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Abstract. The paper studies applications of C∗-algebras in geometric topology. Namely,
a covariant functor from the category of mapping tori to a category of AF -algebras is
constructed; the functor takes continuous maps between such manifolds to stable homo-
morphisms between the corresponding AF -algebras. We use this functor to develop an ob-
struction theory for the torus bundles of dimension 2, 3 and 4. In conclusion, we consider
two numerical examples illustrating our main results.
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1. Introduction

This paper studies applications of operator algebras in topology; the operator

algebras in question are the so-called AF -algebras and the topological spaces are

certainmapping tori, i.e., circle bundles with a fiberM and monodromy ϕ : M →M .

Recall that a very fruitful approach to topology consists in construction of maps

(functors) from topological spaces to certain algebraic objects, so that continuous

maps between the spaces become homomorphisms of the corresponding algebraic

entities. The functors usually take value in the finitely generated groups (abelian

or not) and, therefore, reduce topology to a simpler algebraic problem.

The rings of operators on a Hilbert space are neither finitely generated nor commu-

tative and, at the first glance, if ever such a reduction exists, it will not simplify the

problem. Yet it is not so: we define an operator algebra, the so-called fundamental

AF -algebra, which yields a set of simple obstructions (invariants) to the existence
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of continuous maps in a class of manifolds fibering over the circle. One obstruction

turns out to be the Galois group of the fundamental AF -algebra; this invariant dra-

matically simplifies for a class of the so-called tight torus bundles, so that topology

boils down to a division test for a finite set of natural numbers.

1.1. AF -algebras [4]. The C∗-algebra A is an algebra over the complex num-

bers C with a norm a 7→ ‖a‖ and an involution a 7→ a∗, a ∈ A, such thatA is complete

with respect to the norm, and such that ‖ab‖ 6 ‖a‖‖b‖ and ‖a∗a‖ = ‖a‖2 for every

a, b ∈ A. Any commutative C∗-algebra A is isomorphic to the C∗-algebra C0(X)

of continuous complex-valued functions on a locally compact Hausdorff space X

vanishing at infinity; the algebras which are not commutative are deemed as non-

commutative topological spaces. A stable homomorphism A → A′ is defined as the

(usual) homomorphism A ⊗ K → A′ ⊗ K, where K is the C∗-algebra of compact

operators on a Hilbert space; such a homomorphism corresponds to a continuous

map between the non-commutative spaces A and A′.

The matrix algebra Mn(C) is an example of non-commutative finite-dimensional

C∗-algebra; a natural generalization are approximately finite-dimensional (AF -)al-

gebras, which are given by an ascending sequence M1
ϕ1

−→ M2
ϕ2

−→ . . . of finite-

dimensional semi-simple C∗-algebras Mi = Mn1
(C) ⊕ . . . ⊕Mnk(C) and homomor-

phisms ϕi arranged into an infinite graph as follows. Two sets of vertices Vi1 , . . . , Vik
and Vi′

1
, . . . , Vi′

k
are joined by the brs edges, whenever the summandMir contains brs

copies of the summand Mi′s under the embedding ϕi; as i → ∞, one gets a Bratteli

diagram of the AF -algebra. Such a diagram is defined by an infinite sequence of

incidence matrices Bi = (b
(i)
rs ). If the homomorphisms ϕ1 = ϕ2 = . . . = const, the

AF -algebra is called stationary; its Bratteli diagram looks like an infinite graph with

the incidence matrix B = (brs) repeated over and over again.

1.2. AF -algebra of measured foliation. Let M be a compact manifold of

dimension m and F a codimension k measured foliation of M ; it is known that F

is tangent to the hyperplane ω(p) = 0 at each point p ∈ M , where ω ∈ Hk(M ;R)

is a closed k-form, see e.g. [8]. Denote by λi > 0 the periods of ω against a basis

in the homology group Hk(M) and consider the vector θ = (θ1, . . . , θn−1), where

θi = λi+1/λ1 and n = rankHk(M). Let lim
i→∞

Bi be the Jacobi-Perron continued

fraction convergent to the vector (1, θ); here Bi ∈ GLn(Z) are the nonnegative

matrices with det(Bi) = 1, see [3].

An AF -algebra AF is called associated to F , if its Bratteli diagram is given by the

matrices Bi; the Bratteli diagram defines an isomorphism class of AF , see [4]. The

algebra AF has a spate of remarkable properties, e.g., the topologically conjugate (or,

induced) foliations have stably isomorphic (or, stably homomorphic) AF -algebras
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(Lemma 1); the dimension group of AF , see [5], coincides with the Plante group

P (F) of foliation F , see [8].

1.3. Fundamental AF -algebras and main result. Let ϕ : M → M be

an Anosov diffeomorphism of M , see [1]; if p is a fixed point of ϕ, then ϕ defines

an invariant measured foliation F of M given by the stable manifold W s(p) of ϕ

at the point p, see [9], page 760. The associated AF -algebra AF is stationary

(Lemma 2); we call the latter a fundamental AF -algebra and denote it by Aϕ := AF .

