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HARDY SPACE WITH VARIABLE EXPONENTS
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Abstract. This paper is mainly devoted to establishing an atomic decomposition of a pre-
dictable martingale Hardy space with variable exponents defined on probability spaces.
More precisely, let (Ω,F , P) be a probability space and p(·) : Ω→ (0,∞) be a F-measurable
function such that 0 < infx∈Ω p(x) 6 supx∈Ω p(x) < ∞. It is proved that a predictable
martingale Hardy space Pp(·) has an atomic decomposition by some key observations and
new techniques. As an application, we obtain the boundedness of fractional integrals on
the predictable martingale Hardy space with variable exponents when the stochastic basis
is regular.

Keywords: variable exponent; atomic decomposition; martingale Hardy space; fractional
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1. Introduction

Let P = P(Ω) denote the collection of all F -measurable functions p(·) : Ω →

(0,∞) such that 0 < inf
x∈Ω

p(x) 6 sup
x∈Ω

p(x) < ∞; such a function is called a variable

exponent. The space Lp(·)(Ω), the Lebesgue space with variable exponent p(·), is

defined as the set of all F -measurable functions f such that for some λ > 0

∫

Ω

( |f(w)|

λ

)p(w)

dP < ∞,

with

‖f‖p(·) ≡ inf

{

λ > 0:

∫

Ω

( |f(w)|

λ

)p(w)

dP 6 1

}

.

This work is partly supported by National Natural Science Foundation of China (Grant
No. 11471337), Hunan Provincial Natural Science Foundation (Grant No. 14JJ1004).

1033



Then (Lp(·)(Ω), ‖·‖p(·)) is a quasi-normed space. When Ω = R
n, the space (Lp(·)(Ω),

‖·‖p(·)) is reduced to (Lp(·)(R
n), ‖·‖p(·)). It should be mentioned that (Lp(·)(R

n),

‖·‖p(·)) was introduced by Orlicz [20] in 1931 and studied by Kováčik and Rákos-

ník [14], Fan and Zhao [8] and others. Heavily basing on the so-called log-Hölder

continuity conditions in [6], namely,

|p(x) − p(y)| 6
c1

log(e + 1/|x− y|)
, x, y ∈ R

n,

harmonic analysis with variable exponents has got an increasing development in the

past years; see [2]–[7], [10], [18], [19], [22] and so on. Especially, in [5], [18], [22], the

atomic decompositions of Hardy spaces with variable exponents defined on R
n were

established under the so-called log-Hölder continuity conditions.

In this paper, we establish the atomic decomposition of predictable martingale

Hardy spaces with variable exponents defined in a probability space. Given a prob-

ability space (Ω,F ,P), let (Fn)n>0 be an increasing filtration of σ-algebras of F

such that F = σ(
⋃

n Fn) and let (EFn
)n>0 denote the corresponding family of con-

ditional expectations. A sequence of measurable functions f = (fn)n>0 ⊂ L1(Ω) is

called a martingale with respect to (Fn) if EFn
(fn+1) = fn for every n > 0. For

a martingale relative to (Ω,F ,P; (Fn)n>0), define the maximal function of f as

Mmf = sup
n6m

|fn|, Mf = sup
n

|fn|.

Definition 1.1 (p(·)-atom). Given p(·) ∈ P , a measurable function a is called

a p(·)-atom if there exists a stopping time τ such that

(1) EFn
(a) = 0, for all n 6 τ ,

(2) ‖Ma‖∞ 6 ‖χ{τ<∞}‖
−1
p(·).

We note that the definition above coincides with the classical one if p(·) ≡ p; we

refer to [23] for the classical atomic decompositions and martingale theory. We now

define the atomic spaces with variable exponents.

