401276) and the Fundamental Research Funds for the Central Universities (Grant
No. lzujbky-2014-18).
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Denote by L the maximal-accretive operator (see [23], page 23, Definition 1.46) on

L2(Rn) with largest domain D(L) ⊂ W 1,2
V (Rn) such that, for any f ∈ D(L) and

g ∈W 1,2
V (Rn),

〈Lf, g〉 :=
∫

Rn

∇f(x)∇g(x) dx+

∫

Rn

f(x)g(x)V (x) dx,

where 〈·, ·〉 denotes the interior product in L2(Rn). In this sense, for all f ∈ D(L)

we write

(1.1) Lf := −∆f + V f.

Denote by {Kt}t>0 and {Pt}t>0 the integral kernel of the heat semigroups

{e−tL}t>0 and {et∆}, respectively, generated by −L and the Laplace operator
∆ on R

n. Then it follows from the Feynman-Kac formula (see, for example, [26],

Chapter V) that for all t ∈ (0,∞) and x, y ∈ R
n,

(1.2) 0 6 Kt(x, y) 6 Pt(x− y) :=
1

(4πt)n/2
exp

{
−|x− y|2

4t

}
.

We assume in this article that the potential 0 6 V ∈ L1
loc(R

n) satisfies

(1.3) ∆−1V := −cn
∫

Rn

|· − y|2−nV (y) dy ∈ L∞(Rn),

where cn := Γ(n/2)/(2π
n/2(n − 2)) and Γ(·) denotes the Gamma function. We

also remark that (1.3) is equivalent to that the heat kernels {Kt}t>0 satisfy the

Gaussian lower bounds, namely, there exist positive constants c and C such that for

all t ∈ (0,∞) and x, y ∈ R
n,

(1.4)
C

tn/2
exp

{
−c|x− y|2

t

}
6 Kt(x, y)

(see, for example, [25]).

Now we recall the definition of L-harmonic functions as follows.

Definition 1.1. Let L be as in (1.1). A function w on R
n is said to be L-

harmonic, if w ∈ D(L) and Lw = 0.

Remark 1.2. (i) We remark that a function w is L-harmonic if and only if

e−tLw = w for all t ∈ (0,∞). In fact, if w is L-harmonic, then for any t ∈ (0,∞),

e−tLw − w = (e−tL − I)w =

∫ t

0

d

ds
e−sLw ds = −

∫ t

0

e−sLLw ds = 0,

where I denotes the identical operator in L2(Rn), which further yields that

e−tLw = w.
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Conversely, if e−tLw = w for any t ∈ (0,∞), then by the definition of the infinites-

imal generator of the semigroup {e−tL}t>0, we see that w ∈ D(L) and Lw = 0.

(ii) It follows from [7], Lemma 2.1, that (1.3) holds true if and only if there exists

an L-harmonic function w such that 0 < δ 6 w 6 1, where δ is a positive constant.

Moreover, the function w is unique up to a multiplicative constant. Furthermore,

the function w is given for all x ∈ R
n by

(1.5) w(x) := lim
t→∞

∫

Rn

Kt(y, x) dy

up to a multiplicative constant.

(iii) We also point out that, if a nonnegative function V on Rn, with n > 3, satisfies

that there exists ε ∈ (0,∞) such that V ∈ Ln/2−ε(Rn)∩Ln/2+ε(Rn), then (1.3) holds

true for V (see [6] for more examples).

Let L be as in (1.1) and satisfy (1.3). Denote byH1
L(R

n) andH1(Rn), respectively,

the Hardy space associated with L (see, for example, [11]) and the classical Hardy

space (see, for example, [8]). Assume that w is an L-harmonic function satisfying

0 < δ 6 w 6 C, where δ and C are positive constants. It was proved in [7],

Theorem 1.1, that the mapping H1
L(R

n) ∋ f 7→ wf ∈ H1(Rn) is an isomorphism

from H1
L(R

n) to H1(Rn). As corollaries, the atomic and molecular characterizations

of H1
L(R

n), associated with w, were obtained in [7], Corollary 1.2, and [6], Section 3.

Moreover, it was also proved in [6], Theorem 1.10, that the operator (−∆)−1/2L−1/2

is an isomorphism of H1
L(R

n) and H1(Rn).

The main purpose of this article is to prove that the mapping

Hϕ,L(R
n) ∋ f 7→ wf ∈ Hϕ(R

n)

is an isomorphism from the Musielak-Orlicz-Hardy space Hϕ,L(R
n), associated

with L, to the Musielak-Orlicz-Hardy space Hϕ(R
n) under some assumptions on

the Musielak-Orlicz function ϕ. As applications, we further obtain the atomic and

molecular characterizations of the space Hϕ,L(R
n) associated with w, and prove

that the operator (−∆)−1/2L1/2 is an isomorphism from Hϕ,L(R
n) to Hϕ(R

n). It

is worth pointing out that all these results are new even when ϕ(x, t) := tp for all

x ∈ R
n and t ∈ [0,∞), with p ∈ (n/(n+ µ0), 1) and some µ0 ∈ (0, 1].

Moreover, we remark that the Musielak-Orlicz-Hardy space is a function space of

Hardy-type which unifies the classical Hardy space, the weighted Hardy space, the

Orlicz-Hardy space and the weighted Orlicz-Hardy space, in which the spatial and

the time variables may not be separable (see [8], [15], [27], [22], [24], [28], [31] for

more details on the developments of Hardy-type spaces and Musielak-Orlicz spaces).

Furthermore, the Musielak-Orlicz-Hardy space appears naturally in many applica-

tions (see, for example, [1], [2], [21], [19]). This kind of Musielak-Orlicz-Hardy spaces
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associated with operators generalizes the (Orlicz-)Hardy space and the (weighted)

Hardy space associated with operators, which has attracted great interests in re-

cent years. Such function spaces associated with operators play important roles in

the study for the boundedness of singular integrals associated with some differential

operators, which may not fall within the scope of the classical Calderón-Zygmund

theory (see, for example, [3], [5], [11], [12], [13], [17], [16], [18], [29], [30]).

Moreover, denote by {K̃t}t>0 the integral kernels of the semigroup {e−t
√
L}t>0.

Then K̃t has the following property, which is just [7], Corollary 3.2.

Lemma 1.3. Let L be as in (1.1). Assume that the potential V satisfies (1.3) and

w is an L-harmonic function with 0 < C1 6 w 6 C2, where C1 and C2 are constants.

Then there exists positive constants C > 0 and µ0 ∈ (0, 1] such that for all t ∈ (0,∞)

and x, y, z ∈ R
n with t > |y − z|,

∣∣∣
K̃t(x, y)

K̃t(x, z)
− w(y)

w(z)

∣∣∣ 6 C
[ |y − z|

t

]µ0

.

Let the Musielak-Orlicz function ϕ, the Musielak-Orlicz-Hardy spaces Hϕ,L(R
n)

and Hϕ(R
n) be, respectively, as in Definitions 2.4, 2.6 and 2.7 below. Now we give

the first main result of this article.

Theorem 1.4. Let L and ϕ be, respectively, as in (1.1) and Definition 2.4 be-

low. Assume that n + µ0 > nq(ϕ)/i(ϕ) with µ0, q(ϕ) and i(ϕ), respectively, as in

Lemma 1.3, (2.2) and (2.1) below, the potential V satisfies (1.3) and w is an L-

harmonic function with 0 < C1 6 w 6 C2, where C1 and C2 are constants. Then

the mapping

Hϕ,L(R
n) ∋ f 7→ wf

is an isomorphism from the spaces Hϕ,L(R
n) onto Hϕ(R

n). Namely, there exist

positive constants C3, C4 such that for all f ∈ Hϕ,L(R
n),

C3‖wf‖Hϕ(Rn) 6 ‖f‖Hϕ,L(Rn) 6 C4‖wf‖Hϕ(Rn).

By using the atomic characterization of Hϕ,L(R
n) obtained in [3], Theorem 5.4

(see also Lemma 3.2 below), the molecular characterization of Hϕ(R
n) established

in [14], Theorem 4.13 (see also Lemma 3.4 below), the definitions of L-harmonic

functions, the radial maximal function characterization of Hϕ,L(R
n) associated with

the Poisson semigroup {e−t
√
L}t>0 obtained in [3], Theorem 8.3 (see also Lemma 3.6

below) and Lemma 1.3, we complete the proof of Theorem 1.4.
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As a corollary of Theorem 1.6, we can obtain a kind of atomic and molecular

characterizations for the space Hϕ,L(R
n). We first begin with the definitions of

(ϕ, q, w)-atoms and (ϕ, q, w, ε)-molecules. In what follows, for any measurable subset

E ⊂ R
n and t ∈ [0,∞), let ϕ(E, t) :=

∫
E
ϕ(x, t) dx.

Definition 1.5. Let L and ϕ be, respectively, as in (1.1) and Definition 2.4

below. Assume that q ∈ (1,∞), w is an L-harmonic function and B ⊂ R
n is a ball.

(I) A function α ∈ Lq(Rn) is called a (ϕ, q, w)-atom associated with B, if

(i) supp(α) ⊂ B;

(ii) ‖α‖Lq(Rn) 6 |B|1/q‖χB‖−1
Lϕ(Rn);

(iii)
∫
Rn α(x)w(x) dx = 0.

(II) For f ∈ L2(Rn),

(1.6) f =
∑

j

λjαj

is called an atomic (ϕ, q, w)-representation of f if, for all j, αj is a (ϕ, q, w)-atom

associated with the ball Bj ⊂ R
n, the summation (1.6) converges in L2(Rn) and

{λj}j ⊂ C satisfies
∑
j

ϕ(Bj , |λj |‖χBj‖−1
Lϕ(Rn)) <∞. Let

H̃q,w
ϕ,at(R

n) := {f ∈ L2(Rn) : f has an atomic (ϕ, q, w)-representation}

with the quasi-norm

‖f‖Hq,w
ϕ,at(R

n) := inf

{
Λ({λjαj}j) :

∑

j

λjαj is a (ϕ, q, w)-representation of f

}
,

where the infimum is taken over all atomic (ϕ, q, w)-representations of f as

above and

(1.7) Λ({λjαj}j) := inf

{
λ ∈ (0,∞) :

∑

j

ϕ
(
Bj ,

|λj |
λ‖χBj‖Lϕ(Rn)

)
6 1

}
.

