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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 6 , P AGES 9 3 3 – 9 5 9

COMPOUND GEOMETRIC AND POISSON MODELS

Nooshin Hakamipour, Sadegh Rezaei and Saralees Nadarajah

Many lifetime distributions are motivated only by mathematical interest. Here, eight new
families of distributions are introduced. These distributions are motivated as models for the
stress of a system consisting of components working in parallel/series and each component has
a fixed number of sub-components working in parallel/series. Mathematical properties and
estimation procedures are derived for one of the families of distributions. A real data applica-
tion shows superior performance of a three-parameter distribution (performance assessed with
respect to Kolmogorov–Smirnov statistics, AIC values, BIC values, CAIC values, AICc values,
HQC values, probability-probability plots, quantile-quantile plots and density plots) versus
thirty one other distributions, each having at least three parameters.

Keywords: exponential distribution, exponentiated exponential distribution, maximum
likelihood estimation

Classification: 62E99

1. INTRODUCTION

The statistical literature describes numerous distributions for modeling lifetime data.
The aim of this paper is to introduce new families of distributions with sound physical
motivation. The proposed families encompass several known families of distributions,
including Marshall Olkin G distributions due to Marshall and Olkin [15], exponentiated
G distributions due to Gupta et al. [5] and exponentiated exponential Poisson G distri-
butions due to Ristic and Nadarajah [26]. As explained in subsequent sections, one of the
proposed three-parameter distributions provides better fits (as judged by Kolmogorov–
Smirnov statistics, AIC values, BIC values, CAIC values, AICc values, HQC values,
probability-probability plots, quantile-quantile plots and density plots) than thirty one
other distributions, each having at least three parameters. We feel that this is a remark-
able feature.

There are many ways that reliability of a system can be modeled. A common way is
to use parallel / series components in one stage, two stages or more stages (Kolowrocki
[11]). The use of one stage may be too simplistic. The use of three or more stages may be
too complicated. An ideal choice may be a two-stage system with each stage involving
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parallel / series components. In this case, possible configurations of the system can be
one of

i) first stage having components working in parallel and each component having
sub-components working in parallel, so the system will fail if and only if all the
sub-components of every component fail;

ii) first stage having components working in series and each component having sub-
components working in series, so the system will fail if and only if at least one
sub-component of at least one component fails;

iii) first stage having components working in parallel and each component having sub-
components working in series, so the system will fail if and only if at least one
sub-component of every component fails;

iv) first stage having components working in series and each component having sub-
components working in parallel, so the system will fail if and only if all the sub-
components of at least one component fail.

Now consider a data set consisting of one hundred observations on breaking stress of
carbon fibers given in Nichols and Padgett [23]. A histogram of the data is shown in
Figure 9.

The breaking stress can be described by two stages. The first stage can be described
by factors like the length and weight of fibers. Since these factors may vary from one
fiber to another, it is reasonable to suppose that the number of components in the first
stage is a random variable say N taking values in {1, 2, . . .}. The second stage may be
described by factors like the type of fiber (vegetable fibers, wood fibers, animal fibers,
mineral fibers, etc) and density. Since the data set is on carbon fibers, it is reasonable
to suppose that the number of sub-components is a fixed number say α. So, possible
configurations of a fiber can be one of

i) N components working in parallel and each component has α sub-components
working in parallel, so the fiber breaks if and only if all the sub-components of
every component fail;

ii) N components working in series and each component has α sub-components work-
ing in series, so the fiber breaks if and only if at least one sub-component of at
least one component fails;

iii) N components working in parallel and each component has α sub-components
working in series, so the fiber breaks if and only if at least one sub-component of
every component fails;

iv) N components working in series and each component has α sub-components work-
ing in parallel, so the fiber breaks if and only if all the sub-components of at least
one component fail.

Standard models for N are the geometric, zero-truncated Poisson and zero-truncated
negative binomial distributions:

Pr(N = n) = (1− p)pn−1 (1)
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for 0 < p < 1 and n = 1, 2, . . .;

Pr(N = n) =
λn

(eλ − 1)n!
(2)

for λ > 0 and n = 1, 2, . . .; and

Pr(N = n) =
1

1− (1− p)r

(
n+ r − 1

n

)
(1− p)rpn (3)

for 0 < p < 1, r > 0 and n = 1, 2, . . .. We shall stick to the first two distributions as the
third one has two parameters and does not have a closed form cumulative distribution
function (cdf).

We assume that the N components work independently and the sub-components
work independently and independently of N . We also assume that the stress levels of
the sub-components have the common probability density function (pdf) f0(·), common
cdf F0(·) and common survival function S0(·). Both f0 and F0 are assumed to be fully
parametric with known shapes.

Let X denote the stress of the system.

Under (i) if N is geometric then X has the cdf

FX(x) =
∞∑
n=1

Fαn0 (x)(1− p)pn−1 =
(1− p)Fα0 (x)
1− pFα0 (x)

(4)

for x > 0, 0 < p < 1 and α > 0, where Fαn0 (x) represents the cdf of the maximum of nα
random variables. The corresponding pdf is:

fX(x) =
α(1− p)Fα−1

0 (x)f0(x)
[1− pFα0 (x)]2

(5)

for x > 0, 0 < p < 1 and α > 0. The corresponding hazard rate function (hrf) is:

hX(x) =
α(1− p)Fα−1

0 (x)f0(x)
[1− Fα0 (x)] [1− pFα0 (x)]

(6)

for x > 0, 0 < p < 1 and α > 0. We shall refer to the distribution given by (4) and (5)
as the parallel-parallel-geometric-f0 distribution.

Under (ii) if N is geometric then the cdf of X is

FX(x) = 1− (1− p)Sα0 (x)
1− pSα0 (x)

(7)

for x > 0, 0 < p < 1 and α > 0. We shall refer to the distribution given by (7) as the
series-series-geometric-f0 distribution.

Under (iii) if N is geometric then the cdf of X is

FX(x) =
(1− p) [1− Sα0 (x)]

1− p+ pSα0 (x)
(8)
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for x > 0, 0 < p < 1 and α > 0. We shall refer to the distribution given by (8) as the
parallel-series-geometric-f0 distribution.