Definition 1.2. Given p(·) ∈ P , let us denote by Hat
p(·) the space of those mar-

tingales f for which there exist a sequence (ak)k∈Z of p(·)-atoms and a sequence

(µk)k∈Z of nonnegative real numbers such that

(1.1) f =
∑

k∈Z

µka
k a.e.,

and
∥

∥

∥

∥

∑

k∈Z

µkχ{τk<∞}

‖χ{τk<∞}‖p(·)

∥

∥

∥

∥

p(·)

< ∞.
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Let

A({µk}, {a
k}, {τk}) ≡

∥

∥

∥

∥

∑

k∈Z

µkχ{τk<∞}

‖χ{τk<∞}‖p(·)

∥

∥

∥

∥

p(·)

,

where τk is the stopping time with respect to the atom ak. We define

‖f‖Hat
p(·)

≡ inf A({µk}, {a
k}, {τk}),

where the infimum is taken over all decompositions of the form (1.1). In Section 3,

we prove that

Pp(·) = Hat
p(·)

with equivalent norms. See Section 2 for the notation Pp(·).

As an application, we prove the boundedness of fractional integrals on predictable

martingale Hardy spaces with variable exponents defined on probability spaces.

Compared with the Euclidean space R
n, the probability space Ω has no natural

metric structure. The main difficulty is how to overcome the log-Hölder continuity

of p(x) defined on (Ω,F ,P). It was pointed out in [13] and [24] that the following

condition may replace the so-called log-Hölder continuity in some sense. That is,

there exists an absolute constant Kp(·) > 1 depending only on p(·) such that

(1.2) P(A)p−
(A)−p+(A) 6 Kp(·), A ∈ F ,

where

p+(A) = sup
w∈A

p(w), p−(A) = inf
w∈A

p(w).

We often denoteKp(·) simply byK if there is no confusion. Under the condition (1.2),

we prove that the fractional integral operator is bounded on the predictable mar-

tingale Hardy spaces with variable exponents by using the atomic decomposition

established in Section 3, which can be regarded as the probability version of the

result in [22].

Throughout this paper, Z, N and C denote the integer set, nonnegative integer

set and complex numbers set, respectively. We denote by C an absolute positive

constant, which can vary from line to line, and denote a constant depending only on

p(·) by Cp(·). The symbol A . B stands for the inequality A 6 CB or A 6 Cp(·)B.

If we write A ≈ B, then it stands for A . B . A.
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2. Preliminaries

In this section, we give some preliminaries necessary to the whole paper. Given

p(·) ∈ P , for a measurable set A ⊂ Ω we always denote

p+(A) = sup
w∈A

p(w), p−(A) = inf
w∈A

p(w)

and

p+ = p+(Ω), p− = p−(Ω), p = min{p−, 1}.

The space Lp(·) = Lp(·)(Ω) is the collection of all measurable functions f defined on

(Ω,F ,P) such that for some λ > 0,

̺(f/λ) =

∫

Ω

( |f(w)|

λ

)p(w)

dP < ∞.

This becomes a quasi-Banach function space when equipped with the quasi-norm

‖f‖p(·) ≡ inf{λ > 0: ̺(f/λ) 6 1}.

The following facts are well known; see for example [18].

(1) (Positivity) ‖f‖p(·) > 0; ‖f‖p(·) = 0 ⇔ f ≡ 0.

(2) (Homogeneity) ‖cf‖p(·) = |c| · ‖f‖p(·) for c ∈ C.

(3) (The p-triangle inequality) ‖f + g‖
p

p(·) 6 ‖f‖
p

p(·) + ‖g‖
p

p(·).

We collect some basic lemmas, which will be used in the paper.

Lemma 2.1 (see [3]). Given p(·) ∈ P , then for all f ∈ Lp(·) and ‖f‖p(·) 6= 0 we

have
∫

Ω

∣

∣

∣

∣

f(w)

‖f‖p(·)

∣

∣

∣

∣

p(w)

dP = 1.