The atomic Musielak-Orlicz-Hardy space Hq,w
ϕ,at(R

n) is then defined as the com-

pletion of the set H̃q,w
ϕ,at(R

n) with respect to the quasi-norm ‖·‖Hq,w
ϕ,at(R

n).

(III) Let ε ∈ (0,∞). A function b ∈ Lq(Rn) is called a (ϕ, q, w, ε)-molecule associated

with B, if

(i) ‖b‖Lq(Sj(B)) 6 2−jε|2jB|1/q‖χB‖−1
Lϕ(Rn), where S0(B) := 2B and Sj(B) :=

2j+1B \ 2jB for j ∈ N;

(ii)
∫
Rn b(x)w(x) dx = 0.
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Moreover, the molecular Musielak-Orlicz-Hardy space Hq,w,ε
ϕ,mol(R

n) is defined via

replacing (ϕ, q, w)-atoms by (ϕ, q, w, ε)-molecules in the definition of the space

Hq,w
ϕ,at(R

n).

Now we describe the atomic and molecular characterizations of Hϕ,L(R
n) associ-

ated with an L-harmonic function w.

Theorem 1.6. Let L, ϕ and w be as in Theorem 1.4. Assume that q ∈
(q(ϕ)[r(ϕ)]′,∞) and ε ∈ (nq(ϕ)/i(ϕ),∞), where q(ϕ), r(ϕ) and i(ϕ) are, re-

spectively, as in (2.2), (2.3) and (2.1) below, and [r(ϕ)]′ denotes the conjugate

exponent of r(ϕ). Then the spaces Hϕ,L(R
n), Hq,w

ϕ,at(R
n) and Hq,w,ε

ϕ,mol(R
n) coincide

with equivalent quasi-norms.

Via Theorem 1.4 and the atomic and molecular characterizations of Hϕ(R
n), re-

spectively, obtained in [19], Theorem 1.1, and [14], Theorem 4.13 (see also Lemma 3.4

below), we prove Theorem 1.6.

Now we state another main result of this article.

Theorem 1.7. Let L, ϕ and w be as in Theorem 1.4. Assume further that

n+ 1 > nq(ϕ)/i(ϕ) and q(ϕ)[r(ϕ)]′ < n/(nq(ϕ)/i(ϕ)− 1). Then the mapping

Hϕ,L(R
n) ∋ f 7→ (−∆)1/2L−1/2(f)

is an isomorphism from Hϕ,L(R
n) onto Hϕ(R

n). Namely, there exists a positive

constant C such that for all f ∈ Hϕ,L(R
n),

(1.8) ‖(−∆)1/2L−1/2(f)‖Hϕ(Rn) 6 C‖f‖Hϕ,L(Rn)

and

(1.9) ‖L1/2(−∆)−1/2(f)‖Hϕ,L(Rn) 6 C‖f‖Hϕ(Rn).

By applying the atomic and molecular characterizations ofHϕ,L(R
n) established in

Theorem 1.6, the atomic characterization of Hϕ,L(R
n) obtained in [3], Theorem 5.4

(see also Lemma 3.2 below), the molecular characterizations of Hϕ(R
n) obtained

in [14], Theorem 4.13 (see also Lemma 3.4 below) and [6], Lemmas 2.11 and 2.13

(see also Lemma 4.1 below), we prove Theorem 1.7.

Remark 1.8. Let L and ϕ be as in Theorem 1.4. Assume that q(ϕ), r(ϕ) and

i(ϕ) are, respectively, as in (2.2), (2.3) and (2.1) below.
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(i) When ϕ(x, t) := t for all x ∈ R
n and t ∈ [0,∞), then i(ϕ) = 1, q(ϕ) = 1

and r(ϕ) = ∞. It is easy to see that the assumptions in Theorems 1.4 through 1.7
on ϕ automatically hold true in this case. Then Theorems 1.4 through 1.7 are just,

respectively, [7], Theorem 1.1 and Corollary 1.1, and [6], Theorem 1.10, in this case.

(ii) Let µ0 be as in Lemma 1.3. When ϕ(x, t) := tp for all x ∈ R
n and t ∈ [0,∞),

with p ∈ (n/(n+ µ0), 1], i(ϕ) = p, then q(ϕ) = 1 and r(ϕ) = ∞. In this case, we can
verify that the assumptions in Theorems 1.4 through 1.7 on ϕ hold true. Moreover,

it is worth pointing out that Theorems 1.4 through 1.7 are new in this case.

(iii) Let ϕ be as in (2.4) below. Then i(ϕ) = 1, q(ϕ) = 1 and r(ϕ) = ∞ (see, for
example, [4], Remark 1 (v)), which further implies that the assumptions in Theo-

rems 1.4 through 1.7 on ϕ hold true in this case. Thus, Theorems 1.4 through 1.7 hold

true for the spaces Hϕ,L(R
n) and Hϕ(R

n) associated with ϕ (see [4], Remark 1 (v),

for more examples of ϕ satisfying the assumptions in Theorems 1.4 through 1.7).

The layout of this article is as follows. In Section 2, we first describe the growth

function considered in this article; then we recall the definitions of Musielak-Orlicz-

Hardy spaces Hϕ,L(R
n) and Hϕ(R

n); finally we introduce some conventions on no-

tation. In Section 3, we give the proofs of Theorems 1.4 and 1.6. Then, in Section 4,

we present the proof of Theorem 1.7.

2. Preliminaries

2.1. Musielak-Orlicz functions. In this subsection, we describe the growth

function considered in this article. First we recall the definition of Orlicz functions

(see, for example, [22], [24]).

Definition 2.1. A function Φ: [0,∞) → [0,∞) is called an Orlicz function if it

is nondecreasing, Φ(0) = 0, Φ(t) > 0 for any t ∈ (0,∞) and lim
t→∞

Φ(t) = ∞.

We point out that, unlike the classical definition of Orlicz functions, the Orlicz

functions in this article need not be convex.

Now we recall the definition of upper (lower, respectively) type of functions as

follows.

Definition 2.2. (i) An Orlicz function Φ is said to be of upper (lower) type p

for some p ∈ [0,∞), if there exists a positive constant C such that, for all s ∈ [1,∞)

(s ∈ [0, 1], respectively) and t ∈ [0,∞), Φ(st) 6 CspΦ(t).

(ii) For a given function ϕ : R
n × [0,∞) → [0,∞) such that, for any x ∈ R

n,

ϕ(x, ·) is an Orlicz function, ϕ is said to be of uniformly upper (lower) type p for
some p ∈ (0,∞), if there exists a positive constant C such that, for all x ∈ R

n,

t ∈ [0,∞) and s ∈ [1,∞) (s ∈ [0, 1], respectively), ϕ(x, st) 6 Cspϕ(x, t).
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Let

(2.1) i(ϕ) := sup{p ∈ (0,∞) : ϕ is of uniformly lower type p}.

Observe that i(ϕ) need not be attainable, namely, ϕ need not be of uniformly lower

type i(ϕ) (see, for example, [3], [4], [30]).

Definition 2.3. Let ϕ : R
n × [0,∞) → [0,∞) satisfy that ϕ(·, t) is measurable

for all t ∈ [0,∞). The function ϕ is said to satisfy the uniformly Muckenhoupt

condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(R
n), if, when q ∈ (1,∞),

Aq(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

1

|B|q
∫

B

ϕ(x, t) dx

{∫

B

[ϕ(y, t)]1−q dy

}q−1

<∞

or, when q = 1,

A1(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

1

|B|

∫

B

ϕ(x, t) dx
(
ess sup
y∈B

[ϕ(y, t)]−1
)
<∞.

Here the first suprema are taken over all t ∈ (0,∞) and the other ones over all balls

B ⊂ R
n.

The function ϕ is said to satisfy the uniformly reverse Hölder condition for some

q ∈ (1,∞], denoted by ϕ ∈ RHq(R
n), if, when q ∈ (1,∞),

RHq(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

{
1

|B|

∫

B

[ϕ(x, t)]q dx

}1/q{
1

|B|

∫

B

ϕ(x, t) dx

}−1

<∞

or, when q = ∞,

RH∞(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

{
ess sup
y∈B

ϕ(y, t)
}{ 1

|B|

∫

B

ϕ(x, t) dx

}−1

<∞.

Here the first suprema are taken over all t ∈ (0,∞) and the other ones over all balls

B ⊂ R
n.

Recall that, in Definition 2.3, Ap(R
n), with p ∈ [1,∞), and RHq(R

n), with q ∈
(1,∞], were introduced, respectively, in [20] and [30].

Let A∞(Rn) :=
⋃

q∈[1,∞)

Aq(R
n). It is well known that

A∞(Rn) =
⋃

q∈(1,∞]

RHq(R
n),
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Ap(R
n) ⊂ Aq(R

n) for 1 6 p 6 q < ∞, and RHp(R
n) ⊂ RHq(R

n) for 1 < q 6 p 6 ∞
(see, for example, [14], Lemma 2.4, or Lemma 2.5 below). Thus, we can introduce

the critical indices for ϕ ∈ A∞(Rn) as follows:

(2.2) q(ϕ) := inf{q ∈ [1,∞) : ϕ ∈ Aq(R
n)}

and

(2.3) r(ϕ) := sup{q ∈ (1,∞] : ϕ ∈ RHq(R
n)}.

Now we recall the notion of growth functions from Ky [20].

Definition 2.4. A function ϕ : R
n × [0,∞) → [0,∞) is called a growth function

if the following conditions hold:

(i) ϕ is a Musielak-Orlicz function, namely,

(a) ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all x ∈ R
n;

(b) ϕ(·, t) is a measurable function for all t ∈ [0,∞).

(ii) ϕ(·, t) ∈ A∞(Rn) for any t ∈ (0,∞).

(iii) The function ϕ is of uniformly lower type p for some p ∈ (0, 1] and upper type 1.

Clearly, ϕ(x, t) := ω(x)Φ(t) is a growth function if ω ∈ A∞(Rn) and Φ is an Orlicz

function of lower type p for some p ∈ (0, 1] and of upper type 1. Here, Aq(R
n) with

q ∈ [1,∞] denotes the class of Muckenhoupt weights (see, for example, [9], [10]).

A typical example of such Orlicz function Φ is Φ(t) := tp, with p ∈ (0, 1], for all

t ∈ [0,∞) (see, for example, [31], [30] for more examples of such Φ). Another typical

example of a growth function is

(2.4) ϕ(x, t) :=
t

ln(e + |x|) + ln(e + t)

for all x ∈ R
n and t ∈ [0,∞).