Consider the mapping torus of ϕ, i.e., a manifold Mϕ := M × [0, 1]/∼, where

(x, 0) ∼ (ϕ(x), 1), for all x ∈ M . Let M be a category of the mapping tori of

all Anosov diffeomorphisms; the arrows of M are continuous maps between the

mapping tori.

Likewise, let A be a category of all fundamental AF -algebras; the arrows of A are

stable homomorphisms between the fundamental AF -algebras. By F : M → A we

understand a map given by the formula Mϕ 7→ Aϕ, where Mϕ ∈ M and Aϕ ∈ A.

Our main result can be stated as follows.

Theorem 1. The map F is a functor which sends each continuous map Nψ →Mϕ

to a stable homomorphism Aψ → Aϕ of the corresponding fundamental AF -algebras.

1.4. Applications. Theorem 1 has a natural application, since stable homomor-

phisms of the fundamental AF -algebras are easier to detect than continuous maps

between manifolds Nψ andMϕ; such homomorphisms are in bijection with the inclu-

sions of certain Z-modules lying in a (real) algebraic number field. Often it is possible

to prove that no inclusion is possible and, thus, draw a topological conclusion about

the maps (an obstruction theory).

Namely, since Aψ is stationary, it has a constant incidence matrix B; we denote the

splitting field of the polynomial det(B − xI) by Kψ and call Gal(Kψ;Q) the Galois

group of the algebra Aψ. Suppose that h : Aψ → Aϕ is a stable homomorphism; since

the corresponding invariant foliations Fψ and Fϕ are induced, their Plante groups

are included P (Fϕ) ⊆ P (Fψ) and, therefore, Q(λB′) ⊆ Kψ, where λB′ is the Perron-

Frobenius eigenvalue of the matrix B′ attached to Aϕ. Thus, stable homomorphisms

are in bijection with subfields of the algebraic number field Kψ; their classification

achieves perfection in terms of the Galois theory, since the subfields are in a one-to-

one correspondence with the subgroups of Gal(Aψ), see [7].

In particular, when Gal(Aψ) is simple, there are only trivial stable homomor-

phisms; thus, the structure of Gal(Aψ) is an obstruction (an invariant) to the ex-

istence of a continuous map between the manifolds Nψ and Mϕ. Is our invariant

effective? The answer is positive for a class of the so-called tight torus bundles; in
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this case Nψ is given by a monodromy matrix, which is similar to the matrix B. The

obstruction theory for the tight torus bundles of any dimension can be completely

determined; it reduces to a divisibility test for a finite set of natural numbers. For

the sake of clarity, the test is done in dimension m = 2, 3 and 4 and followed by

numerical examples.

Remark 1. Notice that for the tight torus bundles (see Section 3.2) our results

can be proved using the theory of hyperbolic diffeomorphism ψ : Tm → Tm alone;

however, our approach seems to be more general, leading to essentially new topolog-

ical invariants.

2. Preliminaries

2.1. Measured foliations. By a q-dimensional, class Cr foliation of anm-dimen-

sional manifold M we understand a decomposition of M into a union of disjoint

connected subsets {Lα}α∈A, called leaves, see [6]. They must satisfy the following

property: each point in M has a neighborhood U and a system of local class Cr

coordinates x = (x1, . . . , xm) : U → Rm such that for each leaf Lα, the components

of U ∩ Lα are described by the equations x
q+1 = const, . . ., xm = const. Such

a foliation is denoted by F = {Lα}α∈A. The number k = m − q is called the

codimension of the foliation.

An example of a codimension k foliation F is given by a closed k-form ω on M :

the leaves of F are tangent to the hyperplane ω(p) = 0 at each point p of M . The

Cr-foliations F0 and F1 of codimension k are said to be C
s-conjugate (0 6 s 6 r),

if there exists an (orientation-preserving) diffeomorphism of M , of class Cs, which

maps the leaves of F0 onto the leaves of F1; when s = 0, F0 and F1 are topologically

conjugate. Denote by f : N → M a map of class Cs (1 6 s 6 r) of a manifold N

into M ; the map f is said to be transverse to F , if for all x ∈ N it holds that

Ty(M) = τy(F) + f∗Tx(N), where τy(F) are the vectors of Ty(M) tangent to F

and f∗ : Tx(N) → Ty(M) is the linear map on tangent vectors induced by f , where

y = f(x).

If the map f : N → M is transverse to a foliation F ′ = {L}α∈A on M , then f

induces a class Cs foliation F on N , where the leaves are defined as f−1(Lα) for

all α ∈ A; it is immediate that codim(F) = codim(F ′). We shall call F an induced

foliation. When f is a submersion, it is transverse to any foliation of M ; in this

case, the induced foliation F is correctly defined for all F ′ on M , see [6], page 373.