Lemma 2.2 (see [3]). Given p(·) ∈ P and f ∈ Lp(·), then we have

(1) ‖f‖p(·) < 1 (= 1, > 1) if and only if ̺(f) < 1 (= 1, > 1);

(2) if ‖f‖p(·) > 1, then ̺(f)1/p+ 6 ‖f‖p(·) 6 ̺(f)1/p− ;

(3) if 0 < ‖f‖p(·) 6 1, then ̺(f)1/p− 6 ‖f‖p(·) 6 ̺(f)1/p+ .

1036



Lemma 2.3 (see [3], Hölder’s inequality). Given p(·), q(·), r(·) ∈ P , such that

1

p(w)
=

1

q(w)
+

1

r(w)
.

Then there exists a constant Cp(·) such that for all f ∈ Lq(·), g ∈ Lr(·), and fg ∈ Lp(·)

‖fg‖p(·) 6 Cp(·)‖f‖q(·)‖g‖r(·).

Now we introduce the predictable martingale Hardy space. LetM be the set of all

martingales f = (fn)n>0 relative to {Fn}n>0 such that f0 = 0. For f ∈ M, denote

its martingale difference by dnf = fn − fn−1 (n > 0, with convention d0f = 0). If

in addition fn ∈ Lp(·), f is called an Lp(·)-martingale with respect to (Fn). In this

case we set

‖f‖p(·) = sup
n>0

‖fn‖p(·).

If ‖f‖p(·) < ∞, f is called a bounded Lp(·)-martingale and denoted by f ∈ Lp(·). The

stochastic basis {Fn}n>0 is said to be regular if there exists an absolute constant

R > 0 such that

(2.1) fn 6 Rfn−1

holds for all nonnegative martingales f = (fn)n>0.

Let Γ be the class of nonnegative, non-decreasing and adapted sequences λ =

(λn)n>0 with respect to {Fn}n>0 and λ∞ = lim
n→∞

λn. Then we define the predictable

variable Hardy martingale spaces Pp(·) as

Pp(·) = {f = (fn)n>0 : ∃{λn} ∈ Γ, such that |fn| 6 λn−1, a.e., λ∞ ∈ Lp(·)}

equipped with the (quasi)-norm

‖f‖Pp(·)
= inf

{λn}∈Γ
‖λ∞‖p(·).

If we consider the special case p(·) ≡ p, then we obtain the classical predictable

martingale Hardy spaces Pp.

3. Atomic decompositions

In this section we construct the atomic decomposition of the martingale Hardy

space with variable exponent. We refer to [11], [12], [13], [15], [16], [23], [25] for more

information on the classical atomic decompositions.
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Theorem 3.1. If p(·) ∈ P , then the atomic space Hat
p(·) is equivalent to pre-

dictable spaces Pp(·) by their norms. More precisely, if f = (fn)n>0 ∈ Pp(·) is

a martingale, then there exist a sequence (ak)k∈Z of p(·)-atoms and a sequence

µ = (µk)k∈Z of nonnegative real numbers such that for all n ∈ N

(3.1) fn =
∑

k∈Z

µkEFn
(ak)

and

‖f‖Hat
p(·)

. ‖f‖Pp(·)
.

Conversely, if a martingale f = (fn)n>0 has a decomposition (3.1), then f ∈ Pp(·)

and ‖f‖Pp(·)
. ‖f‖Hat

p(·)
.

P r o o f. Assume that f ∈ Pp(·). Let us consider the stopping times for all k ∈ Z

τk = inf{n ∈ N : λn > 2k}, inf ∅ = ∞,

where (λn)n>0 is an adapted, non-decreasing sequence such that |fn| 6 λn−1 holds

almost everywhere and λ∞ ∈ Lp(·). For each stopping time τ , denote f
τ
n = fn∧τ . It

is easy to see that

fn =
∑

k∈Z

(f τk+1
n − f τk

n ).

Let

µk = 3 · 2k‖χ{τk<∞}‖p(·) and akn =
f
τk+1
n − f τk

n

µk
.