Moreover, we need some properties of ϕ in Definition 2.4, which are useful in the

proof of Theorems 1.4, 1.6 and 1.7. Then we have the following properties for ϕ

from [3], Lemma 2.5, based on the corresponding results of [20], [9], [10].

Lemma 2.5. Let the function ϕ be as in Definition 2.4.

(i) There exists a positive constant C such that, for all (x, tj) ∈ R
n × [0,∞) with

j ∈ N, ϕ
(
x,

∞∑
j=1

tj

)
6 C

∞∑
j=1

ϕ(x, tj).

(ii) A1(R
n) ⊂ Ap(R

n) ⊂ Aq(R
n) for 1 6 p 6 q <∞.

(iii) RH∞(Rn) ⊂ RHp(R
n) ⊂ RHq(R

n) for 1 < q 6 p 6 ∞.
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(iv) A∞(Rn) =
⋃

p∈[1,∞)

Ap(R
n) =

⋃
q∈(1,∞]

RHq(R
n).

(v) If ϕ ∈ Ap(R
n) with p ∈ [1,∞), then there exists a positive constant C such

that, for all balls B1, B2 ⊂ R
n with B1 ⊂ B2 and t ∈ (0,∞), ϕ(B2, t)/ϕ(B1, t) 6

C[|B2|/|B1|]p.

2.2. Musielak-Orlicz-Hardy spaces. In this subsection, we recall the defini-

tions of Musielak-Orlicz-Hardy spaces Hϕ(R
n), introduced in [20], and Musielak-

Orlicz-Hardy spaces Hϕ,L(R
n) associated with Schrödinger operators L, introduced

in [3], [30].

Recall that for a function ϕ as in Definition 2.4, a measurable function f on Rn is

said to be in theMusielak-Orlicz space Lϕ(Rn) if
∫
Rn ϕ(x, |f(x)|) dx <∞. Moreover,

for any f ∈ Lϕ(Rn), define

‖f‖Lϕ(Rn) := inf

{
λ ∈ (0,∞) :

∫

Rn

ϕ
(
x,

|f(x)|
λ

)
dx 6 1

}
.

Let L and ϕ be, respectively, as in (1.3) and Definition 2.4. We remark that

L is a nonnegative self-adjoint operator in L2(Rn). Moreover, the Gaussian upper

bound estimate for the kernels of the semigroup {e−tL}t>0 further implies that the

semigroup {e−tL}t>0 satisfies the reinforced (1,∞, 1) off-diagonal estimates (see [3],

Assumption (B), for the details). Thus, L is a nonnegative self-adjoint operator on

L2(Rn) satisfying the reinforced (1,∞, 1) off-diagonal estimates. Now we recall the

Musielak-Orlicz-Hardy space Hϕ,L(R
n) associated with L introduced in [3].

Definition 2.6. For f ∈ L2(Rn) and x ∈ R
n, the Lusin area function SL(f)(x)

associated with L is defined by

SL(f)(x) :=

{∫

Γ(x)

|t2Le−t2L(f)(y)|2 dy dt
tn+1

}1/2

,

where Γ(x) := {(y, t) ∈ R
n × (0,∞) : |y − x| < t}. A function f ∈ L2(Rn) is said

to be in the set H̃ϕ,L(R
n) if SL(f) ∈ Lϕ(Rn); moreover, we define ‖f‖Hϕ,L(Rn) :=

‖SL(f)‖Lϕ(Rn).

The Musielak-Orlicz-Hardy space Hϕ,L(R
n) is defined to be the completion of

H̃ϕ,L(R
n) with respect to the quasi-norm ‖·‖Hϕ,L(Rn).

Now we recall the definition of the Musielak-Orlicz-Hardy space Hϕ(R
n) intro-

duced in [20]. We first introduce some notions. In what follows, we denote by

S(Rn) the space of all Schwartz functions and by S ′(Rn) its dual space (namely,

the space of all tempered distributions). Let N := {1, . . .} and Z+ := {0} ∪ N. For
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any θ := (θ1, . . . , θn) ∈ Z
n
+, let |θ| := θ1 + . . .+ θn and ∂θx := ∂|θ|/∂xθ11 . . . ∂xθnn . For

m ∈ N, we define

Sm(Rn) :=
{
ϕ ∈ S(Rn) : sup

x∈Rn

sup
β∈Zn

+,|β|6m+1

(1 + |x|)(m+2)(n+1)|∂βxϕ(x)| 6 1
}
.

Then, for all f ∈ S ′(Rn) and x ∈ R
n, the non-tangential grand maximal function f∗

m

of f is defined by setting,

f∗
m(x) := sup

ϕ∈Sm(Rn)

sup
|y−x|<t, t∈(0,∞)

|f ∗ ϕt(y)|,

where for all t ∈ (0,∞), ϕt(·) := t−nϕ(·/t). When m(ϕ) := ⌊n[q(ϕ)/i(ϕ)−1]⌋, where
q(ϕ) and i(ϕ) are, respectively, as in (2.2) and (2.1), and ⌊s⌋ for s ∈ R denotes the

maximal integer k such that k 6 s, we denote f∗
m(ϕ) simply by f

∗.

Definition 2.7. Let ϕ be as in Definition 2.4. The Musielak-Orlicz-Hardy space

Hϕ(R
n) is defined to be the space of all f ∈ S ′(Rn) such that f∗ ∈ Lϕ(Rn), with

the quasi-norm ‖f‖Hϕ(Rn) := ‖f∗‖Lϕ(Rn).

It is worth noting that for such ϕ as in (2.4), the corresponding Musielak-

Orlicz-Hardy space Hϕ(R
n) or Hϕ,L(R

n), associated with the Schrödinger operator

L := −∆+ V on R
n, appears naturally when studying the products of functions

in H1(Rn) and BMO(Rn), the endpoint estimates for the div-curl lemma and the

endpoint estimates for commutators of singular integrals related to the Schrödinger

operator L (see [1], [2], [21], [19] for the details).

2.3. Notation. In this subsection, we make some conventions on notation.

Throughout the article, we denote by C a positive constant which is independent of

the main parameters, but may vary from line to line. We also use C(γ,β,...) to de-

note a positive constant depending on the indicated parameters γ, β, . . . The symbol

A . B means that A 6 CB. If A . B and B . A, then we write A ∼ B. For any

given (quasi-)normed spaces A and B with the corresponding norms ‖·‖A and ‖·‖B,
the symbol A ⊂ B means that for all f ∈ A, we have f ∈ B and ‖f‖B . ‖f‖A. For
any measurable subset E of Rn, we denote by χE its characteristic function and by

E∁ the set Rn \E. We also set N := {1, . . .} and Z+ := {0} ∪N. Moreover, for each

ball B ⊂ R
n, let S0(B) := 2B and Sj(B) := 2j+1B \ 2jB for j ∈ N. Finally, for

q ∈ [1,∞] we denote by q′ the conjugate exponent of q, namely, 1/q + 1/q′ = 1.
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3. Proofs of Theorems 1.4 and 1.6

In this section we give the proofs of Theorems 1.4 and 1.6. We begin with some

useful auxiliary conclusions.

We first recall the definitions of (ϕ, q,M)L-atoms and the atomic Musielak-Orlicz-

Hardy space HM,q
ϕ,L,at(R

n) introduced in [3], Definitions 5.2 and 5.3.

Definition 3.1. Let L and ϕ be, respectively, as in (1.1) and Definition 2.4.

Assume that q ∈ (1,∞), M ∈ N and B ⊂ R
n is a ball. Let D(LM ) be the domain

of LM . A function α ∈ Lq(Rn) is called a (ϕ, q,M)L-atom associated with the ball

B, if there exists a function b ∈ D(LM ) such that

(i) α = LMb;

(ii) for all j ∈ {0, 1, . . . ,M}, supp(Ljb) ⊂ B;

(iii) ‖(r2BL)jb‖Lq(Rn) 6 r2MB |B|1/q‖χB‖−1
Lϕ(Rn), where rB denotes the radius of B and

j ∈ {0, 1, . . . ,M}.

The atomic Musielak-Orlicz-Hardy space HM,q
ϕ,L,at(R

n) is defined via replacing

(ϕ, q, w)-atoms by (ϕ, q,M)L-atoms in the definition of the space H
q,w
ϕ,at(R

n) (see

Definition 1.5 (II) above).

Then we have the following atomic characterization of the space Hϕ,L(R
n), which

is just [3], Theorem 5.4.

Lemma 3.2. Let L and ϕ be, respectively, as in (1.1) and Definition 2.4. Assume

that M ∈ N satisfies M > nq(ϕ)/(2i(ϕ)) and q ∈ ([r(ϕ)]′,∞), where q(ϕ), i(ϕ) and

r(ϕ) are, respectively, as in (2.2), (2.1) and (2.3). Then the spaces Hϕ,L(R
n) and

HM,q
ϕ,L,at(R

n) coincide with equivalent quasi-norms.

Moreover, to prove Theorem 1.4, we need the atomic and molecular characteriza-

tions of Hϕ(R
n) established in [20], Theorem 1.1, and [14], Theorem 4.13. To state

the atomic and molecular characterizations of the space Hϕ(R
n), we first recall the

definitions of (ϕ,∞, s)-atoms, (ϕ, q, s, ε)-molecules and Hardy-type spaces defined by

these atoms and molecules.

Definition 3.3. Let ϕ be as in Definition 2.4, q ∈ (1,∞), s ∈ Z+, ε ∈ (0,∞)

and let B ⊂ R
n be a ball.

(I) A function α ∈ Lq(Rn) is called a (ϕ, q, s, ε)-molecule associated with B, if

(i) for each j ∈ Z+, ‖α‖Lq(Sj(B)) 6 2−jε|2jB|1/q‖χB‖−1
Lϕ(Rn);

(ii)
∫
Rn α(x)x

β dx = 0 for all β ∈ Z
n
+ with |β| 6 s.

(II) The molecular Musielak-Orlicz-Hardy space Hq,s,ε
ϕ,mol(R

n) is defined to be the

space of all f ∈ S ′(Rn) satisfying that f =
∑
j

λjαj in S ′(Rn), where {λj}j ⊂ C,
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{αj}j is a sequence of (ϕ, q, s, ε)-molecules associated with the balls {Bj}j, and
∑

j

ϕ(Bj , |λj |‖χBj‖−1
Lϕ(Rn)) <∞.