Notice that for M = N the above definition corresponds to topologically conjugate

foliations F and F ′. To introduce measured foliations, denote by P and Q two
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k-dimensional submanifolds of M , which are everywhere transverse to a foliation F

of codimension k.

Consider a collection of Cr homeomorphisms between subsets of P and Q induced

by a return map along the leaves of F . The collection of all such homeomorphisms

between subsets of all possible pairs of transverse manifolds generates a holonomy

pseudogroup of F under composition of the homeomorphisms, see [8], page 329. A fo-

liation F is said to have measure preserving holonomy, if its holonomy pseudogroup

has a nontrivial invariant measure, which is finite on compact sets; for brevity, we

call F a measured foliation.

An example of measured foliation is a foliation determined by the closed k-form ω;

the restriction of ω to a transverse k-dimensional manifold determines a volume

element, which gives a positive invariant measure on open sets. Each measured

foliation F defines an element of the cohomology group Hk(M ;R), see [8]; in the

case of F given by a closed k-form ω, such an element coincides with the de Rham

cohomology class of ω, ibid.

In view of the isomorphism Hk(M ;R) ∼= Hom(Hk(M),R), foliation F defines

a linear map h from the k-th homology group Hk(M) to R; by the Plante group

P (F) we shall understand a finitely generated abelian subgroup h(Hk(M)/Tors) of

the real line R. If {γi} is a basis of the homology group Hk(M), then the periods

λi =
∫

γi
ω are generators of the group P (F), see [8].

2.2. AF -algebra of measured foliation. Let λ = (λ1, . . . , λn) be a basis of

the Plante group P (F) of a measured foliation F such that λi > 0. Take a vector

θ = (θ1, . . . , θn−1) with θi = λi+1/λ1; the Jacobi-Perron continued fraction of vector

(1, θ) (or, projective class of vector λ) is given by the formula ([3], page 13):

(2.1)

(

1

θ

)

= lim
i→∞

(

0 1

I b1

)

. . .

(

0 1

I bi

)(

0

I

)

= lim
i→∞

Bi

(

0

I

)

,

where bi = (b
(i)
1 , . . . , b

(i)
n−1)

T is a vector of nonnegative integers, I the unit matrix

and I = (0, . . . , 0, 1)T; the bi are obtained from θ by the Euclidean algorithm, see [3],

pages 2–3, for details. An AF -algebra given by the Bratteli diagram with the inci-

dence matrices Bi (and unital homomorphismsMi → Mi+1) will be called associated

to the foliation F ; we shall denote such an algebra by AF . Taking another basis of

the Plante group P (F) gives an AF -algebra which is stably isomorphic to AF ; this

is an algebraic recast of the main property of the Jacobi-Perron fractions.

It is known that the Bratteli diagram defines the AF -algebra up to an isomorphism,

see [4]; by AF we mean the isomorphism class. Note that if F
′ is a measured foliation

on a manifold M and f : N → M is a submersion, the induced foliation F on N is

a measured foliation. We shall denote by MFol the category of all manifolds with
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measured foliations (of fixed codimension), whose arrows are submersions of the

manifolds; byM0Fol we understand a subcategory ofMFol consisting of manifolds

whose foliations have a unique transverse measure.

Let Rng be the category of the (isomorphism classes of) AF -algebras given by

convergent Jacobi-Perron fractions (2.1), so that the arrows of Rng are the stable

homomorphisms of the AF -algebras. By F we denote a map between M0Fol and

Rng given by the formula F 7→ AF . Notice that F is correctly defined, since foliations

with a unique measure have convergent Jacobi-Perron fractions; this assertion follows

from, see [2].

Lemma 1. The map F : M0Fol → Rng is a functor which sends any pair of

induced foliations to a pair of stably homomorphic AF -algebras.

2.3. Fundamental AF -algebras. Let M be an m-dimensional manifold and

ϕ : M → M a diffeomorphism of M ; recall that an orbit of point x ∈ M is the

subset {ϕn(x) ; n ∈ Z} of M . Finite orbits ϕm(x) = x are called periodic; when

m = 1, x is a fixed point of diffeomorphism ϕ. A fixed point p is hyperbolic if the

eigenvalues λi of the linear map Dϕ(p) : Tp(M) → Tp(M) do not lie on the unit

circle. If p ∈M is a hyperbolic fixed point of a diffeomorphism ϕ : M →M , denote

by Tp(M) = V s + V u the corresponding decomposition of the tangent space under

the linear map Dϕ(p), where V s (V u) is the eigenspace of Dϕ(p) corresponding to

|λi| > 1 (|λi| < 1).