If µk = 0 then let akn = 0 for all k ∈ Z, n ∈ N. Then (akn)n>0 is a martingale for each

fixed k ∈ Z. Since Mf τk 6 λτk−1 6 2k, we get

Makn 6
Mf τk+1 +Mf τk

µk
6 ‖χ{τk<∞}‖

−1
p(·).

Hence it is easy to check that (akn)n>0 is a bounded L2-martingale. Consequently,

there exists an element ak ∈ L2 such that EFn
ak = akn. If n 6 τk, then akn = 0, and

Mak 6 ‖χ{τk<∞}‖
−1
p(·). Thus we conclude that a

k is really a p(·)-atom.

Denote Bk = {τk < ∞} = {λ∞ > 2k}. Recalling that τk is non-decreasing for

each k ∈ Z, we have Bk ⊃ Bk+1. Then

∑

k∈Z

3 · 2kχBk
(w), w ∈ Ω
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is the sum of the geometric sequence {3 · 2kχBk
(w)}k∈Z. Thus, we can claim that for

each w ∈ Ω we have

∑

k∈Z

3 · 2kχBk
(w) ≈

∑

k∈Z

3 · 2kχBk\Bk+1
(w).

Indeed, for each fixed w0 ∈ Ω there is k0 ∈ Z such that w0 ∈ Bk0 but w0 6∈ Bk0+1.

Then

∑

k∈Z

3 · 2kχBk
(w0) =

k0
∑

k=−∞

3 · 2kχBk
(w0) =

k0
∑

k=−∞

3 · 2k = 3 · 2k0
1

1− 2−1

= 2

k0
∑

k=−∞

3 · 2kχBk\Bk+1
(w0) = 2

∑

k∈Z

3 · 2kχBk\Bk+1
(w0).

This implies

A({µk}, {a
k}, {τk}) =

∥

∥

∥

∥

∑

k∈Z

µkχ{τk<∞}

‖χ{τk<∞}‖p(·)

∥

∥

∥

∥

p(·)

=

∥

∥

∥

∥

∑

k∈Z

3 · 2kχ{τk<∞}

∥

∥

∥

∥

p(·)

.

∥

∥

∥

∥

∑

k∈Z

3 · 2kχBk\Bk+1

∥

∥

∥

∥

p(·)

= inf

{

λ > 0:

∫

Ω

(

∑

k∈Z

3 · 2kχBk\Bk+1
(w)

λ

)p(w)

dP 6 1

}

= inf

{

λ > 0:
∑

k∈Z

∫

Bk\Bk+1

(3 · 2k

λ

)p(w)

dP 6 1

}

≈ inf

{

λ > 0:

∫

Ω

(λ∞

λ

)p(w)

dP 6 1

}

.

Therefore, we obtain

A({µk}, {a
k}, {τk}) . ‖λ∞‖p(·).

Taking the infimum over all predictable sequences (λn)n>0, we conclude that

A({µk}, {a
k}, {τk}) . ‖f‖Pp(·)

.

To prove the converse part, let

λn =
∑

k∈Z

µk‖Mak‖∞χ{τk6n}.
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Then (λn)n>0 is a nonnegative, non-decreasing and adapted sequence with the con-

dition |fn+1| 6 λn. Since a
k is a p(·)-atom for each k ∈ Z, we get

‖f‖Pp(·)
6 ‖λ∞‖p(·) 6

∥

∥

∥

∥

∑

k∈Z

µk

χ{τk<∞}

‖χ{τk<∞}‖p(·)

∥

∥

∥

∥

p(·)

= A({µk}, {a
k}, {τk}),

which implies ‖f‖Pp(·)
6 ‖f‖Hat

p(·)
. ‖f‖Pp(·)

. �

4. Boundedness of fractional integrals on variable

Hardy martingale spaces

It is well known that the fractional integrals have occupied a very important role in

the classical harmonic analysis. In martingale theory, Chao and Ombe [1] introduced

the fractional integrals for dyadic martingales. Sadasue [21] proved the boundedness

of fractional integrals on martingale Hardy spaces for 0 < p 6 1. Recently, Nakai

and Sadasue [17] and Hao and Jiao [9] extended the notion of fractional integrals to

a more general setting.

