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INFINITELY MANY SOLUTIONS FOR BOUNDARY VALUE

PROBLEMS ARISING FROM THE FRACTIONAL ADVECTION

DISPERSION EQUATION

Jing Chen, Xiangtan, Xian Hua Tang, Changsha
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Abstract. We consider the existence of infinitely many solutions to the boundary value
problem

d

dt

(1

2
0D

−β
t (u

′(t)) +
1

2
tD

−β
T (u

′(t))
)

+∇F (t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0.

Under more general assumptions on the nonlinearity, we obtain new criteria to guaran-
tee that this boundary value problem has infinitely many solutions in the superquadratic,
subquadratic and asymptotically quadratic cases by using the critical point theory.
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1. Introduction

In this paper, we consider the fractional Dirichlet boundary value problem

(1.1)

d

dt

(1
2

0D
−β
t (u′(t)) +

1

2
tD

−β
T (u′(t))

)
+∇F (t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where 0D
−β
t and tD

−β
T are respectively the left and right Riemann-Liouville fractional

integrals of order 0 6 β < 1, F : [0, T ]×R
N → R, F (t, x) is measurable in t for every
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x ∈ R
N and continuously differentiable in x for a.e. t ∈ [0, T ]. In particular, if β = 0,

(1.1) reduces to the standard second-order boundary value problem, which has been

extensively studied, for more detail one can see [21], [25], [19].

Fractional calculus and fractional differential equations have attracted wide con-

cern recently, see [17], [24], [22], [26]. The interest in the physical models containing

fractional differential operators is mainly due to the fact that they can describe

the diffusion phenomenon more accurately in complex dynamic systems involving

anomalous diffusion [5], [11], [10]. In [11], Fix and Roop set up a model for contam-

inant transport of ground-water flow, and prove the existence and uniqueness of the

least squares approximation for a steady-state fractional advection-dispersion equa-

tion (FADE for short) with no advection terms by the least squares finite element

analysis.

The equation in (1.1) is motivated by the steady-state FADE studied in [10],

(1.2)
−Da(p0D

−β
t + qtD

−β
T )Du + b(t)Du+ c(t)u = f,

u(0) = u(T ) = 0.

In equation (1.2), let D = d/dt, a = 1, p = q = 1/2, b(t) = c(t) = 0, f = f(t, u).

Problem (1.2) is the scalar case of (1.1), in which N = 1 and ∇F (t, u) = f(t, u).

Recently, Jiao and Zhou [15] investigated (1.1) by the critical point theory. They

established the variational structure for (1.1), and obtained two existence results

of solutions for problem (1.1) by using the least action principle and the Mountain

Pass Lemma. After that, many results on the existence and multiplicity for solutions

of (1.1) or the related problems have been obtained, see, e.g., [16], [3], [2], [6], [27],

[7], [8], [18], [23], [20], [13], [12]. Most of them, for example [15], [16], [6], [27], [8],

[20], [12], treat the case where the nonlinearity F (t, x) is superquadratic as |x| → ∞

and the Ambrosetti-Rabinowitz superquadratic condition (see [1])

(AR) there are µ > 2, R > 0 such that

0 < µF (t, x) 6 (∇F (t, x), x) ∀ |x| > R, a.e. t ∈ [0, T ],

is usually assumed except for [6], [12]. (AR) plays an important role in ensuring the

boundedness of the Palais-Smale (PS) sequences of the energy functional, which is

very crucial in applying the critical point theory. However, (AR) implies F (t, x) >

C0|x|µ for large |x| and some constant C0 > 0, and there are many functions which

are superquadratic at infinity, but do not satisfy (AR) for any µ > 2. For example

the function

F (t, x) = |x|2 ln(1 + |x|)

does not satisfy (AR).
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For the superquadratic case, in a recent paper [7], the authors proved the existence

of nontrivial solutions for problem (1.1) by the Mountain Pass Lemma based on some

new superquadratic conditions, which are weaker than (AR). In papers [8] and [12],

the results on the multiplicity of nontrivial solutions for problem (1.1) (in [12] for

λ = 1) were obtained with the evenness assumption. The crucial difference between

them is that Theorem 3.1 in [8] is established under (AR) but Theorem 3.2 in [12] is

assumed without (AR). It is worth noting that some new superquadratic assumptions

are made instead of (AR) in [12] namely

(A1) there exist c > 0 and q > 2 such that

|F (t, x)| 6 c(1 + |x|q) for (t, x) ∈ [0, T ]× R
N ;

(A2) there exists σ > 1 such that

σF(t, x) > F(t, sx) for (t, x) ∈ [0, T ]× R
N and s ∈ [0, 1],

where

F(t, x) = (∇F (t, x), x) − 2F (t, x);

(A3) lim
|x|→∞

F (t, x)/|x|2 = ∞ and lim
|x|→∞

(∇F (t, x), x)/|x|2 = ∞ uniformly for t ∈

[0, T ].

Let us recall that (A1) is usually assumed when (AR) is replaced by another

superquadratic condition. (A2) and (A3) are superquadratic assumptions which just

complement with (AR), which can be proved in a way similar to that in [28]. In this

paper, motivated by [8], [12], [28], we will further study the existence of infinitely

many nontrivial solutions of (1.1). Instead of (A2) and (A3), we will give more

general superquadratic conditions near infinity.