Under (iv) if N is geometric then the cdf of X is

FX(x) = 1− (1− p) [1− Fα0 (x)]
1− p+ pFα0 (x)

(9)

for x > 0, 0 < p < 1 and α > 0. We shall refer to the distribution given by (9) as the
series-parallel-geometric-f0 distribution.

Under (i) if N is Poisson then the cdf of X is

FX(x) =
exp [λFα0 (x)]
exp(λ)− 1

(10)

for x > 0, λ > 0 and α > 0. We shall refer to the distribution given by (10) as the
parallel-parallel-Poisson-f0 distribution.

Under (ii) if N is Poisson then the cdf of X is

FX(x) = 1− exp [λSα0 (x)]
exp(λ)− 1

(11)

for x > 0, λ > 0 and α > 0. We shall refer to the distribution given by (11) as the
series-series-Poisson-f0 distribution.

Under (iii) if N is Poisson then the cdf of X is

FX(x) =
exp [−λSα0 (x)]
1− exp(−λ)

(12)

for x > 0, λ > 0 and α > 0. We shall refer to the distribution given by (12) as the
parallel-series-Poisson-f0 distribution.

Under (iv) if N is Poisson then the cdf of X is

FX(x) = 1− exp [−λFα0 (x)]
1− exp(−λ)

(13)

for x > 0, λ > 0 and α > 0. We shall refer to the distribution given by (13) as the
series-parallel-Poisson-f0 distribution.

For the distributions given by (4) – (9), α and p are the shape parameters. For the
distributions given by (10) – (13), α and λ are the shape parameters. For continuity and
computational ease, we shall assume from now on that α can take any positive real value
and not just integers (similar to approximating a discrete distribution by a continuous
one). A non-integer value say α = 2.5 can be interpreted as having two sub-components
working to their full capacity and one sub-component working to half its capacity.

Although (4) appears to be a particular case of the distribution introduced by Mar-
shall and Olkin [15], in all the generality one must note that quite the reverse is true.
That is, the cdf, F0(x)/ {β + (1− β)F0(x)}, introduced by equation (1.1) in Marshall
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and Olkin [15] is the particular case of (4) for α = 1 and p = 1 − 1/β. Besides, the
treatment provided by Marshall and Olkin [15] focused on the particular cases that F0

is an exponential cdf or a Weibull cdf. The treatment provided here for the generalized
class (4) is much more general; that is, most of the properties derived are for general F0.

Since (4) is the simplest of the distributions given by (4) – (13), the mathematical
properties and estimation issues discussed in this paper will be limited to the parallel-
parallel-geometric-f0 distribution. The mathematical properties and estimation issues
for other distributions given by (4) – (13) can be derived similarly. The application part
of this paper will consider all of the distributions given by (4) – (13).

The contents are organized as follows. In Section 2, we derive general mathematical
properties of the parallel-parallel-geometric-f0 distribution. These include shape proper-
ties of (5) and (6), quantile function and moments. The mathematical properties for f0
being an exponential pdf are considered in detail in Section 3. The maximum likelihood
estimation of the parameters of the parallel-parallel-geometric-f0 distribution including
the case of censoring is considered in Section 4. Section 5 assesses of the performance
of the maximum likelihood estimates for small samples by simulation. Section 6 gives
applications of the distributions given by (4) – (13) to the fiber data set.

Some of the mathematical properties in Section 2 involve single infinite sums, see
Sections 2.1 and 2.4. Some other mathematical properties in Section 2 involve double
infinite sums, see Section 2.5. Numerical computations not reported here showed that
each of these infinite sums can be truncated at 20 to yield a relative error less than 10−25

for a wide range of parameter values and for a wide range of choices for f0 and F0. This
shows that the mathematical properties can be computed for most practical uses with
their infinite sums truncated at twenty. The computations were performed using Maple
2015. Maple took only a fraction of a second to compute the truncated versions. The
computational times for the truncated versions were significantly smaller than those for
the untruncated versions.

2. MATHEMATICAL PROPERTIES

2.1. Expansions for pdf and cdf

Some of the mathematical properties of (4) and (5) cannot be expressed in closed form.
In these cases, it is useful to have expansions for the pdf and the cdf. As just mentioned,
the truncated versions of these expansions can be of practical use.

Some useful expansions for (4) and (5) can be derived using the concept of exponenti-
ated distributions. A random variable is said to have the exponentiated-F0 distribution
with parameter a > 0, if its pdf and cdf are

Ga(x) = aF a−1
0 (x)f0(x) (14)

and

Ha(x) = F a0 (x), (15)

respectively. The properties of exponentiated distributions have been studied by many
authors in recent years, see Mudholkar and Srivastava [16] for exponentiated Weibull,
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Gupta et al. [5] for exponentiated Pareto, Gupta and Kundu [6] for exponentiated expo-
nential, Nadarajah [19] for exponentiated Gumbel, Kakde and Shirke [9] for exponenti-
ated lognormal, and Nadarajah and Gupta [21] for exponentiated gamma distributions.

We now provide four expansions for (4) and (5), each in terms of (14) and (15).
Expanding the denominator in (4) as a binomial series, we can write (4) and (5) as

FX(x) = (1− p)
∞∑
k=0

pkHα(k+1)(x) (16)

and

fX(x) = (1− p)
∞∑
k=0

pkGα(k+1)(x), (17)

respectively. Similarly, expanding the denominator in (5) as a binomial series, we can
write (4) and (5) as

FX(x) = (1− p)
∞∑
k=0

(−p)k

k + 1

(
−2
k

)
Hα(k+1)(x) (18)

and

fX(x) = (1− p)
∞∑
k=0

(−p)k

k + 1

(
−2
k

)
Gα(k+1)(x), (19)

respectively.
So, several properties of (4) and (5) can be obtained by knowing those of exponen-

tiated distributions, see, for example, Mudholkar et al. [17], Gupta and Kundu [6],
Nadarajah and Kotz [22], among others.

2.2. Asymptotes and shapes

Here, we study asymptotes and shape properties of (4), (5) and (6). Shape properties are
important because they allow the practitioner to see if the distribution can be fitted to a
given data set (this can be seen by comparing the shape of the histogram of the data with
possible shapes of the pdf). Shape properties are also useful to see if the distribution can
model increasing failure rates, decreasing failure rates or bathtub shaped failure rates.

