Communications in Mathematics

Susil Kumar Jena
On $X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8}$ and $Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4}$

Communications in Mathematics, Vol. 23 (2015), No. 2, 113-117

Persistent URL: http://dml.cz/dmlcz/144800

Terms of use:

© University of Ostrava, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

On $X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8}$ and $Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4}$

Susil Kumar Jena

Abstract

The two related Diophantine equations: $X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8}$ and $Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4}$, have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.

1 Introduction

In this note, we study the two related Diophantine equations

$$
\begin{equation*}
X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4} \tag{2}
\end{equation*}
$$

It seems that no parametric solutions are known for (1). Choudhry [1] has found parametric solutions of a similar equation

$$
A^{4}+4 B^{4}=C^{4}+4 D^{4}
$$

involving only fourth powers. Though, the parametric solution of (2) is already known which is based on the identity

$$
\left(p^{4}+2 q^{4}\right)^{4}=\left(p^{4}-2 q^{4}\right)^{4}+\left(2 p^{3} q\right)^{4}+4\left(2 p q^{3}\right)^{4},
$$

we give a new parametric solution of (2). For a historical background and references of these equations, and similar Diophantine problems on fourth powers, we refer to Guy ([3], pp. 215-218) and Dickson ([2], pp. 647-648). The parameterisations of (1) and (2) are based on a result from our paper [4] in which we proved the following theorem:

[^0]Theorem 1. (Jena, [4]) For any integer n, if $\left(A_{t}, B_{t}, C_{t}\right)$ is a solution of the Diophantine equation

$$
\begin{equation*}
A^{4}+n B^{4}=C^{2} \tag{3}
\end{equation*}
$$

with A, B, C as integers, then $\left(A_{t+1}, B_{t+1}, C_{t+1}\right)$ is also the solution of the same equation such that

$$
\begin{equation*}
\left(A_{t+1}, B_{t+1}, C_{t+1}\right)=\left\{\left(A_{t}^{4}-n B_{t}^{4}\right),\left(2 A_{t} B_{t} C_{t}\right),\left(A_{t}^{8}+6 n A_{t}^{4} B_{t}^{4}+n^{2} B_{t}^{8}\right)\right\} \tag{4}
\end{equation*}
$$

and if $A_{t}, n B_{t}, C_{t}$ are pairwise coprime and $A_{t}, n B_{t}$ are of opposite parity, then $A_{t+1}, n B_{t+1}, C_{t+1}$ will also be pairwise coprime and $A_{t+1}, n B_{t+1}$ will be of opposite parity with $A_{t+1}, B_{t+1}, C_{t+1}$ as an odd, even, odd integer respectively.

Changing n to $-n$ at appropriate places in Theorem 1, we get its equivalent theorem:

Theorem 2. For any integer n, if $\left(A_{t}, B_{t}, C_{t}\right)$ is a solution of the Diophantine equation

$$
\begin{equation*}
A^{4}-n B^{4}=C^{2} \tag{5}
\end{equation*}
$$

with A, B, C as integers, then $\left(A_{t+1}, B_{t+1}, C_{t+1}\right)$ is also the solution of the same equation such that

$$
\begin{equation*}
\left(A_{t+1}, B_{t+1}, C_{t+1}\right)=\left\{\left(A_{t}^{4}+n B_{t}^{4}\right),\left(2 A_{t} B_{t} C_{t}\right),\left(A_{t}^{8}-6 n A_{t}^{4} B_{t}^{4}+n^{2} B_{t}^{8}\right)\right\} \tag{6}
\end{equation*}
$$

and if $A_{t}, n B_{t}, C_{t}$ are pairwise coprime and $A_{t}, n B_{t}$ are of opposite parity, then $A_{t+1}, n B_{t+1}, C_{t+1}$ will also be pairwise coprime and $A_{t+1}, n B_{t+1}$ will be of opposite parity with $A_{t+1}, B_{t+1}, C_{t+1}$ as an odd, even, odd integer respectively.

Theorem 1 and Theorem 2 are based on two equivalent polynomial identities

$$
(a-b)^{4}+16 a b(a+b)^{2}=\left(a^{2}+6 a b+b^{2}\right)^{2}
$$

and

$$
(a+b)^{4}-16 a b(a-b)^{2}=\left(a^{2}-6 a b+b^{2}\right)^{2}
$$

which can be used to parameterise (3) and (5) respectively.

