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Abstract. We study new a posteriori error estimates of the mixed finite element methods
for general optimal control problems governed by nonlinear parabolic equations. The state
and the co-state are discretized by the high order Raviart-Thomas mixed finite element
spaces and the control is approximated by piecewise constant functions. We derive a pos-
teriori error estimates in L (.J; L?(2))-norm and L?(J; L?(Q))-norm for both the state,
the co-state and the control approximation. Such estimates, which seem to be new, are an
important step towards developing a reliable adaptive mixed finite element approximation
for optimal control problems. Finally, the performance of the posteriori error estimators is
assessed by two numerical examples.

Keywords: a posteriori error estimate; general optimal control problem; nonlinear
parabolic equation; mixed finite element method
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1. INTRODUCTION

Nonlinear parabolic optimal control problems have been extensively utilized in
many aspects of the modern life such as scientific and engineering numerical simu-
lation. They must be solved successfully with efficient numerical methods. Among
these numerical methods, the finite element method is a successful choice for solving
the optimal control problems. There have been extensive studies in convergence of
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finite element approximation for optimal control problems. A systematic introduc-
tion of the finite element method for optimal control problems can be found in [11],
(12], [21], (2], [7], (6], [4]

Recently, the adaptive finite element method has been investigated extensively
and becomes one of the most popular methods in the scientific computation and
numerical modeling. Adaptive finite element approximation ensures a higher density
of nodes in a certain area of the given domain, where the solution is more difficult
to approximate, indicated by a posteriori error estimators. Hence, it is an important
approach to boost the accuracy and efficiency of finite element discretizations. There
are lots of works concentrating on the adaptivity of many optimal control problems,
see, for example, [13], [15], [17], [18], [19], [10], [5], [16]. Note that all these works
aimed at the standard finite element method.

In many control problems, the objective functional contains the gradient of the
state variables. Thus, the accuracy of the gradient is important in numerical dis-
cretization of the coupled state equations. Mixed finite element methods are appro-
priate for the state equations in such cases, since both the scalar variable and its
flux variable can be approximated to the same accuracy by using such methods, see,
for example, [2]. When the objective functional contains the gradient of the state
variable, mixed finite element methods should be used for discretization of the state
equation with which both the scalar variable and its flux variable can be approxi-
mated in the same accuracy. In [20], we consider the mixed finite element methods
for semilinear elliptic optimal control problems. Then a posteriori error estimates
for the mixed finite element solution have been obtained. In [5], we have derived
a posteriori error estimates in L2(J; L%(Q))-norm for both the control, the state and
for the co-state variables of parabolic optimal control problems by the lowest order
Raviart-Thomas mixed finite element methods.

In this paper, we adopt the standard notation W™P(Q) for Sobolev spaces on §2

with a norm ||-||;,, given by [[v[|h, | = | ‘Z< ||Dav|\’£p(ﬂ), a semi-norm ||, , given
al<m
by [vf,, = > ||Dav||’£p(ﬂ). We set Wi"P(Q) = {v € W™P(Q): v|gpa = 0} C

|al=m

Wm2(Q). For p = 2, we denote H™(2) = W™2(Q), H(Q) = WJ"*(Q), and
Il = [Hmas [ = oz We denote by L#(0, 7: W™ #(0)) the Banach spac
of all L*® integrable functions from J into W™P(Q) with norm ||v]

Le(Jswmer(Q)) =
(fOT 0[Sy m.p () dt) Y for s € [1,00), and the standard modification for s = oo.
Similarly, one can define the spaces H'(J;W™P(Q)) and C*(J;W™P(Q)). The
details can be found in [14].