For a submanifold W s(p) there exists a contraction g : W s(p) → W s(p) with

fixed point p0 and an injective equivariant immersion J : W
s(p) → M , such that

J(p0) = p and DJ(p0) : Tp0(W
s(p)) → Tp(M) is an isomorphism; the image of J

defines an immersed submanifold W s(p) ⊂ M called a stable manifold of ϕ at p.

Clearly, dim(W s(p)) = dim(V s). We say that ϕ : M → M is an Anosov diffeomor-

phism (see [1]) if the following condition is satisfied: there exists a splitting of the

tangent bundle T (M) into a continuous Whitney sum T (M) = Es+Eu, invariant un-

der Dϕ : T (M) → T (M), so that Dϕ : Es → Es is contracting and Dϕ : Eu → Eu

is expanding.1

1 It follows from definition that the Anosov diffeomorphism imposes a restriction on the
topology of manifold M , in the sense that not each manifold can support such a diffeo-
morphism; however, if one Anosov diffeomorphism exists onM , there are infinitely many
(conjugacy classes of) such diffeomorphisms on M . It is an open problem by Stephen
Smale, which M can carry an Anosov diffeomorphism; so far, it has been proved that
the hyperbolic diffeomorphisms of m-dimensional tori and certain automorphisms of the
nilmanifolds are Anosov, see [9]. It is worth mentioning that on each surface of genus
g > 1 there exists a rich family of the so-called pseudo-Anosov diffeomorphisms, see [10],
to which our theory fully applies.
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Let p be a fixed point of the Anosov diffeomorphism ϕ : M → M and W s(p)

its stable manifold. Since W s(p) cannot have self-intersections or limit compacta,

W s(p) →M is a dense immersion, i.e., the closure of W s(p) is the entire M . More-

over, if q is a periodic point of ϕ of period n, then W s(q) is a translate of W s(p),

i.e., locally they look like two parallel lines.

Consider a foliation F of M whose leaves are the translates of W s(p); then F is

a continuous foliation [9], page 760, which is invariant under the action of diffeomor-

phism ϕ on its leaves, i.e., ϕ moves leaves of F to the leaves of F . The holonomy of F

preserves the Lebesgue measure and, therefore, F is a measured foliation; we shall

call it an invariant measured foliation and denote by Fϕ. The AF -algebra of folia-

tion F is called fundamental, when F = Fϕ, where ϕ is an Anosov diffeomorphism;

the following is a basic property of such algebras.

Lemma 2. Any fundamental AF -algebra is stationary.

3. Proofs

P r o o f of Lemma 1. Let F ′ be a measured foliation onM , given by a closed form

ω′ ∈ Hk(M ;R); let F be the measured foliation on N , induced by a submersion

f : N → M . Roughly speaking, we have to prove that the diagram in Figure 1 is

commutative; the proof amounts to the fact that the periods of form ω′ are contained

among the periods of form ω ∈ Hk(N ;R) corresponding to the foliation F .

F
induction

//

��

F ′

��

AF

stable

homomorphism
// AF ′

Figure 1. Functor F : M0Fol → Rng.

The map f defines a homomorphism f∗ : Hk(N) → Hk(M) of the k-th homol-

ogy groups; let {ei} and {e′i} be a basis in Hk(N) and Hk(M), respectively. Since

Hk(M) = Hk(N)/ ker(f∗), we shall denote by [ei] := ei+ker(f∗) a coset representa-

tive of ei; these can be identified with the elements ei 6∈ ker(f∗). The integral
∫

ei
ω

defines a scalar product Hk(N) ×Hk(N ;R) → R, so that f∗ is a linear self-adjoint

operator; thus, we can write:

(3.1) λ′i =

∫

e′i

ω′ =

∫

e′i

f∗(ω) =

∫

f−1

∗ (e′i)

ω =

∫

[ei]

ω ∈ P (F),
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where P (F) is the Plante group (the group of periods) of foliation F . Since λ′i are

generators of P (F ′), we conclude that P (F ′) ⊆ P (F). Note that P (F ′) = P (F) if

and only if f∗ is an isomorphism.

One can apply a criterion of the stable homomorphism ofAF -algebras; namely, AF

and AF ′ are stably homomorphic, if and only if there exists a positive homomorphism

h : G→ H between their dimension groupsG andH , see [5], page 15. But G ∼= P (F)

and H ∼= P (F ′), while h = f∗. Thus, AF and AF ′ are stably homomorphic.

The functor F is compatible with the composition; indeed, let f : N → M and

f ′ : L→ N be submersions. If F is a measured foliation of M , one gets the induced

foliations F ′ and F ′′ on N and L, respectively; these foliations fit the diagram

(L,F ′′)
f ′

→ (N,F ′)
f
→ (M,F) and the corresponding Plante groups are included:

P (F ′′) ⊇ P (F ′) ⊇ P (F). Thus, F (f ′ ◦ f) = F (f ′) ◦ F (f), since the inclusion of

the Plante groups corresponds to the composition of homomorphisms; Lemma 1 is

proved. �

P r o o f of Lemma 2. Let ϕ : M →M be an Anosov diffeomorphism; we proceed

by showing that the invariant foliation Fϕ is given by the form ω ∈ Hk(M ;R),

which is an eigenvector of the linear map [ϕ] : Hk(M ;R) → Hk(M ;R) induced by ϕ.

