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LAGRANGE INTERPOLATION
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Cordially dedicated to Prof. Ivo Babuška on the occasion of his 90th birthday.

Abstract. We consider the error analysis of Lagrange interpolation on triangles and tetra-
hedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing
a right isosceles triangle perpendicularly does not deteriorate the optimal approximation
order. We extend their technique and result to higher-order Lagrange interpolation on both
triangles and tetrahedrons. To this end, we make use of difference quotients of functions
with two or three variables. Then, the error estimates on squeezed triangles and tetrahe-
drons are proved by a method that is a straightforward extension of the original one given
by Babuška-Aziz.
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1. Introduction

Lagrange interpolation on triangles and tetrahedrons and the associated error

estimates are important subjects in numerical analysis. In particular, they are crucial

in the error analysis of finite element methods. Let d = 2 or 3. Throughout this

paper, K ⊂ R
d denotes a triangle or tetrahedron with vertices xi, i = 1, . . . , d + 1.

We always suppose that triangles and tetrahedrons are closed sets in this paper.

Let λi be its barycentric coordinates with respect to xi. By definition, we have

0 6 λi 6 1,
d+1∑
i=1

λi = 1. Let N0 be the set of nonnegative integers, and γ =
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(a1, . . . , ad+1) ∈ N
d+1
0 a multi-index. Let k be a positive integer. If |γ| :=

d+1∑
i=1

ai = k,

then γ/k := (a1/k, . . . , ad+1/k) can be regarded as a barycentric coordinate in K.

The set Σk(K) of points on K is defined by

Σk(K) :=
{γ

k
∈ K

∣∣∣ |γ| = k, γ ∈ N
d+1
0

}
.

Let 1 < p 6 ∞. From Sobolev’s imbedding theorem and Morry’s inequality, we

have the continuous imbeddings

W 2,p(K) ⊂ C1,1−d/p(K), p > d,

W 2,d(K) ⊂ W 1,q(K) ⊂ C0,1−d/q(K) ∀ q > d,

W 2,p(K) ⊂ W 1,dp/(d−p)(K) ⊂ C0,2−d/p(K),
d

2
< p < d.

If d = 3, we also have the continuous imbeddings

W 3,3/2(K) ⊂ W 2,3(K) ⊂ W 1,q(K) ⊂ C0,1−3/q(K) ∀ q > 3,

W 3,p(K) ⊂ W 2,3p/(3−p)(K) ⊂ W 1,3p/(3−2p)(K) ⊂ C0,3−3/p(K), 1 < p <
3

2
.

Although Morry’s inequality may not be applied, the continuous imbeddingW d,1(K)

⊂ C0(K) (d = 2, 3) still holds. For the imbedding theorem, see [1], [7], and [16]. In

the sequel we always suppose that p is taken such that the imbedding W k+1,p(K) ⊂

C0(K) holds, that is,

1 6 p 6 ∞, if d = 2, k + 1 > 2 or d = 3, k + 1 > 3, and
3

2
< p 6 ∞, if d = 3, k + 1 = 2.

Note that our discussion includes the case d = k+1, p = 1 that is sometimes ignored

in literature.

We define the subset T k
p (K) ⊂ W k+1,p(K) by

T k
p (K) := {v ∈ W k+1,p(K) | v(x) = 0 ∀x ∈ Σk(K)}.

Let Pk be the set of polynomials with two or three variables for which the degree is at

most k. For a continuous function v ∈ C0(K), the kth-order Lagrange interpolation

Ik
Kv ∈ Pk is defined by

v(x) = (Ik
Kv)(x) ∀x ∈ Σk(K).
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From this definition, it is clear that

v − Ik
Kv ∈ T k

p (K) ∀ v ∈ W k+1,p(K).

For an integer m such that 0 6 m 6 k, Bm,k
p (K) is defined by

Bm,k
p (K) := sup

v∈T k
p (K)

|v|m,p,K

|v|k+1,p,K
.

Note that we have

Bm,k
p (K) = inf{C ∈ R

1 | |v − Ik
Kv|m,p,K 6 C|v|k+1,p,K ∀ v ∈ W k+1,p(K)},

that is, Bm,k
p (K) is the best constant C for the error estimation

|v − Ik
Kv|m,p,K 6 C|v|k+1,p,K ∀ v ∈ W k+1,p(K).