The study of asymptotes and shapes is useful to determine if a data set can be
modeled by (4) and (5). The asymptotes of (4), (5) and (6) as x→ 0,∞ are given by

fX(x) ∼ α(1− p)Fα−1
0 (x)f0(x) (20)

as x→ 0,

fX(x) ∼ αf0(x)
1− p

(21)
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as x→∞,

FX(x) ∼ (1− p)Fα0 (x) (22)

as x→ 0,

1− FX(x) ∼ 1− Fα0 (x)
1− p

(23)

as x→∞,

hX(x) ∼ α(1− p)Fα−1
0 (x)f0(x) (24)

as x→ 0, and

hX(x) ∼ αf0(x)
1− Fα0 (x)

(25)

as x→∞. So, fX(·) behaves like f0(·) for very large x. Also, hX(·) behaves like the hrf
corresponding to f0(·) for very large x.

The shapes of (5) and (6) can be described analytically. The critical points of the
pdf are the roots of the equation:

(α− 1)
f0(x)
F0(x)

+
f

′

0(x)
f0(x)

+
2αpFα−1

0 (x)f0(x)
1− pFα0 (x)

= 0. (26)

There may be more than one root to (26). The critical points of the hrf are the roots of
the equation:

(α− 1)
f0(x)
F0(x)

+
f

′

0(x)
f0(x)

+
αFα−1

0 (x)f0(x)
1− Fα0 (x)

+
αpFα−1

0 (x)f0(x)
1− pFα0 (x)

= 0. (27)

There may be again more than one root to (27).
Figures 1 to 4 illustrate possible shapes of (5) when f0 is an exponential pdf with unit

scale parameter, a gamma pdf with shape parameter a = 2 and unit scale parameter,
a Weibull pdf with shape parameter a = 2 and unit scale parameter and an exponen-
tiated exponential pdf with shape parameter a = 2 and unit scale parameter. It is
evident that monotonically decreasing, unimodal and bimodal shapes are possible. It is
difficult to determine analytically the parameter regions corresponding to these shapes.
However, extensive graphical analysis not reported here showed that: monotonically
decreasing shapes correspond to small α, small a and small p; unimodal and bimodal
shapes correspond to large α or large a or large p.

Extensive graphical analysis examining the corresponding shapes of (6) showed: mono-
tonic increasing, monotonic decreasing and bathtub shaped hazard rates correspond to
α < 1; monotonic increasing hazard rates correspond to α ≥ 1. Constant hazard rates
do not appear to be possible.
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Fig. 1. Plots of (5) for f0 an exponential pdf with unit scale parameter, α = 0.4, 1, 2, 5,

p = 0.2 (solid curve), p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and p = 0.8 (curve of

dots and dashes).
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Fig. 2. Plots of (5) for f0 a gamma pdf with unit scale parameter and shape parameter

a = 2, α = 0.4, 1, 2, 5, p = 0.2 (solid curve), p = 0.4 (curve of dashes), p = 0.6 (curve of dots)

and p = 0.8 (curve of dots and dashes).
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Fig. 3. Plots of (5) for f0 a Weibull pdf with unit scale parameter and shape parameter

a = 2, α = 0.4, 1, 2, 5, p = 0.2 (solid curve), p = 0.4 (curve of dashes), p = 0.6 (curve of dots)

and p = 0.8 (curve of dots and dashes).
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Fig. 4. Plots of (5) for f0 an exponentiated exponential pdf with unit scale parameter and

shape parameter a = 2, α = 0.4, 1, 2, 5, p = 0.2 (solid curve), p = 0.4 (curve of dashes), p = 0.6

(curve of dots) and p = 0.8 (curve of dots and dashes).
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2.3. Quantile function

Quantile functions are fundamental for random number generation. They can also be
used for estimation (for example, percentile based estimation methods).

Let X denote a random variable with cdf (4). Inverting FX(x) = u, we obtain

F−1
X (u) = F−1

0

((
u

1− p+ pu

)1/α
)

(28)

for 0 < u < 1, where F−1
0 (·) denotes the inverse function of F0(·).

2.4. Moments

Moment properties are fundamental for any distribution. For instance, the first four
moments can be used to describe any data fairly well. Moments are also useful for
estimation (for example, the method of moments).

Let X denote a random variable with cdf (4). Let Za denote a random variable with
pdf Ga(·) and cdf Ha(·). Then, using the expansions, (16) and (17), we have

E (Xn) = (1− p)
∞∑
k=0

pkE
[
Znα(k+1)

]
. (29)

Using the expansions, (18) and (19), we have

E (Xn) = (1− p)
∞∑
k=0

(−p)k

k + 1

(
−2
k

)
E
[
Znα(k+1)

]
. (30)

Details not reported here showed (29) and (30) yield roughly the same amount of com-
putational accuracy and computational time.

The expressions given by (29) and (30) can be used to compute the mean, variance,
skewness and kurtosis of X. Extensive graphical analysis of the variation of these four
measures versus a wide range of values of α, β, p and a showed the following:

• The mean is always an increasing function of α and an increasing function of p.

• The skewness is always a decreasing function of α and a decreasing function of p.

• Whenever f0 is an exponential pdf or an exponentiated exponential pdf or a gamma
pdf with small a or a Weibull pdf with small a, the variance is always an increasing
function of α.

• Whenever f0 is an exponential pdf or an exponentiated exponential pdf or a gamma
pdf or a Weibull pdf with small a, the kurtosis is always a decreasing function of p.

• Whenever f0 is an exponential pdf or an exponentiated exponential pdf or a gamma
pdf with small a or a Weibull pdf with small a, the variance is always an increasing
function of p.
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• Whenever f0 is an exponential pdf or an exponentiated exponential pdf or a gamma
pdf or a Weibull pdf with small a, the kurtosis is always a decreasing function of p.

• Whenever f0 is a gamma pdf with large a or a Weibull pdf with large a, the
variance always initially increases before decreasing with respect to α.

• Whenever f0 is a gamma pdf with large a or a Weibull pdf with large a, the
kurtosis always initially decreases before increasing with respect to α.

• Whenever f0 is a Weibull pdf with large a, the variance always initially increases
before decreasing with respect to p.

• Whenever f0 is a Weibull pdf with large a, the kurtosis always initially decreases
before increasing with respect to p.