Indeed, let 0 < c < 1 be the contracting constant of the stable sub-bundle Es of

diffeomorphism ϕ and Ω the corresponding volume element; by definition, ϕ(Ω) = cΩ.

Note that Ω is given by restriction of the form ω to a k-dimensional manifold,

transverse to the leaves of Fϕ. The leaves of Fϕ are fixed by ϕ and, therefore, ϕ(Ω)

is given by a multiple cω of form ω. Since ω ∈ Hk(M ;R) is a vector whose coordinates

define Fϕ up to a scalar, we conclude that [ϕ](ω) = cω, i.e., ω is an eigenvector of

the linear map [ϕ]. Let (λ1, . . . , λn) be a basis of the Plante group P (Fϕ) such that

λi > 0. Notice that ϕ acts on λi as multiplication by a constant c; indeed, since

λi =
∫

γi
ω, we have:

(3.2) λ′i =

∫

γi

[ϕ](ω) =

∫

γi

cω = c

∫

γi

ω = cλi,

where {γi} is a basis in Hk(M). Since ϕ preserves the leaves of Fϕ, one concludes

that λ′i ∈ P (Fϕ); therefore, λ
′
j =

∑

bijλi for a nonnegative integer matrix B = (bij).

According to Bauer [2], the matrix B can be written as a finite product:

(3.3) B =

(

0 1

I b1

)

. . .

(

0 1

I bp

)

:= B1 . . . Bp,

where bi = (b
(i)
1 , . . . , b

(i)
n−1)

T is a vector of nonnegative integers and I the unit matrix.

Let λ = (λ1, . . . , λn). Consider a purely periodic Jacobi-Perron continued fraction:

(3.4) lim
i→∞

B1 . . . Bp

(

0

I

)

,
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where I = (0, . . . , 0, 1)T; by a basic property of such fractions, it converges to

an eigenvector λ′ = (λ′1, . . . , λ
′
n) of matrix B1 . . . Bp, see [3], Chapter 3. But

B1 . . . Bp = B and λ is an eigenvector of matrix B; therefore, vectors λ and λ′ are

collinear. Collinear vectors are known to have the same continued fractions; thus,

we have

(3.5)

(

1

θ

)

= lim
i→∞

B1 . . . Bp

(

0

I

)

,

where θ = (θ1, . . . , θn−1) and θi = λi+1/λ1. Since vector (1, θ) unfolds into a periodic

Jacobi-Perron continued fraction, we conclude that the AF -algebra Aϕ is stationary.

Lemma 2 is proved. �

P r o o f of Theorem 1. Let ψ : N → N and ϕ : M → M be a pair of Anosov dif-

feomorphisms; denote by (N,Fψ) and (M,Fϕ) the corresponding invariant foliations

of manifolds N and M , respectively. In view of Lemma 1, it is sufficient to prove

that the diagram in Figure 2 is commutative. We shall split the proof in a series of

lemmas.

Nψ
continuous

map
//

��

Mϕ

��

(N,Fψ)
induced

foliations
// (M,Fϕ)

Figure 2. Mapping tori and invariant foliations.

Lemma 3. There exists a continuous map Nψ →Mϕ, whenever f ◦ϕ = ψ ◦ f for

a submersion f : N →M .

P r o o f. (i) Suppose that h : Nψ → Mϕ is a continuous map; let us show that

there exists a submersion f : N → M such that f ◦ ϕ = ψ ◦ f . Both Nψ and Mϕ

fiber over the circle S1 with the projection map pψ and pϕ, respectively; therefore,

the diagram in Figure 3 is commutative. Let x ∈ S1; since p−1
ψ = N and p−1

ϕ = M ,

Nψ
h

//

pψ

  
❆❆

❆❆
❆❆

❆❆
❆❆

❆
Mϕ

pϕ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

S1

Figure 3. The fiber bundles Nψ and Mϕ over S
1.
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the restriction of h to x defines a submersion f : N → M , i.e., f = hx. Moreover,

since ψ and ϕ are monodromy maps of the bundle, it holds that

p−1
ψ (x+ 2π) = ψ(N), p−1

ϕ (x+ 2π) = ϕ(M).(3.6)

From the diagram in Figure 3, we get: ψ(N) = p−1
ψ (x + 2π) = f−1(p−1

ϕ (x + 2π)) =

f−1(ϕ(M)) = f−1(ϕ(f(N))); thus, f◦ψ = ϕ◦f . The necessary condition of Lemma 3

follows.