To establish the mathematical foundation of the finite element methods, we must

show that Bm,p
p (K) is bounded. Many textbooks on finite element methods, such as

those by Ciarlet [8], Brenner-Scott [6], and Ern-Guermond [10], present the following

theorem. Let hK be the diameter of K and ̺K the radius of the inscribed ball of K.

Shape-regularity. Let σ > 2 be a constant. If hK/̺K 6 σ and hK 6 1, then

there exists a constant C = C(σ) independent of hK such that

‖v − I1
Kv‖1,2,K 6 ChK |v|2,2,K ∀ v ∈ H2(K).

The maximum of the ratio hK/̺K in a triangulation is called the chunkiness

parameter [6]. The shape regularity, however, is not necessarily needed to obtain an

error estimate for triangles and tetrahedrons. For triangles, the following estimations

are well-known [4], [5], [11].

The maximum angle condition. Let θ1 (π/3 6 θ1 < π) be a constant. If any

angle θ of K satisfies θ 6 θ1 and hK 6 1, then there exists a constant C = C(θ1)

independent of hK such that

(1.1) ‖v − I1
Kv‖1,2,K 6 ChK |v|2,2,K ∀ v ∈ H2(K).

Later, Křížek [14] introduced the semiregularity condition for triangles, which is

equivalent to the maximum angle condition. Let RK be the circumradius of K.
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The semiregularity condition. Let p > 1 and σ > 0 be constants. If

RK/hK 6 σ and hK 6 1, then there exists a constant C = C(σ) independent of hK

such that

(1.2) ‖v − I1
Kv‖1,p,K 6 ChK |v|2,p,K ∀v ∈ W 2,p(K).

For tetrahedrons, the following estimation is well-known [15], [9].

Křížek’s maximum angle condition. Let θ2 (π/3 6 θ2 < π) be a constant.

Let γk be the maximum angle of faces of a tetrahedron K and ϕK the maximum

angle between faces of K. If γk 6 θ2, ϕK 6 θ2, and hK 6 1, then there exists

a constant C = C(θ2) independent of hK such that

(1.3) ‖v − I1
Kv‖1,p,K 6 ChK |v|2,p,K ∀v ∈ W 2,p(K), 2 < p 6 ∞.

Jamet [11] presented a general result which covers both the triangles and tetrahe-

drons. Let Ed := {es}
d
s=1 ⊂ R

d be a set of unit vectors which are linearly indepen-

dent. Let ξ ∈ R
d be a unit vector and θs, 0 6 θs 6 π/2 the angle between ξ and the

line which is defined by es. Define

θ(Ed) := max
ξ∈Rd

min
es∈Ed

{θs}.

Let K ⊂ R
d be a d-simplex. Let N := d(d + 1)/2 and let EN be the set of N unit

vectors that are parallel to the edges of K. Define θK := min
Ed⊂EN

{θ(Ed)}. Note that

if d = 2 and K is an obtuse triangle, then 2θK is the maximum angle of K.

Theorem 1.1 (Jamet). Let 1 6 p 6 ∞. Let m > 0, k > 1 be integers such that

k + 1 −m > 2/p (1 < p 6 ∞) or k −m > 1 (p = 1) if d = 2, or k + 1 −m > 3/p if

d = 3. Then the following estimate holds:

(1.4) |v − Ik
Kv|m,p,K 6 C

hk+1−m
K

(cos θK)m
|v|k+1,p,K ∀ v ∈ W k+1,p(K),

where C depends only on k, p.

R em a r k. Note that in [11], Théorème 3.1, the case d = 2 and p = 1 is not

mentioned explicitly but clearly holds for triangles.

For further results of error estimations on “skinny elements”, readers are referred

to the monograph by Apel [2].

The common idea of the above mentined estimations is that (i) show an error esti-

mate for a particular type of elements, then (ii) extend it for general elements by affine
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transformation. To prove the maximum angle condition for triangles, for example,

Babuška and Aziz showed the following theorem (see [4], Lemma 2.2, Lemma 2.4).