Moreover, we define

‖f‖Hq,s,ε
ϕ,mol(R

n) := inf{Λ({λjαj}j)},

where the infimum is taken over all the decompositions of f as above and

Λ({λjαj}j) is as in (1.7).
(III) Let s ∈ Z+ satisfy that s > ⌊n[q(ϕ)/i(ϕ) − 1]⌋. A function a on R

n is said to

be a (ϕ,∞, s)-atom, if there exists a ball B ⊂ R
n such that

(i) supp(a) ⊂ B;

(ii) ‖a‖L∞(B) 6 ‖χB‖−1
Lϕ(Rn);

(iii)
∫
Rn a(x)x

α dx = 0 for all α ∈ Z
n
+ with |α| 6 s.

The atomic Musielak-Orlicz-Hardy space Hϕ,∞,s(Rn) is defined via replacing

(ϕ, q, s, ε)-molecules by (ϕ,∞, s)-atoms in the definition of the space Hq,s,ε
ϕ,mol(R

n).

Then we have the following conclusion, which is just a corollary of [20], Theo-

rem 1.1, and [14], Theorem 4.13.

Lemma 3.4. Let ϕ be as in Definition 2.4. Assume that s ∈ Z+ with s >

⌊n(q(ϕ)/i(ϕ)−1)⌋, ε ∈ (max{n+s, nq(ϕ)/i(ϕ)},∞) and p ∈ (q(ϕ)[r(ϕ)]′,∞), where

i(ϕ), q(ϕ) and r(ϕ) are, respectively, as in (2.1), (2.2) and (2.3). Then the spaces

Hϕ(R
n), Hϕ,∞,s(Rn) and Hp,s,ε

ϕ,mol(R
n) coincide with equivalent quasi-norms.

Remark 3.5. (i) LetHϕ,L(R
n) andHM,q

ϕ,L,at(R
n) be as in Lemma 3.2. By the proof

of [3], Theorem 5.4, we know that, if f ∈ Hϕ,L(R
n)∩L2(Rn), then the decomposition

f =
∑
j

λjαj holds true in L2(Rn), where {λj}j ⊂ C and {αj}j is a sequence of

(ϕ, q,M)L-atoms.

(ii) Let Hϕ(R
n) and Hϕ,∞,s(Rn) be as in Lemma 3.4. Then from the proof of [20],

Theorem 5.2, it follows that, if f ∈ Hϕ(R
n) ∩ L2(Rn), then the decomposition f =∑

j

λjaj holds true in L2(Rn), where {λj}j ⊂ C and {aj}j is a sequence of (ϕ,∞, s)-

atoms.

To prove Theorem 1.4, we need the following maximal function characterization

of Hϕ,L(R
n). We first recall the definition of maximal functions.

For f ∈ L2(Rn) and x ∈ R
n, define the radial maximal function of f , associated

with the semigroup {e−t
√
L}t>0 generated by −

√
L, by setting

NP (f)(x) := sup
t∈(0,∞)

|e−t
√
L(f)(x)|.
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Let

H̃ϕ,NP (R
n) := {f ∈ L2(Rn) : NP (f) ∈ Lϕ(Rn)}

with ‖f‖Hϕ,NP
(Rn) := ‖NP (f)‖Lϕ(Rn). Then the space Hϕ,NP (R

n) is defined as the

completion of the set H̃ϕ,NP (R
n) with respect to the quasi-norm ‖·‖Hϕ,NP

(Rn).

Then we have the following conclusion, which is just [3], Theorem 8.3.

Lemma 3.6. Let L and ϕ be, respectively, as in (1.1) and Definition 2.4. Then

the spaces Hϕ,L(R
n) and Hϕ,NP (R

n) coincide with equivalent quasi-norms.

Now we give the proof of Theorem 1.4 by applying Lemmas 3.4 through 2.5 and

Lemma 1.3.

P r o o f of Theorem 1.4. To prove Theorem 1.4, it suffices to show that

(3.1) ‖f‖Hϕ,L(Rn) ∼ ‖wf‖Hϕ(Rn)

holds true for all f ∈ Hϕ,L(R
n).

First let f ∈ H̃ϕ,L(R
n), q ∈ (q(ϕ)[r(ϕ)]′,∞) and let M ∈ N satisfy M >

nq(ϕ)/(2i(ϕ)). By this, Lemma 3.2 and Remark 3.5 (i), we see that there exist

{λj}j ⊂ C and a sequence {αj}j of (ϕ, q,M)L-atoms, associated with the balls

{Bj}j such that

(3.2) f =
∑

j

λjαj in L
2(Rn) and ‖f‖Hϕ,L(Rn) ∼ Λ({λjαj}j).

Moreover, from the definition of (ϕ, q,M)L-atoms, we deduce that, for any

(ϕ, q,M)L-atom α associated with the ball B, there exists b ∈ D(L) such that

α = Lb, which, combined with the fact that w is an L-harmonic function and L is

a self-adjoint operator on L2(Rn), further implies that

(3.3)
∫

Rn

α(x)w(x) dx =

∫

Rn

Lb(x)w(x) dx =

∫

Rn

b(x)Lw(x) dx = 0.

Furthermore, by the assumptions 0 < C1 6 w 6 C2 and supp(α) ⊂ B, we conclude

that supp(αw) ⊂ B and

‖αw‖Lq(Rn) 6 C2‖α‖Lq(Rn) 6 C2|B|1/q‖χB‖−1
Lϕ(Rn),

which, together with (3.3), implies that αw is a (ϕ, q, 0, ε)-molecule for any ε ∈ (0,∞)

up to a harmless constant multiple. From this and (3.2), it follows that, for any j,

αjw is a constant multiple of a (ϕ, q, 0, ε)-molecule with any ε ∈ (0,∞),

wf =
∑

j

λj(αjw) in L
2(Rn) and ‖f‖Hϕ,L(Rn) ∼ Λ({λjαj}j) ∼ Λ({λj(αjw)}j),
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which, together with Lemma 3.4, further implies that wf ∈ Hϕ(R
n) and

‖wf‖Hϕ(Rn) . ‖f‖Hϕ,L(Rn).

This, combined with the arbitrariness of f ∈ H̃ϕ,L(R
n) and the fact that H̃ϕ,L(R

n)

is dense in Hϕ,L(R
n), yields that, for any f ∈ Hϕ,L(R

n), we have wf ∈ Hϕ(R
n) and

(3.4) ‖wf‖Hϕ(Rn) . ‖f‖Hϕ,L(Rn).

Now let wf ∈ Hϕ(R
n) ∩ L2(Rn). Then by Lemma 3.4 and Remark 3.5 (ii) we see

that there exist {λj}j ⊂ C and a sequence {aj}j of (ϕ,∞, 0)-atoms, supported in

the balls {Bj}j, such that

(3.5) wf =
∑

j

λjaj in L
2(Rn) and ‖wf‖Hϕ(Rn) ∼ Λ({λjaj}j).

To prove f ∈ Hϕ,L(R
n) via Lemma 3.6, we only need to show that for any (ϕ,∞, 0)-

atom a supported in the ball B := B(x0, r0), and λ ∈ C,

(3.6)
∫

Rn

ϕ(x,NP (λa/w)(x)) dx . ϕ(B, |λ|‖χB‖−1
Lϕ(Rn)).

In fact, if (3.6) holds true, from (3.6), (3.5) and Lemma 2.5 (i) we deduce that for

any λ ∈ (0,∞),

∫

Rn

ϕ
(
x,

NP (f)(x)

λ

)
dx .

∑

j

∫

Rn

ϕ
(
x,NP

(λjaj
λw

)
(x)

)
dx

.
∑

j

ϕ
(
Bj,

|λj |
λ‖χBj‖Lϕ(Rn)

)
,

which, together with (3.5) and Lemma 3.6, further implies that f ∈ Hϕ,L(R
n) and

‖f‖Hϕ,L(Rn) ∼ ‖NP (f)‖Lϕ(Rn) . ‖wf‖Hϕ(Rn).

This, combined with the arbitrariness of wf ∈ Hϕ(R
n) ∩ L2(Rn) and the fact that

Hϕ(R
n) ∩ L2(Rn) is dense in Hϕ(R

n), concludes that, for any wf ∈ Hϕ(R
n), f ∈

Hϕ,L(R
n) and

‖f‖Hϕ,L(Rn) . ‖wf‖Hϕ(Rn),

which, together with (3.4), yields that (3.1) holds true.
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Now we prove (3.6). From the assumption n + µ0 > nq(ϕ)/i(ϕ), we deduce that

there exist q̃ ∈ (q(ϕ),∞) and p0 ∈ (0, i(ϕ)) such that n + µ0 > nq̃/p0, ϕ ∈ Aq̃(R
n)

and ϕ is of uniformly lower type p0. By the well-known subordination formula

(3.7) e−t
√
L =

1

π
1/2

∫ ∞

0

e−ue−t2L/(4u) du

u1/2

associated with L (see, for example, [11], (4.22)), (1.2) and (1.4), we conclude that,

for all x, y ∈ R
n,

(3.8) K̃t(x, y) ∼
t

(t+ |x− y|)n+1
.

Indeed, from (3.7) and (1.2) we deduce that for all t ∈ (0,∞) and x, y ∈ R
n,

(3.9) K̃t(x, y) =
1

π
1/2

∫ ∞

0

e−uKt2/4u(x, y)
du

u1/2

.

∫ ∞

0

e−uu
(n−1)/2

tn
e−|x−y|2/t2u ds

∼ t−n

∫ ∞

0

u(n−1)/2e−(1+|x−y|2/t2)u ds

∼ t−n
[
1 +

|x− y|2
t2

]−(n+1)/2
∫ ∞

0

e−ss(n−1)/2 ds

∼ t

(t+ |x− y|)n+1
.

Moreover, via (3.7) and (1.4), repeating the proof of (3.9), we see that for all t ∈
(0,∞) and x, y ∈ R

n,

K̃t(x, y) &
t

(t+ |x− y|)n+1
,

which, together with (3.9), implies that (3.8) holds true.

Furthermore, let x ∈ 2B. Then by the uniformly upper type 1 property of ϕ, we

know that, if NP (a/w)(x)‖χB‖Lϕ(Rn) > 1, then

(3.10) ϕ(x,NP (λa/w)(x)) = ϕ(x, |λ|NP (a/w)(x))

. ϕ(x, |λ|‖χB‖−1
Lϕ(Rn))‖χB‖Lϕ(Rn)NP (a/w)(x).