2.5. Stress-strength parameter

Suppose that the random variable X1 is the strength of a component which is sub-
jected to a random stress X2. The component fails whenever X1 < X2 and there is
no hazard when X1 > X2. In the context of reliability, the stress-strength parameter
R = Pr (X1 > X2) is a measure of component reliability. Its estimation when X1 and X2

are independent random variables and follow a specified distribution has been discussed
widely in literature.

Suppose X1 and X2 are independent random variables distributed according to (5)
with parameters (p1, α1) and (p2, α2), respectively. By using the representations, (18)
and (19), we can write R = Pr (X2 < X1) as

R = (1− p1) (1− p2)
∞∑
k=0

∞∑
l=0

(−p1)k (−p2)l

(k + 1)(l + 1)

(
−2
k

)(
−2
l

)
Rkl, (31)

where Rkl = Pr
(
Zα1(k+1) < Zα2(l+1)

)
is the stress-strength parameter between two

independent exponentiated random variables. Hence, the stress-strength parameter,
R = Pr (X2 < X1), is a linear combination of those for exponentiated random variables.
In the particular case α1 = α2 and p1 = p2, (31) reduces to R = 1/2.

The result (31) also holds if X1 and X2 are independent random variables specified
by the pdfs

fXi(x) =
αi (1− pi)Fαi−1

i (x)fi(x)
[1− piFαi

1 (x)]2

for x > 0 and i = 1, 2, where Fi are valid cdfs and fi(x) = dFi(x)/dx. In this case,
Rkl = Pr

(
Uα1(k+1) < Vα2(l+1)

)
, where Ua and Va are independent random variables

specified by the pdfs aF a−1
1 (x)f1(x) and aF a−1

2 (x)f2(x), respectively.
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3. THE CASE OF F0 EXPONENTIAL

In Section 1, F0(·) is interpreted as the cdf of the stress of independent and identical
sub-components. The oldest and the most popular model for lifetimes is the exponential
distribution. In this section, we show how the results in Sections 1 and 2 simplify when
F0(·) is an exponential cdf with scale parameter β.

First, the cdf, pdf and hrf given by (4), (5) and (6) simplify to

FX(x) =
(1− p) [1− exp(−βx)]α

1− p [1− exp(−βx)]α
, (32)

fX(x) =
αβ(1− p) exp(−βx) [1− exp(−βx)]α−1

{1− p [1− exp(−βx)]α}2
, (33)

and

hX(x) =
αβ(1− p) exp(−βx) [1− exp(−βx)]α−1

{1− p [1− exp(−βx)]α} {1− [1− exp(−βx)]α}
, (34)

respectively. It follows from (16) to (19) that (32) and (33) can be expressed as mixtures
of the exponentiated exponential distribution due to Gupta and Kundu [6].

The asymptotes of (32), (33) and (34) as x→ 0,∞ are given by

fX(x) ∼ αβα(1− p)xα−1

as x→ 0,

fX(x) ∼ αβ exp(−βx)

as x→∞,

FX(x) ∼ (1− p)βαxα

as x→ 0,

1− FX(x) ∼ α exp(−βx)/(1− p)

as x→∞,

hX(x) ∼ βα(1− p)xα−1

as x→ 0, and

hX(x)→ β(1− p)

as x→∞. So, the lower tail of the pdf behaves polynomially while its upper tail behaves
exponentially. The lower tail of the hrf also behaves polynomially. The hrf approaches
a fixed constant, the ultimate hazard rate, as x→∞.
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The quantile function given by (28) simplifies to

F−1
X (u) = − 1

β
log

[
1−

(
u

1− p+ pu

)1/α
]

for 0 < u < 1.
As mentioned, the parallel-parallel-geometric-exponential distribution is a mixture of

exponentiated exponential distributions. A comprehensive review of known properties of
the exponentiated exponential distribution, including known expressions for moments,
stress-strength parameter and others, is given in Nadarajah [20]. These results can be
used to yield expressions for moments, stress-strength parameter, etc of the parallel-
parallel-geometric-exponential distribution.

4. ESTIMATION

4.1. Maximum likelihood estimation

Here, we consider estimation of the unknown parameters of (4) and (5) by the method
of maximum likelihood. Let x1, x2, . . ., xn be a random sample from (5). Let Θ be
a q-dimensional parameter vector specifying F0(·). Then the log-likelihood function,
logL = logL (α, p,Θ), is

logL (p, α,Θ) = n log [α(1− p)] + (α− 1)
n∑
i=1

logF0 (xi) +
n∑
i=1

log f0 (xi)

−2
n∑
i=1

log [1− pFα0 (xi)] . (35)

The first derivatives of the log-likelihood function with respect to the parameters p, α
and Θ are:

∂ logL
∂p

= − n

1− p
+ 2

n∑
i=1

Fα0 (xi)
1− pFα0 (xi)

, (36)

∂ logL
∂α

=
n

α
+

n∑
i=1

logF0 (xi) + 2p
n∑
i=1

Fα0 (xi) logF0 (xi)
1− pFα0 (xi)

, (37)

∂ logL
∂Θ

= (α− 1)
n∑
i=1

∂F0 (xi) /∂Θ
F0 (xi)

+
n∑
i=1

∂f0 (xi) /∂Θ
f0 (xi)

+2p
n∑
i=1

Fα−1
0 (xi) ∂F0 (xi) /∂Θ

1− pFα0 (xi)
. (38)

The maximum likelihood estimates of (p, α,Θ), say
(
p̂, α̂, Θ̂

)
, are the simultaneous

solutions of the equations ∂ logL/∂p = 0, ∂ logL/∂α = 0 and ∂ logL/∂Θ = 0.
Alternatively, the maximum likelihood estimates can be obtained by numerical maxi-

mization of (35). There are well established routines for numerical maximization like nlm
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or optim in the R statistical package (R Development Core Team [25]). Our numerical
calculations showed that the surface of (35) was smooth for given smooth functions f0(·)
and F0(·). The routines were able to locate the maximum of the likelihood surface for a
wide range of smooth functions and for a wide range of starting values. However, to ease
computations it is useful to have reasonable starting values. These can be obtained, for
example, by the method of moments. For r = 1, . . . , q+ 2, let mr = n−1

∑n
i=1 x

r
i denote

the first q + 2 sample moments. Equating these moments with the theoretical versions
given in Section 2.4, we have mr = E (Xr) for r = 1, . . . , q + 2. These equations can be
solved simultaneously to obtain the moments estimates.