Let K̂ be the right triangle with vertices (0, 0)⊤, (1, 0)⊤, and (0, 1)⊤, and Kα the

right triangle with vertices (0, 0)⊤, (1, 0)⊤, and (0, α)⊤ (0 < α 6 1). That is, Kα is

obtained by squeezing K̂.

Theorem 1.2 (Babuška-Aziz). There exists a constant independent of α (0 <

α 6 1) such that Bm,1
2 (Kα) 6 C, m = 0, 1. As an immediate consequence, we

obtain the error estimation of Lagrange interpolation I1
K on a right triangle K; for

m = 0, 1,

|v − I1
Kv|m,2,K 6 Ch2−m

K |v|2,2,K .

Theorem 1.2 claims that squeezing a right isosceles triangle perpendicularly does

not deteriorate the optimal approximation order of I1
K . Babuška and Aziz then

claim that the estimate (1.1) for general triangular elements is obtained by affine

transformations. Kobayashi and Tsuchiya [12] extended Theorem 1.2 to any p (1 6

p 6 ∞).

Now, let K̂ denote also the reference tetrahedron with vertices (0, 0, 0)⊤, (1, 0, 0)⊤,

(0, 1, 0)⊤, and (0, 0, 1)⊤. Let Kαβ be the “right” tetrahedron with vertices (0, 0, 0)⊤,

(1, 0, 0)⊤, (0, α, 0)⊤, and (0, 0, β)⊤ (0 < α, β 6 1).

The aim of this paper is to extend Theorem 1.2 and establish the following theorem.

Theorem 1.3. If d = 2, there exists a constant Ck,m,p such that, form = 0, . . . , k,

(1.5) Bm,k
p (Kα) := sup

v∈T k
p (Kα)

|v|m,p,Kα

|v|k+1,p,Kα

6 Ck,m,p, k > 1, 1 6 p 6 ∞.

If d = 3, there exists a constant Ck,m,p such that, for m = 0, . . . , k,

(1.6)

Bm,k
p (Kαβ) := sup

v∈T k
p (Kαβ)

|v|m,p,Kαβ

|v|k+1,p,Kαβ

6 Ck,m,p,





k −m = 0, 2 < p 6 ∞,

k = 1, m = 0, 3
2 < p 6 ∞,

k > 2, k −m > 1, 1 6 p 6 ∞.

Using Theorem 1.3 and affine transformations, we can derive an error estimation

on general triangles. See Section 4.

The above mentioned estimations (1.1), (1.2), (1.3), (1.4) cover Theorem 1.3 par-

tially. We also mention that Shenk [18] showed (1.5) for p = 2, k > 1, m = 0, 1, and

(1.6) for p = 2, k > 2, m = 0, 1.

Because of the restrictions for m, k, and p in the above mentioned estimations,

it seems that (1.5) with k = m > 2, 1 6 p 6 2, and (1.6) with k = m > 2,
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1 6 p 6 3 have not yet been proved. To prove Theorem 1.3, we introduce the

difference quotients of functions with two or three variables in Section 2. Then,

Theorem 1.3 is proved in Section 3 by a method that is a straightforward extension

of Babuška-Aziz’s original argument. The notation of functional spaces used in this

paper are exactly the same as those in [13].

2. Difference quotients for multi-variable functions

In this section, we define the difference quotients for two- and three-variable func-

tions. Our treatment is based on the theory of difference quotients for one-variable

functions given in standard textbooks such as [3] and [19]. All statements in this

section can be readily proved.

For a positive integer k, the set Σ̂k ⊂ K̂ is defined by

Σ̂k :=
{
xγ :=

γ

k
∈ K̂

∣∣∣ γ ∈ N
d
0, 0 6 |γ| 6 k

}
,

where γ/k = (a1/k, . . . , ad/k) is understood as the coordinate of a point in Σ̂k.

For xγ ∈ Σ̂k and a multi-index δ ∈ N
d
0 with |γ| 6 k− |δ|, we define the correspon-

dence ∆δ between nodes by

∆δ
xγ := xγ+δ ∈ Σ̂k.