Compared to the superquadratic case, as far as the authors are aware, there are

few papers [6], [7], [8] concerning the case where F (t, x) is subquadratic as |x| →

∞. In paper [17], the authors proved the multiplicity of nontrivial solutions for

problem (1.1) under the assumption

(A4) F (t, x) = a(t)|x|γ , where a(t) ∈ L∞([0, T ],R+) and 1 < γ < 2 is a constant.

There are many subquadratic functions in mathematical physics in problem like

(1.1) except for F (t, x) = a(t)|x|γ . In the present paper, we will establish some new

existence criteria to guarantee that the problem (1.1) has infinitely many nontrivial

solutions under more general assumptions by the genus property. However, not many

multiplicity results for problem (1.1) exist in the asymptotically quadratic case. In

the present paper, we will fill the gap.

In this paper, we study the existence of infinitely many nontrivial solutions of

(1.1) under the assumption that F (t, x) is even in x, i.e., F (t,−x) = F (t, x) for
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all (t, x) ∈ [0, T ] × R
N separately for the above three cases. The structure of the

paper is the following. In the next section, we present the necessary preliminary

knowledge. After that, we prove our main results in Section 3. In Section 4, we give

three examples as applications.

2. Preliminaries and variational setting

In this section, we recall some related preliminaries and display the variational

setting which has been established for our problem.

Definition 2.1 ([17]). Let f(t) be a function defined on [a, b] and γ > 0. The

left and right Riemann-Liouville fractional integrals of order γ for the function f(t)

denoted by aD
−γ
t f(t) and tD

−γ
b f(t), respectively, are defined by

aD
−γ
t f(t) =

1

Γ(γ)

∫ t

a

(t− s)γ−1f(s) ds, t ∈ [a, b],

and

tD
−γ
b f(t) =

1

Γ(γ)

∫ b

t

(s− t)γ−1f(s) ds, t ∈ [a, b],

provided the right-hand sides are pointwise defined on [a, b], where Γ is the gamma

function.

Definition 2.2 ([17]). Let f(t) be a function defined on [a, b]. The left and

right Riemann-Liouville fractional derivatives of order γ for function f(t) denoted

by aD
γ
t f(t) and tD

γ
b f(t), respectively, are defined by

aD
γ
t f(t) =

dn

dtn
aD

γ−n
t f(t) =

1

Γ(n− γ)

dn

dtn

(∫ t

a

(t− s)n−γ−1f(s) ds

)

and

tD
γ
b f(t) = (−1)n

dn

dtn
tD

γ−n
b f(t) =

1

Γ(n− γ)
(−1)n

dn

dtn

(∫ b

t

(s− t)n−γ−1f(s) ds

)
,

where t ∈ [a, b], n− 1 6 γ < n and n ∈ N.

Let AC([a, b],RN ) denote the space of absolutely continuous functions. For k ∈ N,

ACk([a, b],RN ) = {f ∈ Ck−1([a, b],RN) : f (k−1) ∈ AC([a, b],RN )}.
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Definition 2.3 ([17]). Let γ > 0 and n ∈ N. If γ ∈ [n − 1, n) and f(t) ∈

ACn([a, b],RN), then the left and right Caputo fractional derivatives of order γ for

function f(t), denoted by c
aD

γ
t f(t) and

c
tD

γ
b f(t), respectively, are defined by

c
aD

γ
t f(t) = aD

γ−n
t f (n)(t) =

1

Γ(n− γ)

(∫ t

a

(t− s)n−γ−1f (n)(s) ds

)

and

c
tD

γ
b f(t) = (−1)ntD

γ−n
b f (n)(t) =

(−1)n

Γ(n− γ)

(∫ b

t

(s− t)n−γ−1f (n)(s) ds

)
,

for a.e. t ∈ [a, b].

By the property of a semigroup of the Riemann-Liouville fractional integral oper-

ator (see [17]), we have

0D
−β
t (u′(t)) = 0D

−β/2
t (0D

−β/2
t u′(t)) = 0D

−β/2
t (0D

1−β/2
t u(t)),

tD
−β
T (u′(t)) = tD

−β/2
T (tD

−β/2
T u′(t)) = −tD

−β/2
T (tD

1−β/2
T u(t)).

For any u ∈ AC([0, T ],RN) with u(0) = u(T ) = 0, we have

0D
1−β/2
t u(t) = c

0D
1−β/2
t u(t), tD

1−β/2
T u(t) = c

tD
1−β/2
T u(t);

then (1.1) is equivalent to the problem

(2.1)

d

dt

(1
2
0D

α−1
t (c0D

α
t u(t))−

1

2
tD

α−1
T (ctD

α
Tu(t))

)
+∇F (t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where α = 1− β/2 ∈ (1/2, 1].

R em a r k 2.1. A function u ∈ AC([0, T ],RN) is a solution of problem (1.1) if

and only if u is a solution of (2.1).

For 1 6 p <∞ we denote

‖u‖p =

(∫ T

0

|u(t)|p dt

)1/p
, u ∈ Lp([0, T ],RN),

and

‖u‖∞ = max
t∈[0,T ]

|u(t)|, u ∈ C([0, T ],RN).
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Set Eα as our workspace, it is the closure of C∞
0 ([0, T ],RN) with respect to the

norm

(2.2) ‖u‖ =

[∫ T

0

(|u(t)|2 + |c0D
α
t u(t)|

2) dt

]1/2
∀u ∈ Eα,

where 1
2 < α 6 1 and C∞

0 ([0, T ],RN) denotes the set of all functions u ∈

C∞([0, T ],RN) with u(0) = u(T ) = 0.