For interval estimation of (p, α,Θ) and tests of hypotheses, one requires the Fisher
information matrix. We can express the Fisher information matrix of

(
p̂, α̂, Θ̂

)
as

E (J) =

 E (J11) E (J12) E (J13)
E (J12) E (J22) E (J23)
E (J13) E (J23) E (J33)

 . (39)

For large n, the distribution of
√
n
(
p̂− p, α̂− α, Θ̂−Θ

)
approximates to a (q + 2)-

variate normal distribution with zero means and variance-covariance matrix J−1 eval-
uated at

(
p̂, α̂, Θ̂

)
. The properties of

(
p̂, α̂, Θ̂

)
can be derived based on this normal

approximation.
For the asymptotic normality to hold, certain regularity conditions must be satisfied.

The general forms of these conditions are given in Ferguson [4] and pages 461–463 in
Lehmann and Casella [13]. For the log likelihood function given by (35), these conditions
reduce to

a) the parameter space for Θ is compact;

b) f0 and F0 are continuous with respect to Θ;

c) E [logF0(X)], E [− log f0(X)] and E [log [1− pFα0 (X)]] exist;

d) as n→∞,

sup
p,α,Θ

∣∣∣∣ 1n logL (p, α,Θ)− E [log f(X)]
∣∣∣∣ < δ

for some δ > 0, where logL is given by (35);

e) the true maximum likelihood estimator of (p, α,Θ) is in the interior of the param-
eter space for (p, α,Θ);

f) f0 and F0 are twice differentiable in the neighborhood of the true maximum like-
lihood estimator of (p, α,Θ);

g) E (J11), E (J12), E (J13), E (J12), E (J22), E (J23), E (J13), E (J23) and E (J33)
exist when (p, α,Θ) is the true maximum likelihood estimator;

h) E(J) is non-singular when (p, α,Θ) is the true maximum likelihood estimator;
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i) that

∫
sup
p,α,Θ

∥∥∥∥∥∥
 ∂fX(x)/∂p

∂fX(x)/∂α
∂fX(x)/∂Θ

∥∥∥∥∥∥ dx <∞,

where fX(x) is given by (5);

j) that

∫
sup
p,α,Θ

∥∥∥∥∥∥
 ∂2fX(x)/∂p2 ∂2fX(x)/∂p∂α ∂2fX(x)/∂p∂Θ

∂2fX(x)/∂α∂p ∂2fX(x)/∂α2 ∂2fX(x)/∂α∂Θ
∂2fX(x)/∂Θ∂p ∂2fX(x)/∂Θ∂α ∂2fX(x)/∂Θ2

∥∥∥∥∥∥ dx <∞,

where fX(x) is given by (5);

l) that

E

 sup
p,α,Θ

∥∥∥∥∥∥
 ∂2 logL/∂p2 ∂2 logL/∂p∂α ∂2 logL/∂p∂Θ

∂2 logL/∂α∂p ∂2 logL/∂α2 ∂2 logL/∂α∂Θ
∂2 logL/∂Θ∂p ∂2 logL/∂Θ∂α ∂2 logL/∂Θ2

∥∥∥∥∥∥
 <∞,

where logL is given by (35).

4.2. Censored maximum likelihood estimation

Often with lifetime data, one encounters censoring. There are different forms of cen-
soring: type I censoring, type II censoring, etc. Here, we consider the general case of
multicensored data: there are n subjects of which

• n0 are known to have failed at times t1, . . . , tn0 ;

• n1 are known to have failed in the intervals [si−1, si], i = 1, . . . , n1;

• n2 are known to have lived past ri, i = 1, . . . , n2 but not observed any longer,

where si and ri are assumed to be deterministic. Note that n = n0 + n1 + n2. Note
too that type I censoring and type II censoring are contained as particular cases of
multicensoring.

In the case of multicensoring, the log-likelihood function is:

logL (p, α,Θ) =
n0∑
i=1

log fX (ti)+
n1∑
i=1

log [FX (si)−FX (si−1)]+
n2∑
i=1

log [1−FX (ri)] , (40)

where FX(·) and fX(·) are given by (4) and (5), respectively. The first derivatives of
the log-likelihood function with respect to the parameters p, α and Θ are:
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∂ logL
∂p

=
n0∑
i=1

∂fX (ti) /∂p
fX (ti)

+
n1∑
i=1

∂FX (si) /∂p−∂FX (si−1) /∂p
FX (si)−FX (si−1)

−
n2∑
i=1

∂FX (ri) /∂p
1−FX (ri)

, (41)

∂ logL
∂α

=
n0∑
i=1

∂fX (ti) /∂α
fX (ti)

+
n1∑
i=1

∂FX (si) /∂α−∂FX (si−1) /∂α
FX (si)−FX (si−1)

−
n2∑
i=1

∂FX (ri) /∂α
1−FX (ri)

,(42)

and

∂ logL
∂Θ

=
n0∑
i=1

∂fX (ti) /∂Θ
fX (ti)

+
n1∑
i=1

∂FX (si) /∂Θ− ∂FX (si−1) /∂Θ
FX (si)−FX (si−1)

−
n2∑
i=1

∂FX (ri) /∂Θ
1−FX (ri)

. (43)

The first term in (40) is the same as (35) with (xi, n) replaced by (ti, n0). Also the first
terms in (41) – (43) are the same as (36) – (38) with (xi, n) replaced by (ti, n0). So, it is
sufficient to find explicit expressions for the partial derivatives in (41) – (43). They are

FX(x)
∂p

= − Fα0 (x)
1− pFα0 (x)

+
(1− p)F 2α

0 (x)
[1− pFα0 (x)]2

,

FX(x)
∂α

=
(1− p)Fα0 (x) logF0(x)

1− pFα0 (x)
+
αp(1− p)F 2α

0 (x) logF0(x)
[1− pFα0 (x)]2

,

FX(x)
∂Θ

=
α(1− p)Fα−1

0 (x)∂F0(x)/∂Θ
1− pFα0 (x)

+
αp(1− p)F 2α−1

0 (x)∂F0(x)/∂Θ

[1− pFα0 (x)]2
,

and

fX(x)
∂p

=−αF
α−1
0 (x)f0(x)

[1− pFα0 (x)]2
+

2α(1− p)F 2α−1
0 (x)f0(x)

[1−pFα0 (x)]3
,

fX(x)
∂α

=
(1− p)Fα−1

0 (x)f0(x) [1+α logF0(x)]
[1−pFα0 (x)]2

+
2αp(1− p)F 2α−1

0 (x)f0(x) logF0(x)
[1−pFα0 (x)]3

,

fX(x)
∂Θ

=
α(1−p)Fα−2

0 (x) [(α−1)f0(x)∂F0(x)/∂Θ+F0(x)∂f0(x)/∂Θ]
[1−pFα0 (x)]2

+
2α2p(1− p)F 2α−2

0 (x)f0(x)∂F0(x)/∂Θ

[1− pFα0 (x)]3
.