(ii) Suppose that f : N →M is a submersion such that f ◦ ϕ = ψ ◦ f ; we have to

construct a continuous map h : Nψ →Mϕ. Recall that

(3.7) Nψ = {N × [0, 1] ; (x, 0) ∼ (ψ(x), 1)},

Mϕ = {M × [0, 1] ; (y, 0) ∼ (ϕ(y), 1)}.

We shall identify the points ofNψ andMϕ using the substitution y = f(x); it remains

to verify that such an identification will satisfy the gluing condition y ∼ ϕ(y). In

view of the condition f ◦ ϕ = ψ ◦ f , we have

(3.8) y = f(x) ∼ f(ψ(x)) = ϕ(f(x)) = ϕ(y).

Thus, y ∼ ϕ(y) and, therefore, the map h : Nψ → Mϕ is continuous. The sufficient

condition of Lemma 3 is proved. �

Hk(N ;R)
[ψ]

//

[f ]

��

Hk(N,R)

[f ]

��

Hk(M,R)
[ϕ]

// Hk(M,R)

Figure 4. The linear maps [ψ], [ϕ] and [f ].

Lemma 4. If a submersion f : N →M satisfies the condition f ◦ϕ = ψ◦f for the

Anosov diffeomorphisms ψ : N → N and ϕ : M → M , then the invariant foliations

(N,Fψ) and (M,Fϕ) are induced by f .

P r o o f. The invariant foliations Fψ and Fϕ are measured; we shall denote by

ωψ ∈ Hk(N ;R) and ωϕ ∈ Hk(M ;R) the corresponding cohomology class, respec-

tively. We shall denote by [ψ] and [ϕ] the linear maps on Hk(N ;R) and Hk(M ;R)

induced by ψ and ϕ; we write as [f ] the linear map between Hk(N ;R) and Hk(M ;R)
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induced by f . Notice that [ψ] and [ϕ] are isomorphisms, while [f ] is generally a ho-

momorphism. It was shown earlier that ωψ and ωϕ are eigenvectors of linear maps

[ψ] and [ϕ], respectively; in other words, we have

[ψ]ωψ = c1ωψ, [ϕ]ωϕ = c2ωϕ,(3.9)

where 0 < c1 < 1 and 0 < c2 < 1. Consider the diagram in Figure 4, which involves

the linear maps [ψ], [ϕ] and [f ]; the diagram is commutative, since the condition

f ◦ ϕ = ψ ◦ f implies that [ϕ] ◦ [f ] = [f ] ◦ [ψ]. Take the eigenvector ωψ and consider

its image under the linear map [ϕ] ◦ [f ]:

(3.10) [ϕ] ◦ [f ](ωψ) = [f ] ◦ [ψ](ωψ) = [f ](c1ωψ) = c1([f ](ωψ)).

Therefore, the vector [f ](ωψ) is an eigenvector of the linear map [ϕ]; let us compare

it with the eigenvector ωϕ:

[ϕ]([f ](ωψ)) = c1([f ](ωψ)), [ϕ]ωϕ = c2ωϕ.(3.11)

We conclude, therefore, that ωϕ and [f ](ωψ) are collinear vectors, such that c
m
1 = cn2

for some integers m,n > 0; a scaling gives us [f ](ωψ) = ωϕ. The latter is an analytic

formula which says that the submersion f : N → M induces the foliation (N,Fψ)

from the foliation (M,Fϕ). Lemma 4 is proved. �

To finish our proof of Theorem 1, let Nψ →Mϕ be a continuous map; by Lemma 3,

there exists a submersion f : N →M such that f ◦ϕ = ψ ◦ f . Lemma 4 says that in

this case the invariant measured foliations (N,Fψ) and (M,Fϕ) are induced. On the

other hand, from Lemma 2 we know that the Jacobi-Perron continued fraction con-

nected to foliations Fψ and Fϕ is periodic and, hence, convergent, see [3]; therefore,

one can apply Lemma 1, which says that the AF -algebra Aψ is stably homomorphic

to the AF -algebra Aϕ. The latter are, by definition, the fundamental AF -algebras

of the Anosov diffeomorphisms ψ and ϕ, respectively. Theorem 1 is proved. �

4. Applications of Theorem 1

4.1. Galois group of the fundamental AF -algebra. Let Aψ be a fundamental

AF -algebra and B its primitive incidence matrix, i.e., B is not a power of some

positive integer matrix. Suppose that the characteristic polynomial ofB is irreducible

and let Kψ be its splitting field; then Kψ is a Galois extension of Q. We call

Gal(Aψ) := Gal(Kψ;Q) the Galois group of the fundamental AF -algebra Aψ; such
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a group is determined by the AF -algebra Aψ. The second algebraic field is connected

to the Perron-Frobenius eigenvalue λB of the matrix B; we shall denote this field

Q(λB). Note that Q(λB) ⊆ Kψ and Q(λB) is not, in general, a Galois extension

of Q; the obstacle are complex roots of the polynomial char(B) and if there are

no such roots then Q(λB) = Kψ, see e.g. [7]. There is still a group Aut(Q(λB)) of

automorphisms ofQ(λB) fixing the field Q and Aut(Q(λB)) ⊆ Gal(Kψ) is a subgroup

inclusion.