2 Core Results

The following lemma will be used for obtaining the main results of this paper.
Lemma 1. The Diophantine equation

$$
\begin{equation*}
c^{4}-2 d^{4}=t^{2} \tag{7}
\end{equation*}
$$

has infinitely many non-zero, coprime integral solutions for (c, d, t).

$$
\text { On } X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8} \text { and } Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4}
$$

Proof. The integral solutions of (7) are generated by using Theorem 2. If we take the initial solution of (7) as $\left(c_{1}, d_{1}, t_{1}\right)=(3,2,7)$, then from (6) we get the next solution

$$
\left(c_{2}, d_{2}, t_{2}\right)=\left\{\left(c_{1}^{4}+2 d_{1}^{4}\right),\left(2 c_{1} d_{1} t_{1}\right),\left(c_{1}^{8}-6 \times 2 c_{1}^{4} d_{1}^{4}+2^{2} d_{1}^{8}\right)\right\}=(113,84,-7967) .
$$

We take $\left(c_{2}, d_{2}, t_{2}\right)=(113,84,7967)$ as c, d and t are raised to even powers in (7). Note that $\left(c_{1}, 2 d_{1}, t_{1}\right)=(3,4,7)$ are pairwise coprime, $c_{1}=3$ is odd, and $2 d_{1}=4$ is even. So, according to Theorem 2 we expect $\left(c_{2}, 2 d_{2}, t_{2}\right)$ to be pairwise coprime, and c_{2} and $2 d_{2}$ to be of opposite parity. In fact, our expectation is true as $\left(c_{2}, 2 d_{2}, t_{2}\right)=(113,168,7967)$ are pairwise coprime, $c_{2}=113$ is odd, and $2 d_{2}=168$ is even. Thus, (7) has infinitely many non-zero and coprime integral solutions.

It is easy to verify the two polynomial identities

$$
\begin{equation*}
(a+b)^{4}-(a-b)^{4}=8 a b\left(a^{2}+b^{2}\right) ; \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(c^{4}-2 d^{4}\right)^{2}+4(c d)^{4}=c^{8}+4 d^{8} \tag{9}
\end{equation*}
$$

by direct computation.
Put $c^{4}-2 d^{4}=t^{2}$ from (7) in (9) to get

$$
\begin{equation*}
t^{4}+4(c d)^{4}=c^{8}+4 d^{8} \tag{10}
\end{equation*}
$$

Putting $a=c^{4}$ and $b=2 d^{4}$ in (8) we get

$$
\begin{align*}
& \left(c^{4}+2 d^{4}\right)^{4}-\left(c^{4}-2 d^{4}\right)^{4}=16 c^{4} d^{4}\left(c^{8}+4 d^{8}\right) ; \\
\Rightarrow & \left(c^{4}+2 d^{4}\right)^{4}=\left(c^{4}-2 d^{4}\right)^{4}+(2 c d)^{4}\left\{t^{4}+4(c d)^{4}\right\} ; \quad[\text { from }(10)] \\
\Rightarrow & \left(c^{4}+2 d^{4}\right)^{4}=\left(c^{4}-2 d^{4}\right)^{4}+(2 c d t)^{4}+4\left(2 c^{2} d^{2}\right)^{4} \tag{11}
\end{align*}
$$

2.1 Diophantine equation $X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8}$

Theorem 3. The Diophantine equation

$$
\begin{equation*}
X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8} \tag{12}
\end{equation*}
$$

has infinitely many nontrivial, primitive integral solutions for $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. To get the primitive solutions of (12), we assume that $\operatorname{gcd}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=1$.

Proof. In accordance with Lemma 1, we have infinitely many integral values of c, d, t with $c^{4}-2 d^{4}=t^{2}$ and $\operatorname{gcd}(c, 2 d)=1$ for which (10) has solutions. Comparing (12) with (10) we get $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=(t, c d, c, d)$. Since $X_{3}=c, X_{4}=d$ and $\operatorname{gcd}(c, 2 d)=1$, we get $\operatorname{gcd}\left(X_{3}, X_{4}\right)=1$, and hence, $\operatorname{gcd}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=1$. So, (12) has infinitely many nontrivial, primitive integral solutions for $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.

Example 1.

$$
\begin{aligned}
\left(c_{1}, d_{1}, t_{1}\right) & =(3,2,7):\left(X_{1_{1}}, X_{2_{1}}, X_{3_{1}}, X_{4_{1}}\right)=\left(t_{1}, c_{1} d_{1}, c_{1}, d_{1}\right)=(7,6,3,2) ; \\
& \Rightarrow 7^{4}+4 \times 6^{4}=3^{8}+4 \times 2^{8} . \\
\left(c_{2}, d_{2}, t_{2}\right) & =(113,84,7967):\left(X_{1_{2}}, X_{2_{2}}, X_{3_{2}}, X_{4_{2}}\right) \\
& =\left(t_{2}, c_{2} d_{2}, c_{2}, d_{2}\right)=(7967,9492,113,84) ; \\
& \Rightarrow 7967^{4}+4 \times 9492^{4}=113^{8}+4 \times 84^{8} .
\end{aligned}
$$

2.2 Diophantine equation $Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4}$

Theorem 4. The Diophantine equation

$$
\begin{equation*}
Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4} \tag{13}
\end{equation*}
$$

has infinitely many nontrivial, primitive integral solutions for $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$. To get the primitive solutions of (13), we assume that $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=1$.