Similarly to the proof of (3.10), from the uniformly lower type p0 property of ϕ it

follows that if NP (a/w)(x)‖χB‖Lϕ(Rn) ∈ (0, 1), then

ϕ(x,NP (λa/w)(x)) . ϕ(x, |λ|‖χB‖−1
Lϕ(Rn))[‖χB‖Lϕ(Rn)NP (a/w)(x)]

p0 ,
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which, combined with (3.10), implies that

(3.11) ϕ(x,NP (λa/w)(x)) . ϕ(x, |λ|‖χB‖−1
Lϕ(Rn)){‖χB‖Lϕ(Rn)NP (a/w)(x)

+ [‖χB‖Lϕ(Rn)NP (a/w)(x)]
p0}.

Denote by M the Hardy-Littlewood maximal operator on R
n. Then it follows,

from (3.8), that NP (a/w) . M(a/w). By this, (3.11), Hölder’s inequality, Lp(Rn)-

boundedness of M with p ∈ (1,∞), 0 < C1 6 w 6 C2 and Lemma 2.5 (v), we

conclude that

(3.12)
∫

2B

ϕ(x,NP (λa/w)(x)) dx

.

∫

2B

ϕ(x, |λ|‖χB‖−1
Lϕ(Rn)){‖χB‖Lϕ(Rn)M(a/w)(x)

+ ‖χB‖p0

Lϕ(Rn)[M(a/w)(x)]p0} dx

. ‖χB‖Lϕ(Rn)‖M(a/w)‖Lq(2B)‖ϕ(·, |λ|‖χB‖−1
Lϕ(Rn))‖Lq′ (2B)

+ ‖χB‖p0

Lϕ(Rn)‖M(a/w)‖p0

Lq(2B)‖ϕ(·, |λ|‖χB‖−1
Lϕ(Rn))‖L(q/p0)′ (2B)

. ‖χB‖Lϕ(Rn)‖a‖Lq(Rn)|2B|−1/qϕ(2B, |λ|‖χB‖−1
Lϕ(Rn))

+ ‖χB‖p0

Lϕ(Rn)‖a‖
p0

Lq(Rn)|2B|−p0/qϕ(2B, |λ|‖χB‖−1
Lϕ(Rn))

. ϕ(B, |λ|‖χB‖−1
Lϕ(Rn)),

where q ∈ (1,∞) is large enough such that ϕ ∈ RHq′(R
n).

Moreover, for x ∈ R
n \ 2B, we consider the following two cases for t ∈ (0,∞).

Case 1 : t ∈ (0, r0]. In this case, by (3.8), C1 6 w 6 C2 and the fact that

|x− y| ∼ |x− x0| for any y ∈ B, we conclude that for all x ∈ R
n \ 2B,

|e−t
√
L(a/w)(x)| . ‖χB‖−1

Lϕ(Rn)

∫

B

t

(t+ |x− y|)n+1
dy

. rn+1
0 ‖χB‖−1

Lϕ(Rn)|x− x0|−(n+1),

which implies that for all x ∈ R
n \ 2B,

(3.13) sup
t∈(0,r0]

|e−t
√
L(a/w)(x)| . rn+1

0 ‖χB‖−1
Lϕ(Rn)|x− x0|−(n+1).

763



Case 2 : t ∈ (r0,∞). In this case, from Lemma 1.3,
∫
Rn a(x) dx = 0 and (3.8), it

follows that for all x ∈ R
n \ 2B,

|e−t
√
L(a/w)(x)| =

∣∣∣∣
∫

Rn

[K̃t(x, y)

w(y)
− K̃t(x, x0)

w(x0)

]
a(y) dy

∣∣∣∣

.

∫

Rn

[ |y − x0|
t

]µ0

K̃t(x, x0)|a(y)| dy

. rµ0

0 ‖χB‖−1
Lϕ(Rn)

∫

B

t1−µ0

(t+ |x− y|)n+1
dy

. rn+µ0

0 ‖χB‖−1
Lϕ(Rn)|x− x0|−(n+µ0),

which further implies that

sup
t∈(r0,∞)

|e−t
√
L(a/w)(x)| . rn+µ0

0 ‖χB‖−1
Lϕ(Rn)|x− x0|−(n+µ0).

By this and (3.13), we see that for all x ∈ R
n \ 2B,

NP (a/w)(x) . rn+µ0

0 ‖χB‖−1
Lϕ(Rn)|x− x0|−(n+µ0),

which, combined with the uniformly lower type p0 property of ϕ, Lemma 2.5 (v) and

n+ µ0 > nq̃/p0, further implies that
∫

Rn\2B
ϕ(x,NP (λa/w)(x)) dx

.

∞∑

j=1

2−(n+µ0)jp0

∫

Sj(B)

ϕ(x, |λ|‖χB‖−1
Lϕ(Rn)) dx

.

∞∑

j=1

2−(n+µ0−nq̃/p0)jp0ϕ(B, |λ|‖χB‖−1
Lϕ(Rn)) . ϕ(B, |λ|‖χB‖−1

Lϕ(Rn)).

This, together with (3.12), completes the proof of (3.6) and hence of Theorem 1.4.

�

Now we give the proof of Theorem 1.6 by using Theorem 1.4.

P r o o f of Theorem 1.6. We first prove that the spaces Hϕ,L(R
n) = Hq,w

ϕ,at(R
n)

coincide with equivalent quasi-norms. Let f ∈ H̃ϕ,L(R
n). Then by Theorem 1.4

we see that wf ∈ Hϕ(R
n) ∩ L2(Rn). From this, Lemma 3.4, Remark 3.5 (ii) and

Theorem 1.4 again, we deduce that there exist {λj}j ⊂ C and a sequence {aj}j of
(ϕ,∞, 0)-atoms such that

f =
∑

j

λj
aj
w
in L2(Rn) and ‖f‖Hϕ,L(Rn) ∼ ‖wf‖Hϕ(Rn) ∼ Λ({λjaj}j).
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It is easy to see that for any j ∈ N, aj/w is a (ϕ,∞, w)-atom and hence a (ϕ, q, w)-

atom, up to a harmless constant multiple. Thus f ∈ H̃q,w
ϕ,at(R

n) and ‖f‖Hq,w
ϕ,at(R

n) .

‖f‖Hϕ,L(Rn).

Let f ∈ H̃q,w
ϕ,at(R

n). Then there exist {λj}j ⊂ C and a sequence {αj}j of (ϕ, q, w)-
atoms such that

f =
∑

j

λjαj in L2(Rn) and ‖f‖Hq,w
ϕ,at(R

n) ∼ Λ({λjαj}j),

which implies that wf =
∑
j

λj(wαj) in L2(Rn) and for each j ∈ N, wαj is

a (ϕ, q, 0, ε)-molecule with any ε ∈ (0,∞) up to a harmless constant multiple.

By this and Lemma 3.4 we know that wf ∈ Hϕ(R
n)∩L2(Rn), which, together with

Theorem 1.4, implies that f ∈ H̃ϕ,L(R
n) and ‖f‖ϕ,L(R

n) . ‖f‖Hq,w
ϕ,at(R

n).

From the above argument, it follows that H̃q,w
ϕ,at(R

n) = H̃ϕ,L(R
n) with equivalent

quasi-norms, which, combined with the fact that H̃q,w
ϕ,at(R

n) and H̃ϕ,L(R
n) are, re-

spectively, dense in Hq,w
ϕ,at(R

n) and Hϕ,L(R
n), and a density argument, implies that

the spaces Hq,w
ϕ,at(R

n) = Hϕ,L(R
n) coincide with equivalent quasi-norms.

To complete the proof of Theorem 1.6, we still need to prove that for some ε ∈
(nq(ϕ)/i(ϕ),∞), Hq,w

ϕ,at(R
n) = Hq,w,ε

ϕ,mol(R
n) with equivalent quasi-norms. First, by an

obvious observation that for any (ϕ, q, w)-atom a, a is also a (ϕ, q, w, ε)-molecule for

any ε ∈ (0,∞), we see that Hq,w
ϕ,at(R

n) ⊂ Hq,w,ε
ϕ,mol(R

n).

Conversely, to prove Hq,w,ε
ϕ,mol(R

n) ⊂ Hq,w
ϕ,at(R

n), we only need to prove that for

any (ϕ, q, w, ε)-molecule b associated with B, with ε ∈ (nq(ϕ)/i(ϕ),∞), there exist

{λj}j ⊂ C and a sequence {aj}j of (ϕ, q, w)-atoms, supported in the balls {Bj}j,
such that

b =
∑

j

λjaj ,

and for any λ ∈ (0,∞),

(3.14)
∑

j

ϕ
(
Bj ,

|λj |
λ‖χBj‖Lϕ(Rn)

)
. ϕ

(
B,

1

λ‖χB‖Lϕ(Rn)

)
.

For k ∈ Z+, let χk := χSk(B),

χ̃k :=

∣∣∣∣
∫

Sk(B)

w(x) dx

∣∣∣∣
−1

χk,

mk :=
∫
Sk(B) b(x)w(x) dx and Mk := bχk −mkχ̃k. Then we have

(3.15) b =
∞∑

k=0

Mk +
∞∑

k=0

mkχ̃k.
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For i ∈ Z+, let Ni :=
∞∑
j=i

mj . By
∫
Rn b(x)w(x) dx = 0 and (3.15), we conclude that

b =

∞∑

k=0

Mk +

∞∑

k=0

Nk+1(χ̃k+1 − χ̃k) =:

∞∑

k=0

b1,k +

∞∑

k=0

b2,k.

Then similarly to [3], Theorem 8.5 (ii), we can prove that for each k ∈ Z+, both b1,k
and b2,k are multiples of a (ϕ, q, w)-atom and (3.14) also holds true. Indeed, it is

easy to see that for all k ∈ Z+,

(3.16) supp(b1,k) ⊂ 2k+1B and
∫

Rn

b1,k(x)w(x) dx = 0.

For any k ∈ Z+, by Hölder’s inequality and 0 < C1 6 w 6 C2, we conclude that

‖b1,k‖Lq(Rn) 6 ‖b‖Lq(Sk(B)) + |mk|
∣∣∣∣
∫

Sk(B)

w(x) dx

∣∣∣∣
−1

|Sk(B)|1/q

. ‖b‖Lq(Sk(B)) + ‖b‖Lq(Sk(B))|Sk(B)|1/q′ |Sk(B)|−1|Sk(B)|1/q

. ‖b‖Lq(Sk(B)) . 2−kε|2kB|1/q‖χB‖−1
Lϕ(Rn).