In this section, we prove the boundedness of fractional integrals on variable pre-

dictable Hardy martingale spaces. We suppose that every σ-algebra Fn is generated

by countable atoms, where B ∈ Fn is called an atom provided the following implica-

tion holds: if any A ⊂ B with A ∈ Fn satisfies P(A) < P(B), then P(A) = 0. Denote

by A(Fn) the set of all atoms in Fn. Without loss of generality, we always suppose

that the constant in (2.1) satisfies R > 2.

Now we give the definition of fractional integrals; see [21].

Definition 4.1. For f = (fn)n>0 ∈ M, α > 0, the fractional integral Iαf =

((Iαf)n)n>0 of f is defined by

(Iαf)n =

n
∑

k=1

bαk−1dkf

where bk is an Fk-measurable function such that for all B ∈ A(Fk), for all ω ∈ B,

bk(ω) = P(B).

In order to prove the boundedness of fractional integrals, we need the following

lemma; see [24]. For convenience, we give the simple proof.
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Lemma 4.2. Let p(·), q(·) ∈ P satisfy (1.2). Then for any set A ∈ F we have

‖χA‖r(·) ≈ ‖χA‖p(·)‖χA‖q(·),

where
1

r(·)
=

1

p(·)
+

1

q(·)
.

P r o o f. It is not difficult to see that r(·) ∈ P and

(4.1) P(A)r−(A)−r+(A) 6 Kr(·), A ∈ F .

Next we will show that

(4.2) P(A)1/p−
(A) ≈ P(A)1/p(w) ≈ P(A)1/p+(A) ≈ ‖χA‖p(·), w ∈ A.

Indeed, for every w ∈ A we have

P(A)1/p−
(A) 6 P(A)1/p(w) 6 P(A)1/p+(A).

Since p(·) satisfies (1.2), we have

P(A)1/p(w)

P(A)1/p−
(A)

6 P(A)(p−
(A)−p(w))/p

−
(A)p(w) 6 K

1/p2
−
(Ω)

p(·) =: K,

which implies P(A)1/p(w) 6 KP(A)1/p−
(A). One can check that P(A)1/p−

(A) ≈

P(A)1/p(w) ≈ P(A)1/p+(A). Then we arrive at

χA(w)

P(A)1/p−
(A)

≈
χA(w)

P(A)1/p(w)
.

That is,
( χA(w)

P(A)1/p−
(A)

)p(w)

>
χA(w)

P(A)
>

( χA(w)

KP(A)1/p−
(A)

)p(w)

.

Thus, we have

∫

Ω

( χA(w)

P(A)1/p−
(A)

)p(w)

dP ≈

∫

Ω

χA(w)

P(A)
dP = 1.

Consequently, we get ‖χA‖p(·) ≈ P(A)1/p−
(A) and we get the desired result.

Combining (4.1) and (4.2) we conclude

‖χA‖r(·) ≈ P(A)1/r(w) = P(A)1/p(w)+1/q(w) ≈ ‖χA‖p(·)‖χA‖q(·), w ∈ A.

�
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Lemma 4.3. Let {Fn}n>0 be regular, f ∈ M and α > 0. Let R be the constant

in (2.1). If there exists A ∈ F such that Mf 6 χA, then there exists a positive

constant Cα = 2 + (R + 1)/(1− (1 + 1/R)α−1) independent of f and A such that

M(Iαf) 6 CαP(A)
αχA.

For the proof of Lemma 4.3, see [21], Lemma 3.5. In the next lemma, we regard

a p(·)-atom a as a martingale by a = (an)n>0 = (En(a))n>0, so we can consider the

fractional integral Iαa = ((Iαa)n)n>0.