Evidently, Eα is a Hilbert space of functions u ∈ L2([0, T ],RN) having an α-order

Caputo fractional derivative c
0D

α
t u ∈ L2([0, T ],RN) and satisfying u(0) = u(T ) = 0

with the inner product

〈u, v〉 =

∫ T

0

[(u(t), v(t)) + (c0D
α
t u(t),

c
0D

α
t v(t))] dt.

Proposition 2.1 ([15]). The space Eα is reflexive and separable.

Proposition 2.2 ([15]). For all u ∈ Eα, we have

(2.3) ‖u‖2 6 τ2‖
c
0D

α
t u‖2,

where τ2 := Tα/Γ(α+ 1), and

(2.4) ‖u‖∞ 6 τ∞‖c0D
α
t u‖2,

where τ∞ := Tα−1/2/Γ(α)(2α− 1)1/2.

According to (2.3), the norm ‖·‖ in Eα is equivalent to the norm

(2.5) ‖u‖α = ‖c0D
α
t u‖2 =

(∫ T

0

|c0D
α
t u(t)|

2 dt

)1/2

.

Lemma 2.1 ([15]). Assume that the sequence {uk} converges weakly to u in Eα,

i.e. uk ⇀ u. Then uk → u in C([0, T ],RN), i.e. ‖u− uk‖∞ → 0 as k → ∞.

Corollary 2.1. The embedding from Eα into L2([0, T ],RN) is compact.
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Consider the energy functional ϕ : Eα → R given by

(2.6) ϕ(u) =

∫ T

0

[
−
1

2
(c0D

α
t u(t),

c
t D

α
Tu(t))− F (t, u(t))

]
dt.

It is known that ϕ is continuously differentiable on Eα by Theorem 4.1 in [15].

Moreover, for any u, v ∈ Eα, the derivative of ϕ at u is

(2.7) 〈ϕ′(u), v〉 = −

∫ T

0

1

2
[(c0D

α
t u(t),

c
t D

α
T v(t)) + (ctD

α
Tu(t),

c
0D

α
t v(t))] dt

−

∫ T

0

(∇F
(
t, u(t)), v(t)) dt.

Lemma 2.2 ([15]). Let 1/2 < α 6 1 and let ϕ be defined by (2.6). If u ∈ Eα

is a solution of the corresponding Euler equation ϕ′(u) = 0, then u is a solution of

problem (2.1).

Proposition 2.3 ([15]). For any u ∈ Eα we have

(2.8) |cos(πα)|‖u‖2α 6 −

∫ T

0

(c0D
α
t u(t),

c
tD

α
Tu(t)) dt 6

1

|cos(πα)|
‖u‖2α.

Definition 2.4 ([21]). Let X be a real Banach space and let Φ: X → R be

differentiable. We say that Φ satisfies the (PS) condition if any sequence {uk} in X

such that {Φ(uk)} is bounded and Φ′(uk) → 0 as k → ∞ contains a convergent

subsequence.

3. Main results and proofs

3.1. Superquadratic case. Before presenting our theorems, we introduce the

following assumptions.

(F1) F (t, 0) ≡ 0 on [0, T ], and there exist c1 > 0, R0 > 0 such that

|∇F (t, x)| 6 c1|x| ∀ |x| 6 R0, a.e. t ∈ [0, T ];

(F2) lim
|x|→∞

|F (t, x)|/|x|2 = ∞, a.e. t ∈ [0, T ];

(F3) F̃ (t, x) := 1
2 (∇F (t, x), x) − F (t, x) > 0 ∀x ∈ R

N , a.e. t ∈ [0, T ];

(F4) there exists c2 > 0 such that

0 6 F (t, x) 6 c2|x|
2F̃ (t, x) ∀ |x| > R0, a.e. t ∈ [0, T ].

709



Theorem 3.1. Assume that F (t, x) is even in x and satisfies (F1), (F2), (F3),

(F4), then problem (1.1) has infinitely many large energy solutions.

R em a r k 3.1. In our theorem, F (t, x) is allowed to be sign-changing. Further-

more, even if F (t, x) > 0, assumptions (F2), (F3), and (F4) seem to be weaker

than the superquadratic conditions required in the aforementioned reference. Two

illustrating examples are given in Section 4.

We will use the Symmetric Mountain Pass Theorem to prove Theorem 3.1. Before

proving Theorem 3.1, we give a sequence of lemmata.

Lemma 3.1. Under assumptions (F1), (F2), (F3), and (F4), any sequence {un} ⊂

Eα satisfying

(3.1) ϕ(un) → c > 0, 〈ϕ′(un), un〉 → 0,

is bounded in Eα.

P r o o f. To prove the boundedness of {un}, arguing by contradiction, suppose

that ‖un‖α → ∞. Let vn = un/‖un‖α. Then ‖vn‖α = 1 and ‖vn‖2 6 τ2‖vn‖α = τ2.

Observe that for n large,

(3.2) c+1 > ϕ(un)−
1

2
〈ϕ′(un), un〉 =

∫ T

0

[1
2
(∇F (t, un(t)), un(t))−F (t, un(t))

]
dt.

It follows from (2.6) and (3.1) that

(3.3) lim sup
n→∞

∫ T

0

|F (t, un(t))|

‖un‖2α
dt >

|cos(πα)|

2
.

For 0 6 a < b, let

Ωn(a, b) = {t ∈ [0, T ], a 6 |un(t)| < b}.