Lemma 5. If h : Aψ → Aϕ is a stable homomorphism, then Q(λB′) ⊆ Kψ is

a field inclusion, where B′ is the matrix associated to ϕ.

P r o o f. Notice that the nonnegative matrix B becomes strictly positive, when

a proper power of it is taken; we always assume B positive. Let λ = (λ1, . . . , λn) be

a basis of the Plante group P (Fψ). Following the proof of Lemma 2, one concludes

that λi ∈ Kψ; indeed, λB ∈ Kψ is the Perron-Frobenius eigenvalue of B, while λ is

the corresponding eigenvector. The latter can be scaled so that λi ∈ Kψ. Any stable

homomorphism h : Aψ → Aϕ induces a positive homomorphism of their dimension

groups [h] : G→ H ; but G ∼= P (Fψ) and H ∼= P (Fϕ). From the inclusion P (Fϕ) ⊆

P (Fψ), one gets Q(λB′) ∼= P (Fϕ)⊗Q ⊆ P (Fψ)⊗Q ∼= Q(λB) ⊆ Kψ and, therefore,

Q(λB′) ⊆ Kψ. Lemma 5 follows. �

Corollary 1. If h : Aψ → Aϕ is a stable homomorphism, then Aut(Q(λB′)) (or,

Gal(Aϕ)) is a subgroup (or, a normal subgroup) of Gal(Aψ).

P r o o f. The (Galois) subfields of the Galois field Kψ are bijective with the (nor-

mal) subgroups of the group Gal(Kψ), see [7]. �

4.2. Tight torus bundles. Let Tm ∼= Rm/Zm be anm-dimensional torus; let ψ0

be a m × m integer matrix with det(ψ0) = 1, such that it is similar to a positive

matrix. The matrix ψ0 defines a linear transformation of R
m which preserves the

lattice L ∼= Zm of points with integer coordinates. There is an induced diffeomor-

phism ψ of the quotient Tm ∼= Rm/Zm onto itself; this diffeomorphism ψ : Tm → Tm

has a fixed point p corresponding to the origin of Rm. Suppose that ψ0 is hyper-

bolic, i.e., there are no eigenvalues of ψ0 at the unit circle; then p is a hyperbolic

fixed point of ψ and the stable manifold W s(p) is the image of the corresponding

eigenspace of ψ0 under the projection R
m → Tm. If codimW s(p) = 1, the hyperbolic

linear transformation ψ0 (and the diffeomorphism ψ) will be called tight.
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Lemma 6. The tight hyperbolic matrix ψ0 is similar to the matrix B of the

fundamental AF -algebra Aψ.

P r o o f. Since Hk(T
m;R) ∼= Rm!/k!(m−k)!, one gets Hm−1(T

m;R) ∼= Rm; in view

of the Poincaré duality, H1(Tm;R) = Hm−1(T
m;R) ∼= Rm. Since codimW s(p) = 1,

the measured foliation Fψ is given by a closed form ωψ ∈ H1(Tm;R) such

that [ψ]ωψ = λψωψ, where λψ is the eigenvalue of the linear transformation

[ψ] : H1(Tm;R) → H1(Tm;R). It is easy to see that [ψ] = ψ0, because H
1(Tm;R) ∼=

Rm is the universal cover for Tm, where the eigenspace Wu(p) of ψ0 is the span of

the eigenform ωψ. On the other hand, from the proof of Lemma 2 we know that

the Plante group P (Fψ) is generated by the coordinates of vector ωψ; the matrix B

is nothing but the matrix ψ0 written in a new basis of P (Fψ). Each change of

basis in the Z-module P (Fψ) is given by an integer invertible matrix S; therefore,

B = S−1ψ0S. Lemma 6 follows. �

Let ψ : Tm → Tm be a hyperbolic diffeomorphism; the mapping torus Tmψ will

be called a (hyperbolic) torus bundle of dimension m. Let k = |Gal(Aψ)|; it follows

from the Galois theory that 1 < k 6 m!. Denote by ti the cardinality of a subgroup

Gi ⊆ Gal(Aψ).

Corollary 2. There are no (nontrivial) continuous maps Tmψ → Tm
′

ϕ , whenever

t′i ∤ k for all G
′
i ⊆ Gal(Aϕ).

P r o o f. If h : Tmψ → Tm
′

ϕ was a continuous map to a torus bundle of dimension

m′ < m, then, by Theorem 1 and Corollary 1, Aut(Q(λB′)) (or, Gal(Aϕ)) would

be a nontrivial subgroup (or, normal subgroup) of the group Gal(Aψ); since k =

|Gal(Aψ)|, one concludes that one of t
′
i divides k. This contradicts our assumption.