For two multi-indexes η = (m1, . . . ,md), δ = (n1, . . . , nd), η 6 δ means that mi 6 ni

(i = 1, . . . , d). Also, δ · η and δ! are defined by δ · η :=
d∑

i=1

mini and δ! := n1! . . . nd!,

respectively. Using ∆δ, we define the difference quotients on Σ̂k for f ∈ C0(K̂) by

f |δ|[xγ ,∆
δ
xγ ] := k|δ|

∑

η6δ

(−1)|δ|−|η|

η!(δ − η)!
f(∆η

xγ).

Let 0 := (0, . . . , 0) ∈ N
d
0. For simplicity, we denote f

|δ|[x0,∆
δ
x0] by f |δ|[∆δ

x0]. The

following are examples of f |δ|[∆δ
x0]: if d = 2,

f2[∆(2,0)
x(0,0)] =

k2

2
(f(x(2,0))− 2f(x(1,0)) + f(x(0,0))),

f2[∆(1,1)
x(0,0)] = k2(f(x(1,1))− f(x(1,0))− f(x(0,1)) + f(x(0,0))),

f3[∆(2,1)
x(0,0)] =

k3

2
(f(x(2,1))− 2f(x(1,1)) + f(x(0,1))− f(x(2,0))

+ 2f(x(1,0))− f(x(0,0))),
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and if d = 3,

f4[∆(2,1,1)
x(0,0,0)] =

k4

2
(f(x(2,1,1))− 2f(x(1,1,1)) + f(x(0,1,1))

− f(x(2,0,1)) + 2f(x(1,0,1))− f(x(0,0,1))

− f(x(2,1,0)) + 2f(x(1,1,0))− f(x(0,1,0))

+ f(x(2,0,0))− 2f(x(1,0,0)) + f(x(0,0,0))).

Let η ∈ N
d
0 be such that |η| = 1. The difference quotients clearly satisfy the

recursive relations

f |δ|[xγ ,∆
δ
xγ ] =

k

δ · η
(f |δ|−1[xγ+η,∆

δ−η
xγ+η]− f |δ|−1[xγ ,∆

δ−η
xγ ]).

If f ∈ Ck(K̂), the difference quotient f |δ|[xγ ,∆
δ
xγ ] is written as an integral of f .

Setting d = 2 and δ = (0, s), for example, we have

f1[x(l,q),∆
(0,1)

x(l,q)] = k(f(xl,q+1)− f(xlq)) =

∫ 1

0

∂x2f
( l

k
,
q

k
+

w1

k

)
dw1,

f s[x(l,p),∆
(0,s)

x(l,q)]

=

∫ 1

0

∫ w1

0

. . .

∫ ws−1

0

∂(0,s)f
( l

k
,
q

k
+

1

k
(w1 + . . .+ ws)

)
dws . . . dw2 dw1.

To provide a concise expression for the above integral, we introduce the s-simplex

Ss := {(t1, t2, . . . , ts) ∈ R
s | ti > 0, 0 6 t1 + . . .+ ts 6 1},

and the integral of g ∈ L1(Ss) on Ss is defined by

∫

Ss

g(w1, . . . , wk) dWs :=

∫ 1

0

∫ w1

0

. . .

∫ ws−1

0

g(w1, . . . , ws) dws . . . dw2 dw1.

Let us temporarily set d = 2. Then f s[x(l,q),∆
(0,s)

x(l,q)] becomes

f s[x(l,q),∆
(0,s)

x(l,q)] =

∫

Ss

∂(0,s)f
( l

k
,
q

k
+

1

k
(w1 + . . .+ ws)

)
dWs.

For a general multi-index (t, s) we have

f t+s[x(l,q),∆
(t,s)

x(l,q)]

=

∫

Ss

∫

St

∂(t,s)f
( l

k
+

1

k
(z1 + . . .+ zt),

q

k
+

1

k
(w1 + . . .+ ws)

)
dZt dWs.
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Let �δ
γ be the rectangle defined by xγ and ∆δ

xγ as the diagonal points. If δ = (t, 0)

or (0, s), �δ
γ degenerates to a segment. For v ∈ L1(K̂) and �δ

γ with γ = (l, q), we

denote the integral as

∫

�
(t,s)
γ

v :=

∫

Ss

∫

St

v
( l

k
+

1

k
(z1 + . . .+ zt),

q

k
+

1

k
(w1 + . . .+ ws)

)
dZt dWs.