Passing to a subsequence, we may assume vn ⇀ v in Eα. Then by Lemma 2.1 and

Corollary 2.1, vn → v in L2([0, T ]), and vn → v in C([0, T ]).

If v ≡ 0 on [0, T ], then vn → 0 in L2([0, T ]) and vn → 0 in C([0, T ]). Hence, it

follows from (F1) that there exists c1 > 0 such that

(3.4)

∫

Ωn(0,R0)

|F (t, un(t))|

|un(t)|2
|vn(t)|

2 dt 6 c1

∫

Ωn(0,R0)

|vn(t)|
2 dt

6 c1

∫

[0,T ]

|vn(t)|
2 dt→ 0.
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In view of (F3) and (F4) and (3.2), we have

(3.5)

∫

Ωn(R0,∞)

|F (t, un(t))|

|un(t)|2
|vn(t)|

2 dt

6 ‖vn‖
2
∞

∫

Ωn(R0,∞)

|F (t, un(t))|

|un(t)|2
dt

6 c2‖vn‖
2
∞

∫

Ωn(R0,∞)

F̃ (t, un(t)) dt

6 c2‖vn‖
2
∞

(
c+ 1−

∫

Ω(0,R0)

F̃ (t, un) dt

)

6 c2‖vn‖
2
∞

(
c+ 1 +

∫

Ω(0,R0)

|F̃ (t, un)| dt

)
→ 0.

Hence, from (3.4) and (3.5) we get

∫ T

0

|F (t, un(t))|

‖un‖2α
dt =

∫

Ωn(0,R0)

|F (t, un(t))|

|un(t)|2
|vn(t)|

2 dt

+

∫

Ωn(R0,∞)

|F (t, un(t))|

|un(t)|2
|vn(t)|

2 dt→ 0,

which contradicts (3.3). Set A := {t ∈ [0, T ], |v(t)| 6= 0}. If v 6≡ 0 on [0, T ], then

meas(A) > 0. For a.e. t ∈ A, we have lim
n→∞

|un(t)| = ∞. Hence, A ⊂ Ωn(R0,∞) for

large n ∈ N. For all n ∈ N, let χ : [0, T ] → R be the indicator of Ωn, that is

χ(t) =

{
1, t ∈ Ωn,

0, t /∈ Ωn.

It follows from (F1), (F2) and Fatou’s Lemma that

0 = lim
n→∞

c+ o(1)

‖un‖2α
= lim

n→∞

ϕ(un)

‖un‖2α
(3.6)

6 lim
n→∞

[
1

2|cos(πα)|
−

∫ T

0

F (t, un(t))

|un(t)|2
|vn(t)|

2 dt

]

= lim
n→∞

[
1

2|cos(πα)|
−

∫

Ωn(0,R0)

F (t, un(t))

|un(t)|2
|vn(t)|

2 dt

−

∫

Ωn(R0,∞)

F (t, un(t))

|un(t)|2
|vn(t)|

2 dt

]

6 lim sup
n→∞

[
1

2|cos(πα)|
+
c1
2

∫ T

0

|vn(t)|
2 dt−

∫

Ωn(R0,∞)

F (t, un(t))

|un(t)|2
|vn(t)|

2 dt

]
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6
1

2|cos(πα)|
+
c1τ

2
2

2
− lim inf

n→∞

∫

Ωn(R0,∞)

F (t, un(t))

|un(t)|2
|vn(t)|

2 dt

=
1

2|cos(πα)|
+
c1τ

2
2

2
− lim inf

n→∞

∫ T

0

F (t, un(t))

|un(t)|2
[χΩn(R0,∞)(t)]|vn(t)|

2 dt

6
1

2|cos(πα)|
+
c1τ

2
2

2
−

∫ T

0

lim inf
n→∞

F (t, un(t))

|un(t)|2
[χΩn(R0,∞)(t)]|vn(t)|

2 dt

= −∞,

which is a contradiction. Thus {un} is bounded in Eα. �

Lemma 3.2. Under assumptions (F1), (F2), (F3), and (F4), any sequence satis-

fying (3.1) has a convergent subsequence in Eα.

P r o o f. Lemma 3.1 implies that {un} is bounded in Eα. Going if necessary to

a subsequence, we can assume that un ⇀ u ∈ Eα, it is clear that

(3.7) 〈ϕ′(un)− ϕ′(u), un − u〉 = 〈ϕ′(un), un − u〉 − 〈ϕ′(u), un − u〉 → 0.

For un → u uniformly in C([0, T ]), we have

(3.8)

∫ T

0

|∇F (t, un(t)) −∇F (t, u(t))||un(t)− u(t)| dt→ 0.

Observe that

(3.9) 〈ϕ′(un)− ϕ′(u), un − u〉

= −

∫ T

0

(c0D
α
t (un(t)− u(t)), ctD

α
T (un(t)− u(t))) dt

−

∫ T

0

(∇F (t, un(t))−∇F (t, u(t)), un(t)− u(t)) dt.

Combining it with (2.8), we get

(3.10) |cos(πα)|‖un − u‖2α 6 〈ϕ′(un)− ϕ′(u), un − u〉

+

∫ T

0

(∇F (t, un(t))−∇F (t, u(t)), un(t)− u(t)) dt.

So we have ‖un − u‖α → 0 for n→ ∞. �
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Lemma 3.3. Under assumptions (F1) and (F2), for any finite dimensional sub-

space Ẽ ⊂ Eα we have

ϕ(u) → −∞ if ‖u‖α → ∞ and u ∈ Ẽ.