By using the idea of the article [19], we shall use the order k& > 1 Raviart-Thomas

mixed finite elements to discretize the state and the co-state. The control is approx-
imated by piecewise constant functions. Then we derive a posteriori error estimates
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for the mixed finite element approximation of the nonlinear parabolic optimal control
problems. The estimators for the control, the state and the co-state variables are
derived in the sense of the L>°(.J; L?(Q2))-norm and L?(J; L?(2))-norm, which are
different from the ones in [5]. We consider the following nonlinear parabolic optimal
control problems:

(11) min { [ (o) + 020 + () e}

weKCU
(1.2)  yi(z,t) + divp(z,t) + o(y(z,t)) = f(z,t) + Bu(z,t), z€Q, teJ,
(1.3) p(z,t) = —A(x)Vy(z,t), z€Q, te ],
(1.4) y(z,t) =0, z€dQ, teJ, y(z,0)=yo(x), z€Q,

where the bounded open set  C R? is a convex polygon with the boundary 9 and
J = [0,T]. Let K be a closed convex set in the control space U = L2(J; L3(Q)),
B a bounded linear operator from U to L?(J; L*(Q)), p € (L*(J; HY(Q)))?, u,y €
L2(J; HY (), f € L*(J; L3()), yo(z) € HE(Q). For any R > 0 the function ¢
satisfies ¢(-) € W (=R, R), ¢'(y) € L*(Q) for any y € H*(Q), and ¢'(y) = 0. We
assume that the coefficient matrix A(x) = (a;;(z))2x2 € C°(Q; R2*?) is a symmetric
(2 x 2)-matrix and there are constants c1,co > 0 satisfying c1||X||%R2 < XtAX <
c2||X||22 for any vector X € R?. We assume that the constraint on the control is an
obstacle such that

K ={uc L*(J;L*(): u(z,t) >0, ae in Q x J}.

We assume that g1, g2, and j are differentiable, and j is a strictly convex functional
with the property j — oo as ||u||y — co. More details will be specified later on.

The plan of this paper is as follows. In Section 2 we consider the mixed finite el-
ement approximation and backward Euler discretization for the nonlinear parabolic
optimal control problems (1.1)—(1.4). Then, we derive a posteriori error estimates in
the L>°(J; L*(Q2))-norm and L?(J; L?(Q))-norm for both the state and the control
approximation in Section 3. Next, two examples are given to demonstrate our the-
oretical results in Section 4. Finally, we give a conclusion and suggest some future
works.

2. MIXED METHODS OF NONLINEAR OPTIMAL CONTROL

In this section we study the mixed finite element approximation and backward
Euler discretization of nonlinear parabolic optimal control problems (1.1)—(1.4). To
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fix the idea, we take the state spaces L?(V) = L?(J; V) and HY(W) = H(J; W),
where V and W are defined as follows:

V = H(div;Q) = {v € (L*(Q))?: dive € L*(Q)}, W = L*(Q).

The Hilbert space V' is equipped with the norm

o]l aivie) = (0115, + 1 divoll§ o)'/2.

We recast (1.1)—(1.4) in the following weak form: find (p,y,u) € L*(V)x H* (W) x
K such that

(2.1) uEmKigU{/OT (91(p) + g2(y) + j(u)) dt}

(2.2) (A p,v) — (y,dive) =0 YoveV,

(2.3) (y, w) + (divp,w) + (¢(y),w) = (f + Bu,w) Ywe W,
(2.4) y(z,0) =yo(z) VaeQ.

We assume that ¢}, g5, and j' are the derivatives of g1, g2, and j. Moreover, we
suppose that ¢, g}, and j' are locally Lipschitz continuous, that is

15 (v(21)) = 5" (v(2))

|
l91(P1) — 91(P2)|
|g{(y1) - 9/1(y2)|

<Olry —x2| VYvEK, 21,79 €8
< COlpr —p2| Vpi1,p2 € H(div; Q);
< Olyr —ya| V1,92 € L2(N).