If �δ
γ degenerates to a segment, the integral is understood as an integral on the

segment. By this notation, the difference quotient f t+s[xγ ,∆
(t,s)

xγ ] is written as

f t+s[xγ ,∆
(t,s)

xγ ] =

∫

�
(t,s)
γ

∂(t,s)f.

Therefore, if u ∈ T k
p (K̂), then we have

(2.1) 0 = ut+s[xγ ,∆
(t,s)

xγ ] =

∫

�
(t,s)
γ

∂(t,s)u ∀ �(t,s)
γ ⊂ K̂.

For the case d = 3, the integral
∫
�δ

γ
v is defined in exactly the same manner.

3. Proof of Theorem 1.3

Let S ⊂ K̂ be a segment. In the proof of Theorem 1.3, the continuity of the

trace operator t defined as t : W 1,p(K̂) ∋ v 7→ v|S ∈ L1(S) is crucial. If d = 2, the

continuity of t is standard and is mentioned in many textbooks such as [7]. For the

case d = 3, the situation becomes a bit more complicated. If the continuous inclusion

W k+1,p(K̂) ⊂ C0(K̂) holds, the continuity of t is obvious. Even if this is not the

case, we still have the following lemma. For the proof, see [1], Theorem 4.12; [9],

Lemma 2.2, and [17], Theorem 2.1.

Lemma 3.1. Let d = 3 and let S ⊂ K̂ be an arbitrary segment. Then the

following trace operators are well-defined and continuous:

t : W 1,p(K̂) → Lp(S), 2 < p < ∞, t : W 2,p(K̂) → Lp(S), 1 6 p < ∞.

For a multi-index δ, |δ| > 1, p is taken such that

(3.1)

{
2 < p 6 ∞, if k + 1− |δ| = 1, d = 3,

1 6 p 6 ∞, if k + 1− |δ| > 2, d = 3 or d = 2.
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The set Ξδ,k
p ⊂ W k+1−|δ|,p(K̂) is then defined by

Ξδ,k
p :=

{
v ∈ W k+1−|δ|,p(K̂)

∣∣∣
∫

�δ
lp

v = 0 ∀ �δ
lp⊂ K̂

}
.

By Lemma 3.1 and (3.1), Ξδ,k
p is well-defined. Note that u ∈ T k

p (K̂) implies ∂δu ∈

Ξδ,k
p by definition and (2.1).

Lemma 3.2. We have Ξδ,k
p ∩Pk−|δ| = {0}. That is, if q ∈ Pk−|δ| belongs to Ξ

δ,k
p ,

then q = 0.

P r o o f. We notice that dimPk−|δ| = #{�δ
lp⊂ K̂}. For example, if k = 4, d = 2,

and |δ| = 2, then dimP2 = 6. This corresponds to the fact that, in K̂, there are six

squares with size 1/4 for δ = (1, 1) and there are six horizontal segments of length

1/2 for δ = (2, 0). All their vertices (corners and end-points) belong to Σ4(K̂) (see

Figure 1). The situation is the same for d = 3. Now, suppose that v ∈ Pk−|δ| satisfies∫
�δ

lp

q = 0 for all �δ
lp⊂ K̂. This condition is linearly independent and determines

q = 0 uniquely. �

Figure 1. The six squares of size 1/4 for δ = (1, 1) and the (union of) six segments of

length 1/2 for δ = (2, 0) in K̂.

The constant Aδ,k
p is defined by

Aδ,k
p := sup

v∈Ξδ,k
p

|v|0,p,K̂
|v|k+1−|δ|,p,K̂

.

The following lemma is an extension of [4], Lemma 2.1.

Lemma 3.3. Let p be given by (3.1). Then we have Aδ,k
p < ∞.

P r o o f. The proof is by contradiction. Suppose that Aδ,k
p = ∞. Then there exists

a sequence {wk}
∞
i=1 ⊂ Ξδ,k

p such that |wn|0,p,K̂ = 1 and lim
n→∞

|wn|k+1−|δ|,p,K̂ = 0.