P r o o f. Arguing by contradiction, assume that for a sequence {un} ⊂ Ẽ with

‖un‖α → ∞, there is M2 > 0 such that

ϕ(un) > −M2 ∀n ∈ N.

Set vn = un/‖un‖α. Then ‖vn‖α = 1. Passing to a subsequence, we may assume

that vn ⇀ v in Eα. Since Ẽ is finite dimensional, we have vn → v ∈ Ẽ and vn → v

in C([0, T ]). Obviously, one has ‖v‖α = 1. The contradiction will be achieved in

a way similar to that for (3.6). �

Corollary 3.1. Under assumptions (F1) and (F2), for any finite dimensional

subspace Ẽ ⊂ Eα, there is R = R(Ẽ) > 0 such that

ϕ(u) 6 0 ∀u ∈ Ẽ, ‖u‖ > R.

Let {ej} be an orthonormal basis of E
α and define Xj = Rej ,

(3.11) Yk =
k⊕

j=1

Xj , Zk =
∞⊕

j=k+1

Xj, k ∈ N.

Lemma 3.4. Let

(3.12) γk := sup
u∈Zk

‖u‖α=1

‖u‖2.

Then

(3.13) γk → 0 for k → ∞.

P r o o f. The result can be proved in a way similar to that in ([29], Lemma 3.8)

as the embedding from Eα into L2([0, T ]) is compact. �

It follows from (F1) that there exists c3 > 0 such that

(3.14) |F (t, u(t))| 6 c3|u(t)|
2 ∀u ∈ Eα, ‖u‖α = R0.

By Lemma 3.4, we can choose m > 1 such that

(3.15) ‖u‖22 6
|cos(πα)|

4c3
‖u‖2α ∀u ∈ Zm.
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Lemma 3.5. Under assumption (F1), there exist constants ̺ > 0, α1 > 0 such

that ϕ|∂B̺∩Zm
> α1.

P r o o f. By (2.6), (3.14), and (3.15), for all u ∈ Zm, ‖u‖α = R0 := ̺, we have

ϕ(u) = −

∫ T

0

1

2
(c0D

α
t u(t),

c
tD

α
Tu(t)) dt−

∫ T

0

F (t, u(t)) dt

>
|cos(πα)|

2
‖u‖2α − c3

∫ T

0

|u(t)|2 dt

=
|cos(πα)|

2
‖u‖2α − c3‖u‖

2
2

>
|cos(πα)|

2
‖u‖2α −

|cos(πα)|

4
‖u‖2α

=
|cos(πα)|

4
‖u‖2α =

|cos(πα)|

4
R2

0 := α1.

�

We say that ϕ ∈ C1(X,R) satisfies (C)c-condition if any sequence {un} such that

(3.16) ϕ(un) → c, ‖ϕ′(un)‖(1 + ‖un‖) → 0

has a convergent subsequence. In [4], [14], the authors proved if (PS) condition is

replaced by the weaker (C)c-condition, the deformation lemmas still hold.

Lemma 3.6 ([25], Symmetric Mountain Pass Theorem). Let X be an infinite

dimensional Banach space, X = Y ⊕Z, where Y is finite dimensional. Suppose that

ϕ ∈ C1(E,R) satisfies (C)c-condition for all c > 0 and

(I1) ϕ(0) = 0, ϕ(−u) = ϕ(u) for all u ∈ X ;

(I2) there exist constants ̺, α > 0 such that ϕ|∂B̺∩Z > α;

(I3) for any finite dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such that

ϕ(e) 6 0 ∀ e ∈ X̃ \BR(0).

Then ϕ possesses an unbounded sequence of critical values.

P r o o f of Theorem 3.1. Let X = Eα, Y = Ym, Z = Zm. By Lemma 3.1,

Lemma 3.2, Lemma 3.5, and Corollary 3.1, all conditions of Lemma 3.6 are satisfied.

Thus, problem (1.1) possesses infinitely many solutions with large energy. �

3.2. Subquadratic case. For the subquadratic case, we assume:

(F5) There are constants 1 < γ1 < γ2 < 2, a1 > 0, and a2 > 0 such that

|F (t, x)| 6 a1|x|
γ1 + a2|x|

γ2 ∀x ∈ R
N , t ∈ [0, T ].
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(F6) There exist a nonempty open set J ⊂ [0, T ] and δ, η > 0, γ3 ∈ (1, 2) such that

F (t, x) > η|x|γ3 ∀(t, x) ∈ J × R
N , |x| 6 δ.

Theorem 3.2. Suppose that (F5) and (F6) are satisfied, and that F (t, x) is even

in x. Then problem (1.1) has infinitely many nontrivial solutions.

R em a r k 3.2. If F (t, x) = a(t)|x|γ , then assumption (A4) implies that (F5) and

(F6) with γ1 = γ3 = γ < γ2 < 2, a1 = sup
[0,T ]

|a(t)| and a2 = 0.

In order to find nontrivial critical points of ϕ, we will use the “genus” properties,

so we recall the following definitions and results (see [25] and [9]).

Let X be a Banach space, ψ ∈ C1(X,R), and c ∈ R. We set

Σ = {A ⊂ X − {0} : A is closed in X and symmetric with respect to 0},

Kc = {u ∈ X : ψ(u) = c, ψ′(u) = 0}, ψc = {u ∈ X : ψ(u) 6 c}.

Definition 3.1 ([25]). For A ∈ Σ, we say the genus of A is n (denoted by

γ(A) = n) if there is an odd map ϕ ∈ C(A,Rn \ {0}) and n is the smallest integer

with this property.