Lemma 4.4. Let p(·), q(·) ∈ P satisfy (1.2) and let {Fn}n>0 be regular. If

p(·) < q(·), α = 1/p(·)−1/q(·) and a is a p(·)-atom as in Definition 1.1, then we have

‖Iαa‖Pq(·)
. Cα,

where Cα is the same constant as in Lemma 4.3.

P r o o f. Let ν be the stopping time associated with a. Then we have

Ma 6 ‖χ{ν<∞}‖
−1
p(·)χ{ν<∞}.

This implies

M(‖χ{ν<∞}‖p(·)a) = ‖χ{ν<∞}‖p(·)Ma 6 χ{ν<∞}.

By Lemma 4.3, we obtain that

M(Iα(‖χ{ν<∞}‖p(·)a)) 6 CαP(ν < ∞)αχ{ν<∞}.

Then, by Lemma 4.2, we have

M(Iαa) 6 CαP(ν < ∞)α‖χ{ν<∞}‖
−1
p(·)χ{ν<∞} . Cα‖χ{ν<∞}‖

−1
q(·)χ{ν<∞}.

Now, let

λn = ‖Iαa‖∞χ{ν6n}.

Then (λn)n>0 is a nonnegative, non-decreasing and adapted sequence with

(Iαa)n+1 6 λn. Hence, we have

‖Iαa‖Pq(·)
6 ‖λ∞‖q(·) . Cα

1

‖χ{ν<∞}‖q(·)
‖χ{ν<∞}‖q(·) = Cα.

Therefore ‖Iαa‖Pq(·)
. Cα, where Cα is the same constant as in Lemma 4.3. �
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Lemma 4.5. Given p(·) ∈ P . Let f ∈ Hat
p(·), i.e., f =

∑

µka
k. If p+ 6 1, then

we have
∑

k∈Z

µk 6 A({µk}, {a
k}, {τk}).

P r o o f. Let λ =
∑

k∈Z

µk. By Lemma 2.1, we can obtain that

∫

Ω

(

∑

k∈Z

µkχ{τk<∞}

λ‖χ{τk<∞}‖p(·)

)p(w)

dP >
∑

k∈Z

µk

λ

∫

Ω

(

χ{τk<∞}

‖χ{τk<∞}‖p(·)

)p(w)

dP = 1.

From the definition of A({µk}, {ak}, {τk}), we get the desired result. �

We now prove the boundedness of fractional integrals on variable Hardy martingale

spaces via atomic decomposition.

Theorem 4.6. Let p(·), q(·) ∈ P satisfy (1.2). Suppose that (Ω,F , P ) is a com-

plete and non-atomic probability space, and {Fn}n>0 is a regular stochastic basis.

If p+ 6 1 6 q− and α = 1/p(·)− 1/q(·), then there exists a constant C such that

‖Iαf‖Pq(·)
6 C‖f‖Pp(·)

for all f ∈ Pp(·).

P r o o f. Let f ∈ Pp(·). According to Theorem 3.1, there exist a sequence (a
k)k∈Z

of p(·)-atoms and a sequence (µk)k∈Z of nonnegative real numbers such that for all

n > 0,
∑

k∈Z

µkEFn
ak = fn, a.e.

and

A({µk}, {a
k}, {τk}) ≈ ‖f‖Pp(·)

.

Combining Lemma 4.4 and Lemma 4.5, we can prove Theorem 4.6. Indeed, since

q− > 1, we have

‖Iαf‖Pq(·)
=

∥

∥

∥

∥

∑

k∈Z

µkIαa
k

∥

∥

∥

∥

Pq(·)

6
∑

k∈Z

µk‖Iαa
k‖Pq(·)

. Cα

∑

k∈Z

µkCαA({µk}, {a
k}, {τk}) . Cα‖f‖Pp(·)

.

�
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Remark 4.7. In [13], the atomic decomposition of Hs
p(·) is established; but we

do not know whether there is a version similar to Lemma 4.3.
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