By [8], Theorem 3.1.1, there exists {qn} ⊂ Pk−|δ| such that

‖wn + qn‖k+1−|δ|,p,K̂ 6 inf
q∈Pk−|δ|

‖wn + q‖k+1−|δ|,p,K̂ +
1

n
6 C|wn|k+1−|δ|,p,K̂ +

1

n
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and lim
n→∞

‖wn + qn‖k+1−|δ|,p,K̂ = 0. Because {wn} ⊂ W k+1−|δ|,p(K̂) is bounded,

{qn} ⊂ Pk−|δ| is bounded as well. Hence, there exists a subsequence {qni
} such that

qni
converges to q̄ ∈ Pk−|δ| and lim

ni→∞
‖wni

+ q̄‖k+1−|δ|,p,K̂ = 0. By definition and

the continuity of the trace operator, we have
∫
�δ

lp

wni
= 0 and

0 = lim
ni→∞

∫

�δ
lp

(wni
+ q̄) =

∫

�δ
lp

q̄ ∀ �δ
lp⊂ K̂.

Therefore, it follows from Lemma 3.1 that q̄ = 0. This implies that

0 = lim
ni→∞

‖wni
‖k+1−|δ|,p,K̂ > lim

ni→∞
|wni

|0,p,K̂ = 1,

which is a contradiction. �

P r o o f of Theorem 1.3. The proof is a direct extension of the proof given in [4],

Lemma 2.2. Let d = 2 initially. Define the linear transformation Fα : R
2 → R

2 by

(x∗, y∗)⊤ = (x, αy)⊤, (x, y)⊤ ∈ R
2, 0 < α 6 1,

which squeezes the reference element K̂ perpendicularly to Kα := Fα(K̂). Take an

arbitrary v ∈ W k+1,p(Kα) and define u ∈ W k+1,p(K̂) by u(x, y) := v(x, αy). To

make the formula concise, we introduce the following notation. For a multi-index

γ = (a, b) ∈ N
2
0 and a real t 6= 0, (α)γt := αbt. Let 1 6 p < ∞ and 1 6 m 6 k.

Because u ∈ T k
p (K̂) and ∂δu ∈ Ξδ,k

p , we may apply Lemma 3.3 and obtain

|v|pm,p,Kα

|v|pk+1,p,Kα

=

∑
|γ|=m

m!
γ! (α)

−γp|∂γu|p
0,p,K̂

∑
|δ|=k+1

(k+1)!
δ! (α)−δp|∂δu|p

0,p,K̂

(3.2)

=

∑
|γ|=m

m!
γ! (α)

−γp|∂γu|p
0,p,K̂

∑
|γ|=m

m!
γ! (α)

−γp
( ∑

|η|=k+1−m

(k+1−m)!
η!(α)ηp |∂η(∂γu)|p

0,p,K̂

)

6

∑
|γ|=m

m!
γ! (α)

−γp|∂γu|p
0,p,K̂

∑
|γ|=m

m!
γ! (α)

−γp
( ∑

|η|=k+1−m

(k+1−m)!
η! |∂η(∂γu)|p

0,p,K̂

)

=

∑
|γ|=m

m!
γ! (α)

−γp|∂γu|p
0,p,K̂

∑
|γ|=m

m!
γ! (α)

−γp|∂γu|p
k+1−m,p,K̂

6

∑
|γ|=m

m!
γ! (α)

−γp|∂γu|p
0,p,K̂

∑
|γ|=m

m!
γ! (α)

−γp(Aγ,k
p )−1|∂γu|p

0,p,K̂

6 Cp
k,m,p,

130



where Ck,m,,p := max
|γ|=m

Aγ,k
p . Here, we use the equality

(k + 1)!

δ!
=

∑

γ+η=δ
|γ|=m,|η|=k+1−m

m!

γ!

(k + 1−m)!

η!
.