The maximum likelihood estimates of (p, α,Θ), say (p̂, α̂, Θ̂), are the simultaneous so-
lutions of the equations ∂ logL/∂p = 0, ∂ logL/∂α = 0 and ∂ logL/∂Θ = 0.

For large n, the distribution of
√
n(p̂ − p, α̂ − α, Θ̂ − Θ) can be approximated by

a (q + 2)-variate normal distribution with zero means and variance-covariance matrix
say K−1 evaluated at (p̂, α̂, Θ̂). The form of K is too complicated to write here. The
regularity conditions for asymptotic normality are the same as those listed in Section 4.1
except for conditions d), g), h) and l). For conditions d) and l), (35) should be replaced
by (40). For conditions g) and h), J should be replaced by K.
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5. SIMULATION STUDY

Here, we assess the performance of the maximum likelihood estimates given by (36) –
(38) with respect to sample size n when f0 is an exponential pdf with scale parameter β,
a gamma pdf with shape parameter a and scale parameter β, a Weibull pdf with shape
parameter a and scale parameter β or an exponentiated exponential pdf with shape
parameter a and scale parameter β, i. e., the random sample is from the parallel-parallel-
geometric-exponential, parallel-parallel-geometric-gamma, parallel-parallel-geometric-
-Weibull or the parallel-parallel-geometric-exponentiated exponential distribution. The
assessment is based on a simulation study:

1. generate ten thousand samples of size n from (33). The inversion method was used
to generate samples, i. e., variates were generated using

X = F−1
0

((
U

1− p+ pU

)1/α
)
,

where U ∼ U(0, 1) is a uniform variate on the unit interval;

2. compute the maximum likelihood estimates for the ten thousand samples, say(
p̂i, α̂i, âi, β̂i

)
for i = 1, 2, . . . , 10000;

3. compute the relative biases and coefficients of variation given by

RBf (n) =
1

10000

10000∑
i=1

(
f̂i − f

)
/f

and

CVf (n) =
1
f

√√√√√ 1
10000

10000∑
i=1

f̂i − 1
10000

10000∑
j=1

f̂j

2

for f = p, α, a, β.

We repeated these steps for n = 10, 11, . . . , 100 with p = 0.5, α = 1, a = 2 and β = 1, so
computing RBp(n), RBα(n), RBa(n), RBβ(n) and CVp(n), CVα(n), CVa(n), CVβ(n)
for n = 10, 11, . . . , 100.
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Fig. 5. RBp(n) (top left), RBα(n) (top right), RBβ(n) (bottom left) and RBa(n) (bottom

right) versus n = 10, 11, . . . , 100. black for f0 an exponential pdf, red for f0 a gamma pdf,

blue for f0 a Weibull pdf and green for f0 an exponentiated exponential pdf.
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Fig. 6. CVp(n) (top left), CVα(n) (top right), CVβ(n) (bottom left) and CVa(n) (bottom

right) versus n = 10, 11, . . . , 100. black for f0 an exponential pdf, red for f0 a gamma pdf,

blue for f0 a Weibull pdf and green for f0 an exponentiated exponential pdf.
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Figures 5 and 6 show how the relative biases and the coefficients of variation vary
with respect to n for the four distributions. The broken lines in Figure 5 correspond
to the relative biases being zero. The y axes are plotted in log scale for the gamma,
Weibull and exponentiated exponential distributions. The following observations can be
made:

• the relative biases for each parameter and for each distribution either decrease or
increase to zero as n→∞, and the coefficients of variation for each parameter and
for each distribution decrease to zero as n → ∞, both being direct consequences
of maximum likelihood estimation;

• the relative biases for α, β and a are generally positive;

• the relative biases for p are generally negative;

• the relative biases appear smallest for f0 the exponential or the exponentiated
exponential pdf;

• the relative biases appear largest for f0 the gamma pdf;

• the relative biases appear second largest for f0 the Weibull pdf;

• the coefficients of variation appear largest for the parameter, α;

• the coefficients of variation appear smallest for the parameter, a;

• the coefficients of variation appear smallest for f0 the exponential or the exponen-
tiated exponential pdf;

• the coefficients of variation appear largest for f0 the gamma pdf;

• the coefficients of variation appear second largest for f0 the Weibull pdf.

We have presented results for only one choice for (p, α, a, β), namely that (p, α, a, β) =
(0.5, 1, 2, 1). The simulations were re-run for a wide range of other values for (p, α, a, β).
The following observations held in general: the relative biases for each parameter and
for each distribution either decreased or increased to zero as n → ∞; the coefficients
of variation for each parameter and for each distribution always decreased to zero as
n→∞; the relative biases always appeared smallest for f0 the exponential or the expo-
nentiated exponential pdf; the relative biases always appeared largest for f0 the gamma
pdf; the relative biases always appeared second largest for f0 the Weibull pdf; the coeffi-
cients of variation always appeared smallest for f0 the exponential or the exponentiated
exponential pdf; the coefficients of variation always appeared largest for f0 the gamma
pdf; the coefficients of variation always appeared second largest for f0 the Weibull pdf.

The following observations did not hold in general: the relative biases for α, β and
a were not always positive, sometimes they were negative depending on the true values
for (p, α, a, β) chosen; the relative biases for p were not always negative, sometimes they
were positive depending on the true values for (p, α, a, β) chosen; the coefficients of
variation for α were not always largest, sometimes they were not the largest depending
on the true values for (p, α, a, β) chosen; the coefficients of variation for a were not
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always smallest, sometimes they were not the smallest depending on the true values for
(p, α, a, β) chosen.