Lemma 3.7 ([25]). Let ψ be an even C1 functional on X satisfying the (PS)-

condition. For any n ∈ N, set

Σn = {A ∈ Σ: γ(A) > n}, cn = inf
A∈Σn

sup
u∈A

ψ(u).

(i) If Σn 6= ∅ and cn ∈ R, then cn is a critical value of ψ.

(ii) If there exists r ∈ N such that

cn = cn+1 = . . . = cn+r = c ∈ R

and c 6= ψ(0), then γ(Kc) > r + 1.

Lemma 3.8. Under assumption (F5), ϕ is bounded from below and satisfies the

(PS) condition.
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P r o o f. We first prove that ϕ is bounded from below. By (2.6), (2.8), (F5), and

the Hölder inequality we have

(3.17) ϕ(u) = −

∫ T

0

1

2
(c0D

α
t u(t),

c
tD

α
Tu(t)) dt−

∫ T

0

F (t, u(t)) dt

>
|cos(πα)|

2
‖u‖2α −

∫ T

0

a1|u(t)|
γ1 dt−

∫ T

0

a2|u(t)|
γ2 dt

>
|cos(πα)|

2
‖u‖2α −

2∑

i=1

(∫ T

0

|ai|
2/(2−γi) dt

)(2−γi)/2(∫ T

0

|u(t)|2 dt

)γi/2

>
|cos(πα)|

2
‖u‖2α −

2∑

i=1

di‖u‖
γi

α ,

where di = aiT
(2−γi)/2τγi

2 , i = 1, 2. Since 1 < γ1 < γ2 < 2, (3.17) implies ϕ(u) → ∞

as ‖u‖α → ∞. Consequently, ϕ is bounded from below. Next, we prove ϕ satisfies

the (PS)-condition.

Assume that {uk} ⊂ Eα is a sequence such that {ϕ(uk)} is bounded and

ϕ′(uk) → 0 as k → ∞. Then by (3.17) there exists A > 0 such that

‖uk‖α 6 A, k ∈ N.

Since the proof that any bounded (PS)-sequence converges in Eα is the same as

Lemma 3.2, we omit it. �

P r o o f of Theorem 3.2. In view of the proof of Lemma 3.8, ϕ ∈ C1(Eα,R) is

bounded from below and satisfies the (PS)-condition. By the assumption (F5) and

the fact that F (t, x) is even in x, it is obvious that ϕ is even and ϕ(0) = 0. Set

ϕc = {u ∈ Eα : ϕ(u) 6 c},

where c is a constant. In order to apply Lemma 3.7, we prove now that

(3.18) ∀n ∈ N ∃ ε > 0 such that γ(ϕ−ε) > n.

For any n ∈ N, we take n disjoint open sets Ji, i = 1, 2, . . . , n, such that

n⋃

i=1

Ji ⊂ J.

Let ui ∈ Eα \ {0} with supp(ui) ⊂ Ji, ‖ui‖α = 1, i = 1, 2, . . . , n, and

En = span{u1, u2, . . . , un},

Sn = {u ∈ En : ‖u‖α = 1}.
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For any u ∈ En there exists λi ∈ R, i = 1, 2, . . . , n, such that

(3.19) u(t) =

n∑

i=1

λiui(t), t ∈ [0, T ].

Then

(3.20) ‖u‖γ3
=

(∫ T

0

|u|γ3 dt

)1/γ3

=

( n∑

i=1

|λi|
γ3

∫

Ji

|ui|
γ3 dt

)1/γ3

,

and

(3.21) ‖u‖2α =

∫ T

0

|c0D
α
t u(t)|

2 dt =
n∑

i=1

λ2i

∫

Ji

|c0D
α
t ui(t)|

2 dt

=

n∑

i=1

λ2i

∫ T

0

|c0D
α
t ui(t)|

2 dt =

n∑

i=1

λ2i ‖ui‖
2
α =

n∑

i=1

λ2i .

Since all norms in a finite dimensional normed space are equivalent, there is a con-

stant c′ > 0 such that

(3.22) c′‖u‖α 6 ‖u‖γ3
, u ∈ En.

By (F6), (2.6), (3.19), (3.20), (3.21), and (3.22), we have

(3.23) ϕ(su) = −

∫ T

0

1

2
(c0D

α
t su,

c
tD

α
T su) dt−

∫ T

0

F (t, su) dt

6
s2

2|cos(πα)|
‖u‖2α −

n∑

i=1

∫

Ji

F (t, sλiui) dt

6
s2

2|cos(πα)|
‖u‖2α − ηsγ3

n∑

i=1

|λi|
γ3

∫

Ji

|ui|
γ3 dt

=
s2

2|cos(πα)|
‖u‖2α − ηsγ3‖u‖γ3

γ3

6
s2

2|cos(πα)|
‖u‖2α − η(c′s)γ3‖u‖γ3

α

=
s2

2|cos(πα)|
− η(c′s)γ3 ∀u ∈ Sn, 0 < s 6 δ

(
max
16i6n

‖ui‖∞
)−1

.

Inequality (3.23) implies that there exist ε > 0 and σ > 0 such that

(3.24) ϕ(σu) < −ε, u ∈ Sn.
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Let

Sσ
n = {σu : u ∈ Sn},

Ω =

{
(λ1, λ2, . . . , λn) ∈ R

n :

n∑

i=1

λ2i < σ2

}
.

