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Abstract. The two related Diophantine equations: X4
1 +4X4

2 = X8
3 +4X8

4

and Y 4
1 = Y 4

2 +Y 4
3 +4Y 4

4 , have infinitely many nontrivial, primitive integral
solutions. We give two parametric solutions, one for each of these equations.

1 Introduction
In this note, we study the two related Diophantine equations

X4
1 + 4X4

2 = X8
3 + 4X8

4 (1)

and

Y 4
1 = Y 4

2 + Y 4
3 + 4Y 4

4 . (2)

It seems that no parametric solutions are known for (1). Choudhry [1] has found
parametric solutions of a similar equation

A4 + 4B4 = C4 + 4D4

involving only fourth powers. Though, the parametric solution of (2) is already
known which is based on the identity

(p4 + 2q4)4 = (p4 − 2q4)4 + (2p3q)4 + 4(2pq3)4,

we give a new parametric solution of (2). For a historical background and references
of these equations, and similar Diophantine problems on fourth powers, we refer
to Guy ([3], pp. 215–218) and Dickson ([2], pp. 647–648). The parameterisations
of (1) and (2) are based on a result from our paper [4] in which we proved the
following theorem:
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Theorem 1. (Jena, [4]) For any integer n, if (At, Bt, Ct) is a solution of the Dio-
phantine equation

A4 + nB4 = C2 (3)

with A, B, C as integers, then (At+1, Bt+1, Ct+1) is also the solution of the same
equation such that

(At+1, Bt+1, Ct+1) =
{

(A4
t − nB4

t ), (2AtBtCt), (A
8
t + 6nA4

tB
4
t + n2B8

t )
}

(4)

and if At, nBt, Ct are pairwise coprime and At, nBt are of opposite parity, then
At+1, nBt+1, Ct+1 will also be pairwise coprime and At+1, nBt+1 will be of opposite
parity with At+1, Bt+1, Ct+1 as an odd, even, odd integer respectively.

Changing n to −n at appropriate places in Theorem 1, we get its equivalent
theorem:

Theorem 2. For any integer n, if (At, Bt, Ct) is a solution of the Diophantine
equation

A4 − nB4 = C2 (5)

with A, B, C as integers, then (At+1, Bt+1, Ct+1) is also the solution of the same
equation such that

(At+1, Bt+1, Ct+1) =
{

(A4
t + nB4

t ), (2AtBtCt), (A
8
t − 6nA4

tB
4
t + n2B8

t )
}

(6)

and if At, nBt, Ct are pairwise coprime and At, nBt are of opposite parity, then
At+1, nBt+1, Ct+1 will also be pairwise coprime and At+1, nBt+1 will be of opposite
parity with At+1, Bt+1, Ct+1 as an odd, even, odd integer respectively.

Theorem 1 and Theorem 2 are based on two equivalent polynomial identities

(a− b)4 + 16ab(a+ b)2 = (a2 + 6ab+ b2)2;

and

(a+ b)4 − 16ab(a− b)2 = (a2 − 6ab+ b2)2,

which can be used to parameterise (3) and (5) respectively.

2 Core Results
The following lemma will be used for obtaining the main results of this paper.

Lemma 1. The Diophantine equation

c4 − 2d4 = t2 (7)

has infinitely many non-zero, coprime integral solutions for (c, d, t).
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Proof. The integral solutions of (7) are generated by using Theorem 2. If we take
the initial solution of (7) as (c1, d1, t1) = (3, 2, 7), then from (6) we get the next
solution

(c2, d2, t2) =
{

(c41 + 2d4
1), (2c1d1t1), (c81 − 6× 2c41d

4
1 + 22d8

1)
}

= (113, 84,−7967).

We take (c2, d2, t2) = (113, 84, 7967) as c, d and t are raised to even powers in (7).
Note that (c1, 2d1, t1) = (3, 4, 7) are pairwise coprime, c1 = 3 is odd, and 2d1 = 4
is even. So, according to Theorem 2 we expect (c2, 2d2, t2) to be pairwise co-
prime, and c2 and 2d2 to be of opposite parity. In fact, our expectation is true as
(c2, 2d2, t2) = (113, 168, 7967) are pairwise coprime, c2 = 113 is odd, and 2d2 = 168
is even. Thus, (7) has infinitely many non-zero and coprime integral solutions. �

It is easy to verify the two polynomial identities

(a+ b)4 − (a− b)4 = 8ab(a2 + b2); (8)

and

(c4 − 2d4)2 + 4(cd)4 = c8 + 4d8 (9)

by direct computation.
Put c4 − 2d4 = t2 from (7) in (9) to get

t4 + 4(cd)4 = c8 + 4d8. (10)