Thus, there exists a positive constant C5 such that, for any k ∈ Z+,

(3.17) ‖b1,k‖Lq(Rn) 6 C52
−kε|2k+1B|1/q‖χB‖−1

Lϕ(Rn).

For each k ∈ Z+, let a1,k := 2kεb1,k‖χB‖Lϕ(Rn)/C5‖χ2k+1B‖Lϕ(Rn) and λ1,k :=

C5‖χ2k+1B‖Lϕ(Rn)/2
kε‖χB‖Lϕ(Rn). Then by (3.16) and (3.17) we conclude that for

any k ∈ Z+, b1,k = λ1,ka1,k and a1,k is a (ϕ, q, w)-atom associated with the ball

2k+1B.

Now we deal with b2,k with k ∈ Z+. From Hölder’s inequality, 0 < C1 6 w 6 C2

and ε > nq(ϕ)/i(ϕ) > n, we deduce that

‖b2,k‖Lq(Rn) . |Nk+1||Sk(B)|−1|Sk(B)|1/q .

∞∑

j=k+1

|mj ||Sk(B)|−1/q′

.

∞∑

j=k+1

‖b‖Lq(Sj(B))|Sj(B)|1/q′ |Sk(B)|−1/q′

.

∞∑

j=k+1

2−jε|2jB|1/q|Sj(B)|1/q′‖χB‖−1
Lϕ(Rn)|Sk(B)|−1/q′

. 2−k(ε−n)|B|‖χB‖−1
Lϕ(Rn)|Sk(B)|−1/q′ ∼ 2−kε|2k+2B|‖χB‖−1

Lϕ(Rn),
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which further implies that there exists a positive constant C6 such that, for any

k ∈ Z+,

(3.18) ‖b2,k‖Lq(Rn) 6 C62
−kε|2k+2B|1/q‖χB‖−1

Lϕ(Rn).

For each k ∈ Z+, let a2,k := 2kεb2,k‖χB‖Lϕ(Rn)/C6‖χ2k+2B‖Lϕ(Rn) and λ2,k :=

C6‖χ2k+2B‖Lϕ(Rn)/2
kε‖χB‖Lϕ(Rn). Moreover, it is easy to see that for each k ∈ Z+,

supp(b2,k) ⊂ 2k+2B and
∫

Rn

b2,k(x)w(x) dx = 0,

which, together with (3.18) and the definition of a2,k, implies that for each k ∈ Z+,

b2,k = λ2,ka2,k and a2,k is a (ϕ, q, w)-atom associated with the ball 2k+2B.

By the assumption ε > nq(ϕ)/i(ϕ) we conclude that there exist q̃ ∈ (q(ϕ),∞) and

p0 ∈ (0, i(ϕ)) such that ε > nq̃/p0, ϕ ∈ Aq̃(R
n) and ϕ is of uniformly lower type p0,

which, together with the definitions of λ1,k and λ2,k and Lemma 2.5 (v), further

implies that for all λ ∈ (0,∞),

∞∑

k=0

2∑

i=1

ϕ
(
Bi,k,

|λi,k|
λ‖χBi,k

‖Lϕ(Rn)

)

.

∞∑

k=0

ϕ
(
2k+1B,

C52
−kε

λ‖χB‖Lϕ(Rn)

)
+

∞∑

k=0

ϕ
(
2k+2B,

C62
−kε

λ‖χB‖Lϕ(Rn)

)

.

∞∑

k=0

2−kεp02knq̃ϕ
(
B,

1

λ‖χB‖Lϕ(Rn)

)

∼
∞∑

k=0

2−k(ε−nq̃/p0)p0ϕ
(
B,

1

λ‖χB‖Lϕ(Rn)

)
∼ ϕ

(
B,

1

λ‖χB‖Lϕ(Rn)

)
,

where, for each i ∈ {1, 2} and k ∈ Z+, Bi,k denotes the ball associated with the

atom ai,k. Thus, (3.14) holds true. This completes the proof of the inclusion

Hq,w,ε
ϕ,mol(R

n) ⊂ Hq,w
ϕ,at(R

n) and hence the proof of Theorem 1.6. �

4. Proof of Theorem 1.7

In this section we give the proof of Theorem 1.7. We begin with an auxiliary

conclusion, which is just [6], Lemmas 2.11 and 2.13.
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Lemma 4.1. Let L be as in (1.1) and f ∈ L1(Rn). Assume that L satisfies (1.3)

and w is as in Theorem 1.4. Then

(4.1)
∫

Rn

(−∆)1/2L−1/2(f)(x) dx =

∫

Rn

f(x)w(x) dx

and

(4.2)
∫

Rn

L1/2(−∆)−1/2(f)(x)w(x) dx = cw

∫

Rn

f(x) dx,

where cw is a constant depending only on w.

Lemma 4.2. Let L be as in (1.1). Then there exists a positive constant C such

that for any f ∈ L2(Rn), ‖(−∆)1/2L−1/2(f)‖L2(Rn) 6 C‖f‖L2(Rn).

P r o o f. Let f ∈ L2(Rn). It is known that ∇L−1/2 is bounded on L2(Rn) (see,

for example, [11], (8.20)) and for any u ∈ W 1,2(Rn),

(4.3) ‖∇u‖L2(Rn) ∼ ‖(−∆)1/2u‖L2(Rn),

which implies that

‖(−∆)1/2L−1/2(f)‖L2(Rn) ∼ ‖∇L−1/2(f)‖L2(Rn) . ‖f‖L2(Rn).

This completes the proof of Lemma 4.2. �

Now we prove Theorem 1.7 via Lemmas 3.2, 3.4, 4.1 and 4.2.

P r o o f of Theorem 1.7. We first prove (1.8). Let f ∈ H̃ϕ,L(R
n) and let M ∈ N

satisfy M > nq(ϕ)/2i(ϕ) + 1/2. From the assumption that n > 3 and

q(ϕ)[r(ϕ)]′ <
n

nq(ϕ)/i(ϕ)− 1
6

n

n− 1
,

we deduce that q(ϕ)[r(ϕ)]′ < 2. Then by Lemma 3.2 and Remark 3.5 (i) we see that

there exist {λj} ⊂ C and a sequence {αj}j of (ϕ, 2,M)L-atoms such that

(4.4) f =
∑

j

λjαj in L2(Rn) and ‖f‖Hϕ,L(Rn) ∼ Λ({λjαj}).

To prove (−∆)1/2L−1/2(f) ∈ Hϕ(R
n), it suffices to show that for any (ϕ, 2,M)L-

atom α associated with the ball B := B(x0, r0) and some ε ∈ (nq(ϕ)/i(ϕ),∞),

(−∆)1/2L−1/2(α) is a (ϕ, 2, 0, ε)-molecule associated with B, up to a harmless

constant multiple. If this claim holds true, this, (4.4) and Lemma 4.2 yield
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that (−∆)1/2L−1/2(f) =
∑

j λj(−∆)1/2L−1/2(αj) is a molecular decomposition

of (−∆)1/2L−1/2(f), which, combined with Lemma 3.4 and (4.4) again, implies that

(−∆)1/2L−1/2(f) ∈ Hϕ(R
n) and ‖(−∆)1/2L−1/2(f)‖Hϕ(Rn) . ‖f‖Hϕ,L(Rn). By this,

the arbitrariness of f ∈ H̃ϕ,L(R
n) and the fact that H̃ϕ,L(R

n) is dense in Hϕ,L(R
n),

we conclude that for any f ∈ Hϕ,L(R
n), (−∆)1/2L−1/2(f) ∈ Hϕ(R

n) and

‖(−∆)1/2L−1/2(f)‖Hϕ(Rn) . ‖f‖Hϕ,L(Rn).

Now we prove that (−∆)1/2L−1/2(α) is a (ϕ, 2, 0, ε)-molecule up to a harmless

constant multiple. Let b ∈ D(L) be such that α = Lb. By (4.1) and the fact that L

is a self-adjoint operator on L2(Rn), we see that

(4.5)
∫

Rn

(−∆)1/2L−1/2(α)(x) dx =

∫

Rn

Lb(x)w(x) dx =

∫

Rn

b(x)Lw(x) dx = 0.

Moreover, for k ∈ {0, 1, . . . , 5}, it follows from Lemma 4.2 that

(4.6) ‖(−∆)1/2L−1/2(α)‖L2(Sk(B)) . ‖α‖L2(Rn) . |B|1/2‖χB‖−1
Lϕ(Rn).

When k ∈ N and k > 6, let S̃k(B) := 2k+2B \2k−2B. Take ψ ∈ C∞
c (Rn) such that

ψ ≡ 1 on Sk(B), 0 6 ψ 6 1, supp(ψ) ⊂ S̃k(B) and |∇ψ| . (2kr0)
−1. Then by (4.3)

we see that

(4.7) ‖(−∆)1/2L−1/2(α)‖L2(Sk(B))

6 ‖(−∆)1/2(ψL−1/2α)‖L2(S̃k(B)) ∼ ‖∇(ψL−1/2α)‖L2(S̃k(B))

. ‖∇L−1/2(α)‖L2(S̃k(B)) + (2kr0)
−1‖L−1/2(α)‖L2(S̃k(B)).

It follows from [30], (7.28) that for some s ∈ (nq(ϕ)/i(ϕ), 2M),

(4.8) ‖∇L−1/2(α)‖L2(S̃k(B)) . 2−sk|B|1/2‖χB‖−1
Lϕ(Rn).

For the sake of completeness, we give the proof of (4.8). By [11], Lemma 8.5, we see

that there exist two positive constants C and c such that for all closed sets E and F

in R
n, t ∈ (0,∞) and f ∈ L2(E),

(4.9) ‖t∇e−t2Lf‖L2(F ) 6 C exp
{
− [dist(E,F )]2

ct2

}
‖f‖L2(E),

where dist(E,F ) := inf{|x − y| : x ∈ E, y ∈ F}. Moreover, from the functional
calculus of L, we deduce that for all f ∈ L2(Rn),

(4.10) ∇L−1/2f =
1

π
1/2

∫ ∞

0

∇e−tLf
dt

t1/2
.
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By the definition of a (ϕ, 2,M)L-atom, we know that there exists b ∈ D(LM )

such that α = LMb, supp(b) ⊂ B and ‖b‖L2(B) 6 r2M0 |B|1/2‖χB‖−1
Lϕ(Rn). Then

from (4.10), the change of variables and Minkowski’s inequality, it follows that for

each k ∈ N with k > 6,

(4.11) ‖∇L−1/2(α)‖L2(S̃k(B))

.