Proof. Using Lemma 1, we get infinitely many integral values of c, d, t such that $c^{4}-2 d^{4}=t^{2}$ and $\operatorname{gcd}(c, 2 d)=1$ for which (11) is satisfied. Comparing (13) with (11) we get

$$
\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=\left\{\left(c^{4}+2 d^{4}\right),\left(c^{4}-2 d^{4}\right), 2 c d t, 2 c^{2} d^{2}\right\}
$$

Since $\operatorname{gcd}(c, 2 d)=1$, we have

$$
\operatorname{gcd}\left(\left(c^{4}+2 d^{4}\right),\left(c^{4}-2 d^{4}\right)\right)=1
$$

Thus, $\operatorname{gcd}\left(Y_{1}, Y_{2}\right)=1$; or, $\operatorname{gcd}\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=1$. So, (13) has infinitely many nontrivial, primitive integral solutions for $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$.

Example 2.

$$
\begin{aligned}
\left(c_{1}, d_{1}, t_{1}\right) & =(3,2,7): \\
\left(Y_{1_{1}}, Y_{2_{1}}, Y_{3_{1}}, Y_{4_{1}}\right) & =\left\{\left(c_{1}^{4}+2 d_{1}^{4}\right),\left(c_{1}^{4}-2 d_{1}^{4}\right), 2 c_{1} d_{1} t_{1}, 2 c_{1}^{2} d_{1}^{2}\right\}=(113,49,84,72) ; \\
& =\left\{\left(c_{1}^{4}+2 d_{1}^{4}\right), t_{1}^{2}, 2 c_{1} d_{1} t_{1}, 2 c_{1}^{2} d_{1}^{2}\right\}=\left(113,7^{2}, 84,72\right) \\
\Rightarrow 113^{4} & =49^{4}+84^{4}+4 \times 72^{4}=7^{8}+84^{4}+4 \times 72^{4} . \\
\left(c_{2}, d_{2}, t_{2}\right) & =(113,84,7967): \\
\left(Y_{1_{2}}, Y_{2_{2}}, Y_{3_{2}}, Y_{4_{2}}\right) & =\left\{\left(c_{2}^{4}+2 d_{2}^{4}\right),\left(c_{2}^{4}-2 d_{2}^{4}\right), 2 c_{2} d_{2} t_{2}, 2 c_{2}^{2} d_{2}^{2}\right\} \\
& =(262621633,63473089,151245528,180196128) ; \\
& =\left\{\left(c_{2}^{4}+2 d_{2}^{4}\right), t_{2}^{2}, 2 c_{2} d_{2} t_{2}, 2 c_{2}^{2} d_{2}^{2}\right\} \\
& =\left(262621633,7967^{2}, 151245528,180196128\right) \\
\Rightarrow 262621633^{4} & =63473089^{4}+151245528^{4}+4 \times 180196128^{4} ; \\
& =7967^{8}+151245528^{4}+4 \times 180196128^{4} .
\end{aligned}
$$

3 Conclusion

We make no attempt of giving the complete parametric solutions to the two Diophantine equations of the title. There might exist some singular solutions. It is expected that the prospective scholars will continue further exploration to find the complete solutions of these two equations.

Acknowledgment

During the failing moments of my life they appeared from nowhere to fill my soul with the nectar of hope. Noble angels, I acknowledge your grace in this brief note!

References

[1] A. Choudhry: The Diophantine equation $A^{4}+4 B^{4}=C^{4}+4 D^{4}$. Indian J. Pure Appl. Math. 29 (1998) 1127-1128.
[2] L. E. Dickson: History of the Theory of Numbers. Chelsea Publishing Company, New York (1952).
[3] R. K. Guy: Unsolved Problems in Number Theory. Springer Science+Business Media Inc., New York (2004). Third Edition.
[4] S. K. Jena: Beyond the Method of Infinite Descent. J. Comb. Inf. Syst. Sci. 35 (2010) 501-511.

Author's address:
(Former Professor of Electronics and Telecommunication Engineering)
Plot No-170, Sector-5, Niladri Vihar, Chandrasekharpur, Bhubaneswar-751021, Odisha, India
E-mail: susil_kumar@yahoo.co.uk
Received: 18 September, 2014
Accepted for publication: 16 June, 2015
Communicated by: Attila Bérczes

[^0]: 2010 MSC: 11D41, 11D72
 Key words: Diophantine equation $A^{4}+n B^{4}=C^{2}$, Diophantine equation $A^{4}-n B^{4}=C^{2}$, Diophantine equation $X_{1}^{4}+4 X_{2}^{4}=X_{3}^{8}+4 X_{4}^{8}$, Diophantine equation $Y_{1}^{4}=Y_{2}^{4}+Y_{3}^{4}+4 Y_{4}^{4}$