Hence, we obtain (1.5) for this case. If m = 0, we have

|v|p0,p,Kα

|v|pk+1,p,Kα

=
|u|p

0,p,K̂∑
|δ|=k+1

(k+1)!
δ! (α)−δp|∂δu|p

0,p,K̂

(3.3)

6
|u|p

0,p,K̂∑
|δ|=k+1

(k+1)!
δ! |∂δu|p

0,p,K̂

=
|u|p

0,p,K̂

|u|p
k+1,p,K̂

6 B0,p
k (K̂)p < ∞.

Setting p = ∞ and 1 6 m 6 k, we have

|v|m,∞,Kα

|v|k+1,∞,Kα

=

max
|γ|=m

{(α)−γ |∂γu|0,∞,K̂}

max
|δ|=k+1

{(α)−δ|∂δu|0,∞,K̂}
(3.4)

=

max
|γ|=m

{(α)−γ |∂γu|0,∞,K̂}

max
|γ|=m

{(α)−γ max
|η|=k+1−m

{(α)−η|∂η(∂γu)|0,∞,K̂}}

6

max
|γ|=m

{(α)−γ |∂γu|0,∞,K̂}

max
|γ|=m

{(α)−γ max
|η|=k+1−m

{|∂η(∂γu)|0,∞,K̂}}

=

max
|γ|=m

{(α)−γ |∂γu|0,∞,K̂}

max
|γ|=m

{(α)−γ |∂γu|k+1−m,∞,K̂}

6

max
|γ|=m

{(α)−γ |∂γu|0,∞,K̂}

max
|γ|=m

{(α)−γ(Aγ,k
∞ )−1|∂γu|0,∞,K̂}

6 Ck,m,∞,

where Ck,m,∞ := max
|γ|=m

Aγ,k
∞ . Now, the case with p = ∞ and m = 0 is obvious.

Therefore, (1.5) is proved.

Next, let d = 3 and repeat the above proof. Define the linear transformation

Fαβ : R
3 → R

3 by

(x∗, y∗, z∗)⊤ = (x, αy, βz)⊤, (x, y, z)⊤ ∈ R
3, 0 < α, β 6 1,
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which squeezes the reference tetrahedron K̂ perpendicularly to Kαβ := Fαβ(K̂).

Take an arbitrary v ∈ W k+1,p(Kαβ) and define u ∈ W k+1,p(K̂) by u(x, y, z) :=

v(x, αy, βz). Let p be given by (3.1) with m = |δ|. To make the formula concise, we

introduce the following notation. For a multi-index γ = (a, b, c) ∈ N
3
0 and a real t 6= 0,

(α, β)γt := αbtβct. Because u ∈ T k
p (K̂) and ∂δu ∈ Ξδ,k

p , we may apply Lemma 3.3

as above. Thus, we may repeat (3.2), (3.3), and (3.4) replacing Kα by Kαβ , (α)γp

by (α, β)γp, etc. Thus, (1.6) is proved. �

4. Concluding remarks

Theorem 1.3 deals only with right triangles and “right” tetrahedrons. Based on

Theorem 1.3, a new error estimation of Lagrange interpolation on triangles is ob-

tained in [13]. It should be emphasized that no geometric condition on triangles is

imposed in Theorem 4.1.

Theorem 4.1 (Kobayashi-Tsuchiya [13]). Let K be an arbitrary triangle. Let

1 6 p 6 ∞, and let k, m be integers such that k > 1 and 0 6 m 6 k. Then, for the

kth-order Lagrange interpolation Ik
K on K, the following estimation holds:

(4.1) |v − Ik
Kv|m,p,K 6 C

(RK

hK

)m

hk+1−m
K |v|k+1,p,K = CRm

Khk+1−2m
K |v|k+1,p,K

for any v ∈ W k+1,p(K), where the constant C depends only on k, p and is indepen-

dent of the geometry of K.

Any tetrahedron can be obtained from a “skinny right” tetrahedron by an affine

transformation. To obtain an error estimate, we need to estimate the ratio of the

maximum and minimum singular values of the Jacobian matrix of the affine trans-

formation. If we obtained an expression of the ratio in terms of geometric quantities

of the tetrahedron, a new error estimation will be obtained. The authors hope that

they will report further development of error estimations on tetrahedrons in near

future.
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