∫ ∞

0

{∫

S̃k(B)

|∇e−t2Lα(x)|2 dx
}1/2

dt

∼
∫ r0

0

{∫

S̃k(B)

|t∇e−t2Lα(x)|2 dx
}1/2

dt

t

+

∫ ∞

r0

{∫

S̃k(B)

|t∇(t2L)Me−t2Lb(x)|2 dx
}1/2

dt

t2M+1

=: Hk,1 +Hk,2.

For Hk,1, by (4.9) we conclude that

(4.12) Hk,1 .

∫ r0

0

exp
{
− (2kr0)

2

ct2

}
‖α‖L2(B)

dt

t

.

{∫ r0

0

t2M−1

(2kr0)2M−1

dt

t

}
‖α‖L2(B) ∼ 2−(2M−1)k‖α‖L2(B)

. 2−(2M−1)k|B|1/2‖χB‖−1
Lϕ(Rn).

Furthermore, similarly to (4.12), we see that

Hk,2 .

∫ ∞

r0

exp
{
− (2kr0)

2

ct2

}
‖b‖L2(B)

dt

t2M+1

.

∫ ∞

r0

t(2M−1)

(2kr0)(2M−1)

dt

t2M+1
‖b‖L2(B)

. 2−(2M−1)k|B|1/2‖χB‖−1
Lϕ(Rn),

which, together with (4.11) and (4.12), implies that for all k ∈ N with k > 6,

‖∇L−1/2(α)‖L2(S̃k(B)) . 2−(2M−1)k|B|1/2‖χB‖−1
Lϕ(Rn).

From this and the assumption that M > nq(ϕ)/2i(ϕ) + 1/2 we deduce that (4.8)

holds true.
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Moreover, by L−1/2 = π
−1/2

∫∞
0

e−tLt−1/2 dt, Minkowski’s inequality and Hölder’s

inequality, we conclude that for each k ∈ N with k > 6,

(4.13) ‖L−1/2(α)‖L2(S̃k(B)) .

∫ r20

0

{∫

S̃k(B)

|e−tLα(x)|2 dx
}1/2

dt

t1/2

+

∫ ∞

r20

{∫

S̃k(B)

|(tL)Me−tLb(x)|2 dx
}1/2

dt

tM+1/2

=: Ik,1 + Ik,2.

From Minkowski’s inequality, (1.2), Hölder’s inequality and the fact that for all

x ∈ S̃k(B) and y ∈ B, |x− y| > 2k−2r0− r0 > 2k−3r0, we deduce that for each k ∈ N

with k > 6,

(4.14) ‖e−tLα‖L2(S̃k(B)) 6

∫

B

|α(y)|
{∫

S̃k(B)

|Kt(x, y)|2 dx
}1/2

dy

. ‖α‖L1(B)
1

tn/2
e−(2k−3r0)

2/4t|S̃k(B)|1/2

. 2kn/2
1

tn/2
e−(2k−3r0)

2/4t|B|3/2‖χB‖−1
Lϕ(Rn),

which further implies that

(4.15) Ik,1 . 2kn/2|B|3/2‖χB‖−1
Lϕ(Rn)

∫ r20

0

1

t(n+1)/2
e−(2k−3r0)

2/4t dt

. 2kn/2|B|3/2‖χB‖−1
Lϕ(Rn)

∫ r20

0

1

t(n+1)/2

[ t

(2kr0)2

]M+n/4

dt

. 2−2Mr0|B|1/2‖χB‖−1
Lϕ(Rn).

To estimate Ik,2, we recall that for any m ∈ N there exists a positive constant cm
such that for all t ∈ (0,∞) and x, y ∈ R

n,

∣∣∣
∂mKt(x, y)

∂tm

∣∣∣ .
1

tn/2+m
e−|x−y|2/cmt

(see, for example, [23], Theorem 6.17). By this, similarly to (4.14), we see that

‖(tL)Me−tLb‖L2(S̃k(B)) 6

∫

B

|b(y)|
{∫

S̃k(B)

∣∣∣
tM∂MKt(x, y)

∂tM

∣∣∣
2

dx

}1/2

dy

. 2kn/2
1

tn/2
e−(2k−3r0)

2/cM tr2M0 |B|3/2‖χB‖−1
Lϕ(Rn),
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which implies that

Ik,2 . 2kn/2r2M0 |B|3/2‖χB‖−1
Lϕ(Rn)

∫ ∞

r20

1

tM+(n+1)/2
e−(2k−3r0)

2/cM t dt

. 2kn/2r2M0 |B|3/2‖χB‖−1
Lϕ(Rn)

∫ ∞

r20

1

tM+(n+1)/2

[ t

(2kr0)2

]M+n/4

dt

. 2−2Mr0|B|1/2‖χB‖−1
Lϕ(Rn).

This, (4.13), (4.15) and s < 2M yield that

(2kr0)
−1‖L−1/2(α)‖L2(S̃k(B)) . 2−(2M+1)k|B|1/2‖χB‖−1

Lϕ(Rn)

. 2−sk|B|1/2‖χB‖−1
Lϕ(Rn),

where s is as in (4.8), which, combined with (4.7) and (4.8), implies that

‖(−∆)1/2L−1/2(α)‖L2(Sk(B)) . 2−sk|B|1/2‖χB‖−1
Lϕ(Rn).

By this inequality, (4.5) and (4.6), we see that (−∆)1/2L−1/2(α) is a (ϕ, 2, 0, s)-

molecule up to a harmless constant multiple. Thus, the claim holds true.

Now we prove (1.9). By the assumption that q(ϕ)[r(ϕ)]′ < n/(nq(ϕ)/i(ϕ)− 1) we

know that there exist q ∈ (1,∞) and γ ∈ (0, 1) such that

q(ϕ)[r(ϕ)]′ < q <
n

nq(ϕ)/i(ϕ) − γ
,

which further implies that γ + n/q > nq(ϕ)/i(ϕ). Due to this, Lemma 3.4 and

Theorem 1.6, similarly to the proof of (1.8), it suffices to prove that for any (ϕ,∞, 0)-

atom a supported in the ball B := B(x0, r0), L1/2(−∆)−1/2(a) is a (ϕ, q, w, γ+n/q)-

molecule associated with B, up to a harmless constant multiple.

By (4.2) and
∫
Rn a(x) dx = 0, we see that

(4.16)
∫

Rn

L1/2(−∆)−1/2(a)(x)w(x) dx = cw

∫

Rn

a(x) dx = 0.

For any x ∈ R
n, let

(4.17) J(x) :=

∫ ∞

0

∫ t

0

∫

Rn

∫

Rn

Pt−s(x− z)V (z)

×Ks(z, y)((−∆)−1/2a)(y) dy dz ds
dt

t3/2
.
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From the functional calculus associated with A := L or −∆, we deduce that there

exists a positive constant c0 such that, for a suitable function f on R
n,

(4.18) A1/2f = c0

∫ ∞

0

(Htf − f)
dt

t3/2
,

where {Ht}t>0 denote the heat kernels of A. Furthermore, by the Kato-Trotter

formula, we know that for all t ∈ (0,∞) and x ∈ R
n,

Kt(x, y) = Pt(x − y)−
∫ t

0

∫

Rn

Pt−s(x− y)V (z)Ks(z, y) dz ds

(see, for example [6], (2.2)), which, combined with (4.18), implies that

(4.19) L1/2(−∆)−1/2(a)(x) = c0

∫ ∞

0

(Kt − I)(−∆)−1/2(a)(x)
dt

t3/2

= c0

∫ ∞

0

(Kt − Pt)(−∆)−1/2(a)(x)
dt

t3/2

+ c0

∫ ∞

0

(Pt − I)(−∆)−1/2(a)(x)
dt

t3/2

= − c0J(x) + a(x).

Moreover, by the equality (−∆)−1/2 = π
−1/2

∫∞
0

et∆t−1/2 dt, we see that for all

x ∈ R
n,

(4.20) (−∆)−1/2(a)(x) = C

∫

Rn

a(y)

|x− y|n−1
dy

with C a constant independent of a, which, together with ‖a‖L∞(Rn) 6 ‖χB‖−1
Lϕ(Rn),

implies that for any x ∈ 2B,

(4.21) |(−∆)−1/2(a)(x)| . r0‖χB‖−1
Lϕ(Rn).

For x ∈ R
n \ 2B, from (4.20),

∫
Rn a(y) dy = 0, ‖a‖L∞(Rn) 6 ‖χB‖−1

Lϕ(Rn) and the

mean value theorem, we deduce that

|(−∆)−1/2(a)(x)| .
∣∣∣∣
∫

B

[|x− y|1−n − |x− x0|1−n]a(y) dy

∣∣∣∣

. rn+1
0 ‖χB‖−1

Lϕ(Rn)|x− x0|−n,

which, together with (4.21), further implies that for all x ∈ R
n,

(4.22) |(−∆)−1/2(a)(x)| . r0‖χB‖−1
Lϕ(Rn)

[
1 +

|x− x0|
r0

]−n

.
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Due to (4.22), similarly to [6], (4.8), we conclude that

(4.23)
∥∥∥J(·)

(
1 +

|· − x0|
r0

)γ∥∥∥
Lq(Rn)

. |B|1/q‖χB‖−1
Lϕ(Rn)‖∆−1V ‖L∞(Rn),

where J(·) is as in (4.17). Indeed,

(4.24) J(x) =

∫ r20

0

∫ t

0

∫

Rn

∫

Rn

. . .+

∫ ∞

r20

∫ t/2

0

∫

Rn

∫

Rn

. . .+

∫ ∞

r20

∫ t

t/2

∫

Rn

∫

Rn

. . .

=: J1(x) + J2(x) + J3(x).

To obtain (4.23), we need the following basic estimates, which are established in [7],

Section 4, the details being omitted here. For x ∈ R
n, d ∈ (2,∞) and β, t ∈ (0,∞),

let

g(x) := (1 + |x|)−d−β , gt(x) :=
1

td/2
g
( x

t1/2

)
.

Then for any t ∈ (0,∞) and x ∈ R
n,

(4.25)
∫ t

0

gs(x) ds . |x|2−d
[
1 +

|x|
t1/2

]−2−β

and

(4.26)
∫ ∞

t2
gs(x) ds . t2−d

[
1 +

|x|
t

]−d+2

.