It follows from [19] that the optimal control problem (2.1)—(2.4) has at least one
solution (p,y,u), and that if a triplet (p,y,w) is the solution of (2.1)—(2.4), then
there is a co-state (q,z) € L*(V) x HY(W) such that (p,y,q, z,u) satisfies the
following optimality conditions:

(A 'p,v) — (y,dive) =0 VoveV,
(e, w) + (divp,w) + (¢(y), w) = (f + Bu,w) VweW,
y(z,0) =yo(z) Vel
(A™'q,v) = (z,dive) = —(g1(p),v) VveV,
—(2t,w) + (div g, w) + (¢'(y)z,w) = (g3(y),w) YweW,
0) z2(x, T)=0 Ve,

= © 0 N o W
222 L

~ o~ o~ o~ o~ o~

T
(2.11) / (' (w) + B*2, i —w)dt >0 Vi€ K,
0

where B* is the adjoint operator of B and (-, -) is the inner product in L?(2).
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Let 7 be regular triangulations of . Then h. is the diameter of 7 and h =
max h,. Let Vj, x Wj, C V x W denote the Raviart-Thomas space associated with

the triangulations 75, of Q. Py denotes the space of polynomials of total degree at
most k (k> 1). Let V() = {v € P(1) + - Py(1)}, W(r) = Pi(7). We define

Vh = {’Uh = V: VT S 7;7,7vh|7' S V(T)}’
Wh = {wh€W~ VTE’EL,W}JT GW(T)}’
Kh = {ahEK VTGE,ﬂh|T€PO(T)}'

Let L%(V},) = L*(J; Vi) and HY(W),) = H'(J;W}). The mixed finite element
discretization of (2.1)—(2.4) is as follows: compute (pp, yn, un) € L?(Vi,) x HY(W},) x
K, such that

T
212 i { [ 0o + 2 + ) e
(2.13) (A pp,vp) — (yn,divo,) =0 Yo, € Vi,
(2.14)  (ynt, wn) + (div pp, wp) + (¢(yn), wn) = (f + Bup,wy) Ywp, € Wy,
(2.15) yn(z,0) = yél(x) Vr e,

where y!(x) € W}, is an approximation of yo. The optimal control problem (2.12)-
(2.15) again has at least one solution (pp,yn,un), and if a triplet (pn,yn,un) is
a solution of (2.12)—(2.15), then there is a co-state (qu, 2,) € L?(V},) x H'(W},) such
that (ph, Yn, qn, zn, up) satisfies the following optimality conditions:

(2.16) (A pp,vn) — (yn,divon) =0 Yo, € Vi,

(2.17)  (ynt, wn) + (div pr, wp) + ((yn), wn) = (f + Bup,wy) Ywp, € Wy,
(2.18) yn(z,0) = yh(z) Vreq,

(2.19) (A7 gn,vn) = (20, divop) = —(g1(pn),vn) Von € Vi,

(2.20) —(2nt, wn) + (div g, wn) + (8" (yn) 2, wn) = (92(yn), wn) Vwn € W,
(2.21) zp(z, T) =0 VYzeQ,

T
(2.22) / (j,(uh) + B*zp,up —up)dt =0 Vu, € Kp,.
0

Now we consider the fully discrete approximation for the above semidiscrete prob-
lems (2.16)—(2.21). Let At > 0, N = T/At € Z, and t; = iAt, i € 7. Also,
let

i i . i oi—1
Y= gi(@) = Plasty), dpt = %.
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The fully discrete approximation scheme is to find (pi,vi,ul) € Vi x Wy x Kp,
i1=1,2,..., N, such that

229 min {3 [ (o oh) + an(0h) + iui) e}
Up, h ;=1 Yti-1
(2.24) (A_lp}'wvh) — (yz,divvh) =0 Vo, € Vp,
(225) (dty}iza wh) + (divp}’il’ wh) + (¢(y;1)7wh) = (fz + Bu;u wh) Vwp € Wha
(2.26) yg(x) = yg(x) Ve

It follows that the optimal control problem (2.23)—(2.26) has a solution (pi, v}, u}),
i =1,2,...,N, and if a triplet (p},y;,up,) € Vi x Wi, x K, i = 1,2,..., N, is
a solution of (2.23)-(2.26), then there is a co-state (q; ',z ') € Vi x W}, such
that (pz,y}qu*l,zfl,u@ € (Vi x Wi)? x K, satisfies the following optimality
conditions:

(2.27) (A™1pl, vp,) — (yi,divoy) =0,

(2.28) (deyh, wn) + (div pj, wn) + (D(y;,), wn) = (f* + Buj,, wp),
(2.29) (@) = y5 (o),