Section 6 presents a real data application. The sample size of the data set is one
hundred. We shall see that the parallel-parallel-geometric-exponential distribution gives
the best to the data among thirty one other distributions having at least the same
number of parameters. Based on this fact and the simulation results, we can expect
the relative biases for p̂, α̂ and β̂ to be less than 0.1, 0.05 and 0.02, respectively. We
can expect the coefficients of variation for p̂, α̂ and β̂ to be less than 0.6, 0.3 and 0.2,
respectively. Hence, the point estimates reported in Section 6 can be expected to be
accurate except possibly that for p.

6. REAL DATA APPLICATION

Here, we return to the fiber data set discussed in Section 1. As explained there, the
breaking stress of fiber can be modeled as the failure of a system having i) parallel com-
ponents and parallel sub-components; ii) series components and series sub-components;
iii) parallel components and series sub-components; iv) series components and parallel
sub-components. We take the number of components as either geometric or Poisson dis-
tributed. We fitted the following distributions to the data: parallel-parallel-geometric-
f0, series-series-geometric-f0, parallel-series-geometric-f0, series-parallel-geometric-f0,
parallel-parallel-Poisson-f0, series-series-Poisson-f0, parallel-series-Poisson-f0 and series-
parallel-Poisson-f0 with f0 taken to be an exponential, gamma, Weibull or an exponen-
tiated exponential pdf. In total, thirty two distributions were fitted to the data. Eight
of these distributions (parallel-parallel-geometric-exponential, series-series-geometric-
-exponential, parallel-series-geometric-exponential, series-parallel-geometric-exponential,
parallel-parallel-Poisson-exponential, series-series-Poisson-exponential, parallel-series-
-Poisson-exponential and series-parallel-Poisson-exponential) have three parameters each.
The remaining twenty four distributions have four parameters each. The distributions
were fitted by the methods of maximum likelihood and moments, see Section 4.

Many of the fitted distributions are not nested. Discrimination among them was
performed using various criteria:

• the Akaike information criterion due to Akaike [1] defined by

AIC = 2(q + 2)− 2 logL
(
p̂, α̂, Θ̂

)
;

• the Bayesian information criterion due to Schwarz [27] defined by

BIC = (q + 2) log n− 2 logL
(
p̂, α̂, Θ̂

)
;

• the consistent Akaike information criterion (CAIC) due to Bozdogan [2] defined
by

CAIC = −2 logL
(
p̂, α̂, Θ̂

)
+ (q + 2) (log n+ 1) ;

• the corrected Akaike information criterion (AICc) due to Hurvich and Tsai [8]
defined by

AICc = AIC +
2(q + 2)(q + 3)
n− q − 3

;
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• the Hannan-Quinn criterion due to Hannan and Quinn [7] defined by

HQC = −2 logL
(
p̂, α̂, Θ̂

)
+ 2(q + 2) log log n;

• the p-value of the Kolmogorov–Smirnov statistic (Kolmogorov [10], Smirnov [29])
defined by

sup
x

∣∣∣∣∣ 1n
n∑
i=1

I {xi ≤ x} − F̂ (x)

∣∣∣∣∣ ,
where I {·} denotes the indicator function and F̂ (·) the maximum likelihood esti-
mate of F (x);

• the p-value of the Kolmogorov–Smirnov statistic (Kolmogorov [10], Smirnov [29])
defined by

sup
x

∣∣∣∣∣ 1n
n∑
i=1

I {xi ≤ x} − F̃ (x)

∣∣∣∣∣ ,
where F̃ (·) is the method of moments estimate of F (x).

The smaller the values of AIC, BIC, CAIC, AICc, and HQC the better the fit. For more
discussion on these criteria, see Burnham and Anderson [3].

Since the Kolmogorov–Smirnov test assumes that the fitted distribution gives the
“true” parameter values, the p-values were computed by simulation as follows:

(i) fit the distribution to the data and compute the corresponding Kolmogorov–
Smirnov statistic;

(ii) generate 10000 samples each of the same size as the data from the fitted model in
step (i);

(iii) refit the model to each of the 10000 samples;

(iv) compute the Kolmogorov–Smirnov statistic for the 10000 fits in step (iii);

(v) construct an empirical cdf of the 10000 values of the Kolmogorov–Smirnov statistic
obtained in step (iv);

(vi) compare the Kolmogorov–Smirnov statistic obtained in step (i) with the empirical
cdf in step (v) to get the p-value.

The values of − logL, AIC, BIC, CAIC, AICc, HQC and the p-values for the thirty
two fitted distributions are given in Table 1. The values of AIC, the most commonly
used of the criteria, are highlighted. We can see that the smallest AIC, the smallest BIC,
the smallest CAIC, the smallest AICc, the smallest HQC and the largest p-values are
for the parallel-parallel-geometric-exponential distribution. The second smallest AIC,
the second smallest BIC, and the second largest p-values are for the parallel-parallel-
geometric-gamma distribution. The second smallest CAIC, the second smallest AICc
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KS p-value
Distribution − logL AIC BIC CAIC AICc HQC MLE MME

parallel parallel geo exp 141.279 288.557 296.373 299.373 288.807 291.720 0.998 0.970

parallel parallel geo gamma 141.065 290.129 300.550 304.550 290.550 294.347 0.909 0.965

parallel parallel geo weibull 141.070 290.140 300.561 304.561 290.561 294.357 0.879 0.935

parallel parallel geo ee 141.279 290.557 300.978 304.978 290.978 294.775 0.569 0.626

series series geo exp 196.371 398.743 406.558 409.558 398.993 401.906 0.022 0.040

series series geo gamma 156.950 321.901 332.321 336.321 322.322 326.118 0.150 0.094

series series geo weibull 146.128 300.255 310.676 314.676 300.676 304.473 0.189 0.183

series series geo ee 163.791 335.582 346.002 350.002 336.003 339.799 0.146 0.080

parallel series geo exp 142.123 290.246 298.062 301.062 290.496 293.410 0.830 0.856

parallel series geo gamma 141.068 290.137 300.557 304.557 290.558 294.354 0.881 0.945

parallel series geo weibull 141.531 291.062 301.483 305.483 291.483 295.279 0.382 0.525

parallel series geo ee 141.075 290.150 300.571 304.571 290.571 294.368 0.836 0.885