Moreover, for any q ∈ (1,∞), γ ∈ (n/q′, n] and β, t ∈ (0,∞),

(4.27)
∥∥∥|x|γ−n

[
1 +

|x|
t1/2

]−n−β∥∥∥
Lq(Rn)

= Cγ,βt
(γ−n+n/q)/2,

and for any 0 < γ < β < 2, x ∈ R
n and r ∈ (0,∞),

(4.28)
∫

Rn

|x− y|2−n
[
1 +

|x− y|
r

]−β[
1 +

|y|
r

]−n+γ

dy . r2
[
1 +

|x|
r

]γ+2−n−β

.

Furthermore, for any x ∈ R
n, γ ∈ (0, 2] and r ∈ (0,∞),

(4.29)
∫

Rn

V (y)
[
1 +

|x− y|
r

]−n+γ

dy . rn−2‖∆−1V ‖L∞(Rn).
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Now we prove (4.22) by using (4.25) through (4.29). From (4.22) and (1.2), it

follows that for all s ∈ (0, r20) and y, z ∈ R
n,

Ks(y, z)|(−∆)−1/2(a)(y)|

. r0‖χB‖−1
Lϕ(Rn)

1

sn/2
e−|y−z|2/8s

[
1 +

|y − z|
s1/2

]−n[
1 +

|y − x0|
r0

]−n

. r0‖χB‖−1
Lϕ(Rn)

1

sn/2
e−|y−z|2/8s

[
1 +

|y − z|+ |y − x0|
r0

]−n

. r0‖χB‖−1
Lϕ(Rn)

1

sn/2
e−|y−z|2/8s

[
1 +

|z − x0|
r0

]−n

,

which, together with the change of variables and (4.25) (taking d = n + 1 in this

case), implies that

|J1(x)| . r0‖χB‖−1
Lϕ(Rn)

∫ r20

0

∫ t

0

∫

Rn

∫

Rn

Pt−s(x− z)V (z)

× 1

sn/2
e−|y−z|2/8s

[
1 +

|z − x0|
r0

]−n

dy dz ds
dt

t3/2

. r0‖χB‖−1
Lϕ(Rn)

∫ r20

0

∫

Rn

Ps(x − z)V (z)
[
1 +

|z − x0|
r0

]−n

dz
ds

s1/2

. r0‖χB‖−1
Lϕ(Rn)

∫

Rn

|x− z|1−n
[
1 +

|x− z|
r0

]−N

V (z)
[
1 +

|z − x0|
r0

]−n

dz,

where N ∈ (n+ γ,∞) is a positive constant. Now we further see that

|J1(x)|
[
1 +

|x− x0|
r0

]γ
. r0‖χB‖−1

Lϕ(Rn)

∫

Rn

|x− z|1−n
[
1 +

|x− z|
r0

]−N+γ

×V (z)
[
1 +

|z − x0|
r0

]−n+γ

dz,

which, together with Minkowski’s inequality, (4.27) and (4.29), implies that

(4.30)
∥∥∥J1(·)

(
1 +

|· − x0|
r0

)γ∥∥∥
Lq(Rn)

. r0‖χB‖−1
Lϕ(Rn)

∫

Rn

∥∥∥|x− z|1−n
[
1 +

|x− z|
r0

]−N+γ∥∥∥
Lq(Rn)

× V (z)
[
1 +

|z − x0|
r0

]−n+γ

dz

. r
2−n+n/q
0 ‖χB‖−1

Lϕ(Rn)

∫

Rn

V (z)
[
1 +

|z − x0|
r0

]−n+γ

dz

. |B|1/q‖χB‖−1
Lϕ(Rn)‖∆−1V ‖L∞(Rn).
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For J2, from (4.22), (1.2), (4.25) (taking d = n in this case) and the estimate

(4.31)
[
1 +

|x− x0|
r0

]γ
.

[ t1/2
r0

]2γ[
1 +

|y − x0|
r0

]γ[
1 +

|y − z|
t1/2

]γ[
1 +

|z − x|
t1/2

]γ

for any t ∈ (r20 ,∞), we deduce that

|J2(x)|
[
1 +

|x− x0|
r0

]γ

. r0‖χB‖−1
Lϕ(Rn)

[
1 +

|x− x0|
r0

]γ ∫ ∞

r20

∫ t/2

0

∫

Rn

∫

Rn

1

tn/2
e−|x−z|2/2t

× V (z)
1

sn/2
e−|y−z|2/4s

[
1 +

|y − x0|
r0

]−n

dy dz ds
dt

t3/2

. r0‖χB‖−1
Lϕ(Rn)

[
1 +

|x− x0|
r0

]γ ∫ ∞

r20

∫

Rn

∫

Rn

1

tn/2
e−|x−z|2/2t

× V (z)|z − y|2−n
[
1 +

|y − z|
t1/2

]−N[
1 +

|y − x0|
r0

]−n

dy dz
dt

t3/2

. r1−2γ
0 ‖χB‖−1

Lϕ(Rn)

∫ ∞

r20

∫

Rn

∫

Rn

t(2γ−n−3)/2e−|x−z|2/4tV (z)

× |z − y|2−n
[
1 +

|z − y|
t1/2

]−N+γ[
1 +

|y − x0|
r0

]−n+γ

dy dz dt,

where N ∈ (2γ,∞) is a positive constant. Letting N = β + γ with 0 < γ < β < 1

and applying Minkowski’s inequality, (4.28) and (4.29), we see that

(4.32) ‖J2(·)
(
1 +

|· − x0|
r0

)γ

‖Lq(Rn)

. r1−2γ
0 ‖χB‖−1

Lϕ(Rn)

∫ ∞

r20

∫

Rn

∫

Rn

t(2γ−n−3)/2‖e−|·−z|2/4t‖Lq(Rn)V (z)

× |z − y|2−n
[
1 +

|z − y|
t1/2

]−N+γ[
1 +

|y − x0|
r0

]−n+γ

dy dz dt

. r1−2γ
0 ‖χB‖−1

Lϕ(Rn)

∫ ∞

r20

∫

Rn

∫

Rn

t(2γ+n/q−n−3)/2V (z)

×
[ t1/2
r0

]β
|z − y|2−n

[
1 +

|z − y|
r0

]−β[
1 +

|y − x0|
r0

]−n+γ

dy dz dt.

. r1−2γ−β
0 ‖χB‖−1

Lϕ(Rn)

×
∫

Rn

r
2γ+β+n/q+1−n
0 V (z)

[
1 +

|z − x0|
r0

]−n+2+γ−β

dz

. |B|1/q‖χB‖−1
Lϕ(Rn)‖∆−1V ‖L∞(Rn).
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For J3, it follows from (4.22), (1.2), the change of variables and (4.25) with d = n

that

|J3(x)| . r0‖χB‖−1
Lϕ(Rn)

∫ ∞

r20

∫ t

t/2

∫

Rn

∫

Rn

Pt−s(x− z)V (z)

× 1

tn/2
e−|y−z|2/2t

[
1 +

|y − x0|
r0

]−n

dy dz ds
dt

t3/2

. r0‖χB‖−1
Lϕ(Rn)

∫ ∞

r20

∫

Rn

∫

Rn

|x− z|2−n
[
1 +

|x− z|
t1/2

]−N

× V (z)
1

tn/2
e−|y−z|2/2t

[
1 +

|y − x0|
r0

]−n

dy dz
dt

t3/2
,

where N ∈ (n,∞) is a positive constant, which, combined with (4.31), further implies

that

|J3(x)|
[
1 +

|x− x0|
r0

]γ

. r1−2γ
0 ‖χB‖−1

Lϕ(Rn)

∫ ∞

r20

∫

Rn

∫

Rn

|x− z|2−n
[
1 +

|x− z|
t1/2

]−N+γ

t(2γ−3)/2

× V (z)
1

tn/2
e−|y−z|2/4t

[
1 +

|y − x0|
r0

]−n+γ

dy dz dt.

By this, Minkowski’s inequality, (4.27), (4.26) with d = 2n+1−2γ−n/q and (4.29),
we conclude that
∥∥∥J3(·)

(
1 +

|· − x0|
r0

)γ∥∥∥
Lq(Rn)

. r1−2γ
0 ‖χB‖−1

Lϕ(Rn)

∫ ∞

r20

∫

Rn

∫

Rn

t(2γ+(n/q)−n−1)/2V (z)

× 1

tn/2
e−|y−z|2/2t

[
1 +

|y − x0|
r0

]−n+γ

dy dz dt

. r
2−2n+n/q
0 ‖χB‖−1

Lϕ(Rn)

∫

Rn

∫

Rn

V (z)

×
[
1 +

|z − y|
r0

]2γ+1+(n/q)−2n[
1 +

|y − x0|
r0

]−n+γ

dy dz

. r
2−n+n/q
0 ‖χB‖−1

Lϕ(Rn)

∫

Rn

V (z)
[
1 +

|z − x0|
r0

]2γ+1+(n/q)−2n

dz

. |B|1/q‖χB‖−1
Lϕ(Rn)‖∆−1V ‖L∞(Rn),

which, combined with (4.24), (4.30) and (4.32), implies that (4.23) holds true.

From (4.19), (4.23) and ‖a‖L∞(Rn) 6 ‖χB‖−1
Lϕ(Rn), it follows that

(4.33) ‖L1/2(−∆)−1/2(a)‖Lq(4B) . ‖J‖Lq(4B) + ‖a‖Lq(Rn) . |B|1/q‖χB‖−1
Lϕ(Rn).
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When j ∈ N with j > 2 by (4.19), (4.23), supp(a) ⊂ B and the fact that for any

x ∈ Sj(B), |x− x0| ∼ 2jr0, we conclude that

‖L1/2(−∆)−1/2(a)‖Lq(Sj(B)) ∼ ‖J‖Lq(Sj(B))

∼ 2−γj‖J(·)
(
1 +

|· − x0|
r0

)γ
‖Lq(Sj(B))

. 2−γj|B|1/q‖χB‖−1
Lϕ(Rn)

∼ 2−(γ+n/q)j|2j+1B|1/q‖χB‖−1
Lϕ(Rn),

which, combined with (4.16) and (4.33), further implies that L1/2(−∆)−1/2(a) is

a (ϕ, q, 0, γ + n/q)-molecule up to a harmless constant multiple. This completes the

proof of Theorem 1.7. �
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