(2.30) (A gt on) — (25, s diven) = —(g1(p), 1), on),

(2.31)  —(dizj, wn) + (divg, " wn) + (& (y7) 2 wa) = (g5(ys, 1), wn),
(2.32) 20 (x) =0,

(2.33) (ul, + B* 21y — ufy) >0,

where vy, € Vi, wp, € Wy, and uy, € Kj,.
Fori=1,2,..., N, let

Yalttoor g = (8 = )y 4 (8= tio1)yp) /At

it ys) = (i = )z "+ (t — tim1)2h) /AL,

Pult,yy = (6 = O, + (¢ — tio1)p}) /At

Qnl(ti_re) = (ki = )@yt + (¢ — ti1)g},) /A,
Unlt;_1,ts) = uz

For any function w € C(J; L*(Q)), let

W@, t)ee(t, ) = 0@ ti), W, )|e(t, 0] = wlz, tiz1).
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Then the optimality conditions (2.27)—(2.33) satisfy

(2.34) (AP, vp) — (Ya, divoy) =0,

(2.35) (Yit, w) + (div Py, wp) + (6(Y), wn) = (f + BUp, wp),
(2-36) Yi(,0) = yg (@),

(2.37) (A72Qn,v1) — (Zn, divoy) = — (g, (Pn), vn),

(2.38) ~(Zne,wp) + (div Qn, wi) + (&' (Ya) Zn, wn) = (g5(Yn), wr),
(2.39) Zn(z,T) =0,

(2.40) (Un + B*Zp, i, — Up) =0

where vy € Vi, wp, € Wh, and up, € Kp,.

In the rest of the paper, we use some intermediate variables. For any control
function Uj, € Kj, we first define the state solution (p(Un),y(Ur), q(Up), 2(Uy))
satisfying

(2.41) (A p(Uy),v) — (y(Up),dive) =0,

(2.42) (y¢(Un), w) + (div p(Un), w) + (¢(y(Un)), w) = (f + BUn,w),
(2.43) y(Un)(z,0) = yo(z),

(2.44) (A~'q(Un),v) = (2(Un), divv) = —(g1(p(Un)), v),

(2.45) —(2(Un),w) + (div @(Un), w) + (¢ (y(Ur))z(Un), w) = (95(y(Un)), w),
(2.46) z(Up)(z,T) = 0,

where v € V, w € W, and u € K.
Let R,: W — W, be the orthogonal L?(Q2)-projection into W, (see [1]), which
satisfies

(2.47) (Rpw —w,x) =0, weW, x € Wy,
(248)  ||Rpw —wllog < Cllwlleght, 0<t<k+1, if we WNWhH(Q),
(2.49) |Rhw — w|— < C||lwl|[h" T, 0< <k+1, ifwe HY(Q).

Let II: V' — V;, be the Raviart-Thomas projection operator (see [3]), which
satisfies for any v € V'

(2.50) / wp(v =) - vpds =0, w, € Wy, E €&,
E

(2.51) /(v — ) -vpdedy =0, v, €Vy, 7€ Th,
T

where &, denotes the set of element sides in 7.
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We have the commuting diagram property
(2.52) divolly, = Rpodiv: V= W), and div(l —II,)V L W,

where and after, I denotes the identity operator.
Further, the interpolation operator Il satisfies a local error estimate

(2.53) v —pvlloo < Chlvly 7, veVNHY(T).

The following lemmas are important in deriving a posteriori error estimates of
residual type.

Lemma 2.1. Let m, be the standard Lagrange interpolation operator (see [8]).
Then form =0 or1, 1 < q < oo and for all v € W29(Q),

(2.54) |U — 7Th'U|Wqu(-r) < Ch?__m|v|w2,q(7).