Then it follows from (3.24) that u ∈ Sσ
n ,

ϕ(u) < −ε,

which, together with the fact that ϕ ∈ C1(Eα,R) is even, implies that

(3.25) Sσ
n ⊂ ϕ−ε ∈ Σ.

On the other hand, it follows from (3.19) and (3.21) that there exists an odd home-

omorphism mapping ϕ ∈ C(Sσ
n , ∂Ω). By the properties of the genus (see Proposi-

tion 7.5 (iii) and Proposition 7.7 in [25]), we have

(3.26) γ(ϕ−ε) > γ(Sσ
n) = n,

so the proof of (3.18) follows. Set

cn = inf
A∈Σn

sup
u∈A

ϕ(u).

It follows from relation (3.26) and the fact that ϕ is bounded from below on Eα

that −∞ < cn 6 −ε < 0, that is, for any n ∈ N, cn is a real negative number.

By Lemma 3.7 (i), ϕ has infinitely many nontrivial critical points, so Problem (1.1)

possesses infinitely many nontrivial solutions. �

3.3. Asymptotically quadratic case. Let us introduce the following assump-

tions on F :

(F7) For all (t, x) ∈ [0, T ]×R
N , F (t, x) > 0, there exist constants ν1 > 0 and R1 > 0

such that

F (t, x) 6 ν1|x|
2 ∀ t ∈ [0, T ], |x| > R1;

(F8) lim
|x|→0

F (t, x)/|x|2 = ∞ for t ∈ [0, T ] uniformly, and there exist constants ν2 > 0,

R2 > 0, and σ ∈ [1, 2) such that

F (t, x) 6 ν2|x|
σ ∀ t ∈ [0, T ], |x| 6 R2;

(F9) lim inf
|x|→∞

F (t, x)/|x| > λ > 0 for t ∈ [0, T ] uniformly.
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Theorem 3.3. Assume that (F7), (F8), (F9) hold and that F (t, x) is even in x.

Then problem (1.1) has infinitely many small energy solutions.

Lemma 3.9 ([29], Dual Fountain Theorem). Assume that the functional ϕ satis-

fies

(H1) X is a Banach space, ϕ ∈ C1(X,R) is even, subspaces Xk, Yk, Zk are defined

by (3.11); and there is a constant k0 > 0 such that for each k > k0 there exists

̺k > rk > 0 such that

(H2) dk := inf
u∈Zk

‖u‖6̺k

ϕ(u) → 0 as k → ∞;

(H3) ik := max
u∈Yk

‖u‖=rk

ϕ(u) < 0;

(H4) ξk := inf
u∈Zk

‖u‖=̺k

ϕ(u) > 0;

(H5) ϕ satisfies the (PS)
∗
c condition for every c ∈ [dk0

, 0).

Then ϕ has a sequence of negative critical values converging to 0.

R em a r k 3.3. The function ϕ satisfies the (PS)∗c condition means: if {unj
} ⊂ X

is any sequence such that nj → ∞, unj
∈ Ynj

, ϕ(unj
) → c, and (ϕ|Ynj

)′(unj
) → 0,

then {unj
} contains a subsequence converging to a critical point of ϕ. It is obvious

that if ϕ satisfies the (PS)∗c condition, then ϕ satisfies the (PS)c condition.

P r o o f of Theorem 3.3. In the following, we prove that ϕ satisfies all conditions

of Lemma 3.9.

Step 1. Prove ϕ satisfies the (PS)∗c -condition. The proof is standard, and we can

see the first step of proof in ([18], Theorem 3.2), so we omit it.

Step 2. We show that F satisfies Lemma 3.9 (H2)–(H4). By (2.4), for any u ∈ Eα

with ‖u‖α 6 R2/τ∞ we have

‖u‖∞ 6 R2,

where R2 and τ∞ are the constants in (F8) and (2.4) respectively. Then for u ∈ Zk

and ‖u‖α 6 R2/τ∞, by (F8) and the Hölder inequality, we have

(3.27) ϕ(u) = −

∫ T

0

1

2
(c0D

α
t u(t),

c
tD

α
Tu(t)) dt−

∫ T

0

F (t, u(t)) dt

>
1

2
|cos(πα)|‖u‖2α −

∫ T

0

ν2|u(t)|
σ dt

>
1

2
|cos(πα)|‖u‖2α − ν2T

(2−σ)/2‖u‖σ2 .

Consequently, (3.27) implies

(3.28) ϕ(u) >
1

2
|cos(πα)|‖u‖2α − ν2T

(2−σ)/2γσk ‖u‖
σ
α
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for all ‖u‖α 6 R2/τ∞, where γk is defined by (3.12) in Lemma 3.4. For any k ∈ N,

let

(3.29) ̺k :=

(
4ν2T

(2−σ)/2γσk
|cos(πα)|

)1/(2−σ)

.

Then we have

(3.30) ̺k → 0 for k → ∞.

Evidently, there exists a positive integer k1 > 0 such that

(3.31) ̺k <
R2

τ∞
∀ k > k1.

For any k > k1, (3.28) together with (3.29) and (3.31) yields

ξk := inf
u∈Zk

‖u‖α=̺k

ϕ(u) >
|cos(πα)|

4
̺2k > 0.

This shows the condition of (H4) in Lemma 3.9 is satisfied.

By (3.28), for any u ∈ Zk with ‖u‖α 6 ̺k, we have

ϕ(u) > −ν2T
(2−σ)/2γσk ‖u‖

σ
α.