series parallel geo exp 165.995 337.990 345.805 348.805 338.240 341.153 0.117 0.072

series parallel geo gamma 144.701 297.402 307.823 311.823 297.824 301.620 0.256 0.313

series parallel geo weibull 143.243 294.486 304.907 308.907 294.907 298.703 0.290 0.416

series parallel geo ee 147.034 302.068 312.488 316.488 302.489 306.285 0.175 0.110

parallel parallel pois exp 142.837 291.673 299.489 302.489 291.923 294.837 0.377 0.524

parallel parallel pois gamma 141.214 290.429 300.849 304.849 290.850 294.646 0.665 0.637

parallel parallel pois weibull 141.180 290.360 300.780 304.780 290.781 294.577 0.728 0.686

parallel parallel pois ee 142.837 293.673 304.094 308.094 294.094 297.891 0.313 0.448

series series pois exp 197.040 400.080 407.896 410.896 400.330 403.243 0.020 0.018

series series pois gamma 142.197 292.394 302.815 306.815 292.815 296.612 0.346 0.451

series series pois weibull 141.334 290.669 301.089 305.089 291.090 294.886 0.518 0.620

series series pois ee 150.516 309.033 319.453 323.453 309.454 313.250 0.173 0.096

parallel series pois exp 144.205 294.410 302.226 305.226 294.660 297.573 0.307 0.434

parallel series pois gamma 141.175 290.349 300.770 304.770 290.770 294.567 0.775 0.710

parallel series pois weibull 141.529 291.059 301.479 305.479 291.480 295.276 0.401 0.537

parallel series pois ee 141.174 290.347 300.768 304.768 290.768 294.565 0.808 0.805

series parallel pois exp 146.197 298.395 306.210 309.210 298.645 301.558 0.243 0.307

series parallel pois gamma 144.639 297.278 307.698 311.698 297.699 301.495 0.283 0.398

series parallel pois weibull 141.371 290.741 301.162 305.162 291.162 294.958 0.437 0.583

series parallel pois ee 146.337 300.674 311.095 315.095 301.095 304.892 0.182 0.139

Tab. 1. Fitted distributions to the fiber data.



Compound geometric and Poisson models 955

and the second smallest HQC are for the parallel-series-geometric-exponential distribu-
tion. The largest AIC, the largest BIC, the largest CAIC, the largest AICc, the largest
HQC and the smallest p-values are for the series-series-Poisson-exponential distribution.

There is not much difference between the p-values obtained by the methods of maxi-
mum likelihood and moments. The relative performances of the thirty two distributions
with the respect to the p-values appear the same for both methods. At the five per-
cent level, all of the fitted distributions appear acceptable except for the series-series-
geometric-exponential and series-series-Poisson-exponential distributions. However, the
best fitting distribution in terms of the seven criteria is the parallel-parallel-geometric-
exponential distribution.

The parameter estimates for the best fitting parallel-parallel-geometric-exponential
distribution are p̂ = 0.9209999, α̂ = 4.423951 and β̂ = 1.582465. This implies that
breaking stress of a fiber is that of a system having a geometric number of components
working in parallel, the average number being 1. Each component has approximately
4.4 sub-components working in parallel, where the failure time of each sub-component
has an exponential distribution with mean equal to 0.632. Another interpretation is that
the fiber will break if and only if all the 4.4 sub-components of every component fail.

The probability-probability, quantitle-quantile and density plots for the best fitting
parallel-parallel-geometric-exponential distribution are shown in Figures 7, 8 and 9. We
see that its fit is reasonable.

The fiber data has been analyzed by several other authors too, including Lemonte
and Cordeiro [14], Qian [24] and Shams [28].

Lemonte and Cordeiro [14] fitted the exponentiated generalized inverse Gaussian dis-
tribution (equivalent to the parallel-parallel-f0-generalized inverse Gaussian distribution
with N ≡ 1) and obtained the estimate α̂ = 0.127. This estimate has the interpretation
that breaking stress of a fiber is that of a system having 0.1 number of components
working in parallel, where the failure time of each component has a generalized inverse
Gaussian distribution.

Qian [24] fitted the exponentiated exponential distribution (equivalent to the parallel-
parallel-f0-exponential distribution with N ≡ 1) and obtained the estimates α̂ = 7.788,
β̂ = 1.013. These estimates have the interpretation that breaking stress of a fiber is that
of a system having 7.8 number of components working in parallel, where the failure time
of each component has an exponential distribution with mean equal to 0.987.

Shams [28] fitted the Kumaraswamy-generalized exponentiated Pareto distribution
(equivalent to the series-parallel-f0-generalized exponential Pareto distribution with
N ≡ b) and obtained the estimates α̂ = 1, b̂ = 4.638. These estimates have the in-
terpretation that breaking stress of a fiber is that of a system having 4.6 number of
components working in series, where the failure time of each component has a general-
ized exponentiated Pareto distribution.

The AIC values for the distributions fitted by Lemonte and Cordeiro [14], Qian [24]
and Shams [28] are 291.44, 290.66 and 1969.28, respectively. The corresponding BIC
values are 301.86, 301.08 and 1979.70. So, none of the distributions fitted by Lemonte
and Cordeiro [14], Qian [24] and Shams [28] provide as good a fit as our parallel-parallel-
geometric-exponential distribution.
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Fig. 8. QQ plot for the parallel-parallel-geometric-exponential distribution fitted to the fiber

data.
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7. CONCLUSIONS

We have introduced eight new families of distributions, motivated by a data set on
breaking stress of fibers. We have studied mathematical properties and estimation issues
of one of the families. The properties studied include the quantile function, and moments.
Estimation is considered using both the method of maximum likelihood and method of
moments.

The data application has shown that a three-parameter distribution gives the best
fit for breaking stress. The best fit was determined in terms of AIC, BIC, CAIC, AICc,
HQC, p-value of the Kolmogorov–Smirnov statistic based on the method of maximum
likelihood and p-value of the Kolmogorov–Smirnov statistic based on the method of
moments.

The distributions given by (4) – (13) are the distributions of the maximum/minimum
of a random number of independent and identical random variables. A future work
is to model the breaking stress as: i) the maximum/minimum of a random number of
independent but non-identical random variables; ii) the maximum/minimum of a random
number of dependent random variables.
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