�

Definition 1. The torus bundle Tmψ is called robust, if there exists m
′ < m such

that no continuous map Tmψ → Tm
′

ϕ exists.

Are there robust bundles? It is shown in this section that for m = 2, 3 and 4 there

are infinitely many robust torus bundles; a reasonable guess is that it is true in any

dimension.

Case 1 : m = 2. This case is trivial; ψ0 is a hyperbolic matrix and always tight.

The polynomial char(ψ0) = char(B) is an irreducible quadratic polynomial with two

real roots; Gal(Aψ) ∼= Z2 and, therefore, |Gal(Aψ)| = 2. Formally, T 2
ψ is robust, since

no torus bundle of a smaller dimension is defined.

Case 2 : m = 3. The matrix ψ0 is hyperbolic; it is always tight, since one root of

char(ψ0) is real and isolated inside or outside the unit circle.
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Corollary 3. Let

(4.1) ψ0(b, c) =





−b 1 0

−c 0 1

−1 0 0





be such that char(ψ0(b, c)) = x3+bx2+cx+1 is irreducible and −4b3+b2c2+18bc−

4c3 − 27 is the square of an integer; then T 3
ψ admits no continuous map to any T

2
ϕ.

P r o o f. The polynomial char(ψ0(b, c)) = x3 + bx2 + cx+ 1 and the discriminant

D = −4b3 + b2c2 + 18bc − 4c3 − 27. By Theorem 13.1 in [7], Gal(Aψ) ∼= Z3 and,

therefore, k = |Gal(Aψ)| = 3. For m′ = 2, it was shown that Gal(Aϕ) ∼= Z2 and,

therefore, t′1 = 2. Since 2 ∤ 3, Corollary 2 says that no continuous map T 3
ψ → T 2

ϕ can

be constructed. �

Example 1. There are infinitely many matrices ψ0(b, c) satisfying the assump-

tions of Corollary 3; below are a few numerical examples of robust bundles:





0 1 0

3 0 1

−1 0 0



 ,





1 1 0

2 0 1

−1 0 0



 ,





2 1 0

1 0 1

−1 0 0



 ,





3 1 0

0 0 1

−1 0 0



 .

Notice that the above matrices are not pairwise similar; it can be gleaned from their

traces. Thus, they represent topologically distinct torus bundles.

Case 3 : m = 4. Let p(x) = x4 + ax3 + bx2 + cx + d be a quartic polynomial.

Consider the associated cubic polynomial r(x) = x3−bx2+(ac−4d)x+4bd−a2d−c2;

denote by L the splitting field of r(x).

Corollary 4. Let

(4.2) ψ0(a, b, c) =









−a 1 0 0

−b 0 1 0

−c 0 0 1

−1 0 0 0









be tight and such that char(ψ0(a, b, c)) = x4 + ax3 + bx2 + cx+ 1 is irreducible and

one of the following holds:

(i) L = Q;

(ii) r(x) has a unique root t ∈ Q and h(x) = (x2 − tx+ 1)(x2 + ax+ (b− t)) splits

over L;

(iii) r(x) has a unique root t ∈ Q and h(x) does not split over L.

Then T 4
ψ admits no continuous map to any T

3
ϕ with D > 0.

1082



P r o o f. According to Theorem 13.4 in [7], Gal(Aψ) ∼= Z2 ⊕ Z2 in case (i);

Gal(Aψ) ∼= Z4 in case (ii); and Gal(Aψ) ∼= D4 (the dihedral group) in case (iii).

Therefore, k = |Z2 ⊕ Z2| = |Z4| = 4 or k = |D4| = 8. On the other hand, for m′ = 3

with D > 0 (all roots are real), we have t′1 = |Z3| = 3 and t′2 = |S3| = 6. Since

3; 6 ∤ 4; 8, Corollary 2 says that a continuous map T 4
ψ → T 3

ϕ is impossible. �

Example 2. There are infinitely many matrices ψ0 which satisfy the assumption

of Corollary 4; indeed, consider a family

(4.3) ψ0(a, c) =









−2a 1 0 0

−a2 − c2 0 1 0

−2c 0 0 1

−1 0 0 0









,

where a, c ∈ Z. The associated cubic polynomial becomes r(x) = x(x2− (a2+ c2)x+

4(ac− 1)), so that t = 0 is a rational root; then h(x) = (x2 +1)(x2 +2ax+ a2 + c2).

The matrix ψ0(a, c) satisfies one of the conditions (i)–(iii) of Corollary 4 for each

a, c ∈ Z; it remains to eliminate the (non-generic) matrices which are not tight or

irreducible. Thus, ψ0(a, c) defines a family of topologically distinct robust bundles.

Acknowledgement. I am grateful to the referee for detailed and very helpful

comments.
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