Observing that ϕ(0) = 0 by (F8), we obtain

0 > inf
u∈Zk

‖u‖α6̺k

ϕ(u) > −ν2T
(2−σ)/2γσk ̺

σ
k .

This together with (3.13) and (3.30) implies

dk = inf
u∈Zk

‖u‖α6̺k

ϕ(u) → 0, k → ∞.

So, the condition of (H2) in Lemma 3.9 holds.

For any u ∈ Yk, there exists a constant Ck > 0 such that

(3.32) ‖u‖2 > Ck‖u‖α.

By (F8), there exists a constant δk > 0 such that

(3.33) F (t, u) >
|u|2

C2
k |cos(πα)|

∀ |u| 6 δk.
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By (2.4), for any u ∈ Eα with ‖u‖α 6 δk/τ∞, we have

‖u‖∞ 6 δk.

Combining this with (3.32) and (3.33), for any u ∈ Yk \ {0} with ‖u‖α 6 δk/τ∞, we

obtain

(3.34) ϕ(u) = −

∫ T

0

1

2
(c0D

α
t u(t),

c
tD

α
Tu(t)) dt−

∫ T

0

F (t, u(t)) dt,

6
1

2|cos(πα)|
‖u‖2α −

∫ T

0

|u|2

C2
k |cos(πα)|

dt

=
1

2|cos(πα)|
‖u‖2α −

‖u‖22
C2

k |cos(πα)|

6
1

2|cos(πα)|
‖u‖2α −

‖u‖2α
|cos(πα)|

= −
1

2|cos(πα)|
‖u‖2α.

Choosing 0 < rk < min{̺k, δk/τ∞}, inequality (3.34) implies

ik := max
u∈Yk

‖u‖α=rk

ϕ(u) 6 −
1

2|cos(πα)|
r2k < 0 ∀ k ∈ N.

Hence, the condition (H3) in Lemma 3.9 is satisfied.

Thus all the conditions in Lemma 3.9 hold. Therefore, by Lemma 3.9, ϕ has

a sequence of negative critical values cn = ϕ(un) converging to 0, that is ϕ has

infinitely many solutions with small energy. �

4. Examples

In this section, we give some examples to illustrate our results.

E x am p l e 4.1. In Problem (1.1), let F (t, x) = (1 + sin t)|x|2 ln(12 + |x|), and

F̃ (t, x) =
1

2
(∇F (t, x), x) − F (t, x) = (1 + sin t)

|x|3

1 + 2|x|
,

so it is easy to verify that all the conditions (F1)–(F4) are satisfied. Then by The-

orem 3.1, Problem (1.1) has infinitely many solutions {un} on Eα. But F does not
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satisfy (AR). In fact, for κ > 2 we have

(∇F (t, x), x) − κF (t, x) = (2 − κ)(1 + sin t)|x|2 ln
(1
2
+ |x|

)

+ (1 + sin t)
|x|

1
2 + |x|

|x|2 → −∞, |x| → ∞.

Likewise, it is easy to check that the function

F (t, x) = a(t)
m∑

i=1

bi|x|
βi ,

where b1 > 0, bi ∈ R, i = 2, 3, . . . ,m, β1 > β2 > . . . > βm > 2, a ∈ C([0, T ],R) such

that 0 < min
[0,T ]

a 6 max
[0,T ]

a <∞, does not satisfy (AR), but satisfies (F1)–(F4). Hence,

exactly the same conclusions hold true by Theorem 3.1.

E x am p l e 4.2. In Problem (1.1), let T = 1 and

F (t, x) =
cos t

1 + |t|1/2
|x|4/3 +

sin t

1 + |t|1/3
|x|3/2.

Then

∇F (t, x) =
4 cos t

3(1 + |t|1/2)
|x|−2/3x+

3 sin t

2(1 + |t|1/3)
|x|−1/2x.

It is easy to see that

|∇F (t, x)| 6
4

3(1 + |t|1/2)
|x|1/3 +

3

2(1 + |t|1/3)
|x|1/2 ∀(t, x) ∈ [0, 1]× R

N , |x| 6 1,

and

F (t, x) >
1

4
|x|4/3 ∀(t, x) ∈ [0, 1]× R

N , |x| 6 1.

Then F satisfies all the assumptions in Theorem 3.2, that is

4

3
= γ1 = γ3 < γ2 =

3

2
, a1 = 1, a2 = 1,

δ = 1, η =
1

4
, J = (0, 1).

By Theorem 3.2, Problem (1.1) has infinitely many nontrivial solutions.

E x am p l e 4.3. In Problem (1.1), let

(4.1) F (t, x) =
(1 + sin2 t)(|x|2 + ln(1 + |x|2))

1 + arctan |x|
.
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Hence, F is asymptotically quadratic at infinity. Since

lim
|x|→0

F (t, x)

|x|2
= lim

|x|→0

(1 + sin2 t)(|x|2 + ln(1 + |x|2))

(1 + arctan |x|)|x|2
= ∞

and

lim
|x|→∞

F (t, x)

|x|
= lim

|x|→∞

(1 + sin2 t)(|x|2 + ln(1 + |x|2))

(1 + arctan |x|)|x|
= ∞,

we conclude that (F7), (F9) are satisfied, and (F8) holds when σ = 1. By Theo-

rem 3.3, Problem (1.1) has infinitely many nontrivial solutions.

A c k n ow l e d g em e n t s. The authors are grateful to the anonymous referees

for useful comments.
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