Putting a = c4 and b = 2d4 in (8) we get

(c4 + 2d4)4 − (c4 − 2d4)4 = 16c4d4(c8 + 4d8);

⇒(c4 + 2d4)4 = (c4 − 2d4)4 + (2cd)4{t4 + 4(cd)4}; [from (10)]

⇒(c4 + 2d4)4 = (c4 − 2d4)4 + (2cdt)4 + 4(2c2d2)4. (11)

2.1 Diophantine equation X4
1 + 4X4

2 = X8
3 + 4X8

4

Theorem 3. The Diophantine equation

X4
1 + 4X4

2 = X8
3 + 4X8

4 (12)

has infinitely many nontrivial, primitive integral solutions for (X1, X2, X3, X4).
To get the primitive solutions of (12), we assume that gcd(X1, X2, X3, X4) = 1.

Proof. In accordance with Lemma 1, we have infinitely many integral values of
c, d, t with c4−2d4 = t2 and gcd(c, 2d) = 1 for which (10) has solutions. Comparing
(12) with (10) we get (X1, X2, X3, X4) = (t, cd, c, d). Since X3 = c, X4 = d and
gcd(c, 2d) = 1, we get gcd(X3, X4) = 1, and hence, gcd(X1, X2, X3, X4) = 1. So,
(12) has infinitely many nontrivial, primitive integral solutions for (X1, X2, X3, X4).

�
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Example 1.

(c1, d1, t1) = (3, 2, 7) : (X11
, X21

, X31
, X41

) = (t1, c1d1, c1, d1) = (7, 6, 3, 2);

⇒ 74 + 4× 64 = 38 + 4× 28.

(c2, d2, t2) = (113, 84, 7967) : (X12 , X22 , X32 , X42)

= (t2, c2d2, c2, d2) = (7967, 9492, 113, 84);

⇒ 79674 + 4× 94924 = 1138 + 4× 848.

2.2 Diophantine equation Y 4
1 = Y 4

2 + Y 4
3 + 4Y 4

4

Theorem 4. The Diophantine equation

Y 4
1 = Y 4

2 + Y 4
3 + 4Y 4

4 (13)

has infinitely many nontrivial, primitive integral solutions for (Y1, Y2, Y3, Y4). To
get the primitive solutions of (13), we assume that (Y1, Y2, Y3, Y4) = 1.

Proof. Using Lemma 1, we get infinitely many integral values of c, d, t such that
c4 − 2d4 = t2 and gcd(c, 2d) = 1 for which (11) is satisfied. Comparing (13) with
(11) we get

(Y1, Y2, Y3, Y4) =
{

(c4 + 2d4), (c4 − 2d4), 2cdt, 2c2d2
}
.

Since gcd(c, 2d) = 1, we have

gcd
(
(c4 + 2d4), (c4 − 2d4)

)
= 1.

Thus, gcd(Y1, Y2) = 1; or, gcd(Y1, Y2, Y3, Y4) = 1. So, (13) has infinitely many
nontrivial, primitive integral solutions for (Y1, Y2, Y3, Y4). �

Example 2.

(c1, d1, t1) = (3, 2, 7) :

(Y11 , Y21 , Y31 , Y41) =
{

(c41 + 2d4
1), (c41 − 2d4

1), 2c1d1t1, 2c
2
1d

2
1

}
= (113, 49, 84, 72);

=
{

(c41 + 2d4
1), t21, 2c1d1t1, 2c

2
1d

2
1

}
= (113, 72, 84, 72).

⇒ 1134 = 494 + 844 + 4× 724 = 78 + 844 + 4× 724.

(c2, d2, t2) = (113, 84, 7967) :

(Y12
, Y22

, Y32
, Y42

) =
{

(c42 + 2d4
2), (c42 − 2d4

2), 2c2d2t2, 2c
2
2d

2
2

}
= (262621633, 63473089, 151245528, 180196128);

=
{

(c42 + 2d4
2), t22, 2c2d2t2, 2c

2
2d

2
2

}
= (262621633, 79672, 151245528, 180196128).

⇒ 2626216334 = 634730894 + 1512455284 + 4× 1801961284;

= 79678 + 1512455284 + 4× 1801961284.
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3 Conclusion
We make no attempt of giving the complete parametric solutions to the two Dio-
phantine equations of the title. There might exist some singular solutions. It is
expected that the prospective scholars will continue further exploration to find the
complete solutions of these two equations.
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