Let 7, be the average interpolation operator defined in [23], Tpv = > v, ., where

z
. is the base function of the finite element space at the node point z,

Z/ /1, 2NN =10,
TNz#£) 7T FRz£0" T

Vy =
3 / D> / 2 con,
INz#0 INz#£0

where 7 is the element and [ is the edge of the element.
Lemma 2.2. Form =0 or 1,1 < ¢ < oo and for all v € WH4(Q),

(2.55) v = Fnvlwmay <Y Ch ™ vlwia.
T/NTAD

For ¢ € W, we shall write

(2.56) d(p) — d(0) = —d' (9) (0 — 9) = —¢'(0) (0 — ¥) + & (¢) (0 — ¥)%,

where

:/0 ¢ (¢ +s(o—¢))ds,
7'(p) = / (1— 8)¢" (0 + s(p — o)) ds

0

are bounded functions in Q (see [22]).
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3. A POSTERIORI ERROR ESTIMATES

In this section we study a posteriori error estimates for the mixed finite element
approximation of the nonlinear parabolic optimal control problems. Given u € K,
let S1, Sz be the inverse operators of the state equation (2.3) such that p(u) = S1Bu
and y(u) = Sy Bu are the solutions of the state equation (2.3). Similarly, for a given
Uy € Kn, Py(Up) = S1,.BUy, Yi(Up,) = S2p,BU}, are the solutions of the discrete
state equations (2.14). Let

(3.1) S(u) = g1(S1Bu) + g2(S2 Bu) + j(u),
(3.2) Sh(Un) = g1(S1nBUR) + g2(S2n BUR) + j(Un).

It can be shown that

(S'(u),v) = (§'(u) + B*z,0),
(3.4) (S"(Un),v) = (§'(Un) + B*2(Up), v),
(3.5) (Sh(Un),v) = (§'(Un) + B* Zp, v).

It is clear that S and S} are well defined and continuous on K and Kj. Also
the functional Sy can be naturally extended to K. Then (2.1) and (2.12) can be
represented as

(3.6) gg%{/: S(u) dt},

and

(3.7) Unglg{/: Sh(Uh)dt}.

In many applications, S(-) is uniform convex near the solution u. The convexity of
S(-) is closely related to the second order sufficient conditions of the optimal control
problems, which are assumed in many studies on numerical methods of the problem.
For instance, in many applications, u — ¢1(S1Bu) and u — ¢2(S2Bu) are convex.
Thus if j is uniformly convex, then there is a ¢ > 0, independent of h, such that

T
(3.8) / (8'(u) — §'(Un), 1 — U)o dt > cllu — Unlagsorsion.
0

First, let us derive the a posteriori error estimates for the control u.
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Theorem 3.1. Let u and Uy, be the solutions of (3.6) and (3.7), respectively. In
addition, assume that (S} (Un))|r € H*(r) for all T € Tp,(s = 0,1), and there is
vy, € K}, such that

(3.9) |(SH(UR), o0 = w)] S C Y hel|S7(Un))]

T€Th

ma(r)llu = Unll 32y

Then there exists a constant C' independent of h such that

(3.10) ||u_Uh||L2(JL2(Q)) Cni + C|l2(Un) — Zh||2L2(J;L2(Q))7

where

= / ST R + B2l .
TETH

Proof. Tt follows from (3.6) and (3.7) that
T
(3.11) / (S (u),u—v)dt <0 VoveK,
0

T
(3.12) / (S;L(Uh),Uh—vh)dtSO Yo, € Kj, C K.

0
Then it follows from assumptions (3.8), (3.9), and Schwarz’s inequality that

T
(313) C”’LL — UhHQL?(J;L?(Q)) < /0 (S,(U) — S/(Uh), u — Uh) de
T
< [ ASH .00 =20 + (S U) = (U1, = Vi

c/ {Z hits|| Sy (

TETH

o+ IS0 = 5 O
+ 5”“ — Unll 72050200

It is not difficult to show

(3.14) S (Un) = §'(Un) + B*Zn,  S'(Un) = §'(Un) + B"=(Un),

where z(Uy,) is defined in (2.41)—(2.46). Thanks to (3.14), it is easy to derive

(3.15) [S,(Un) = S"(Un)22(@) = I1B*(Zn — 2(Un)ll 120 < CllZn — 2(Un)l| 2y -

Then by the estimates (3.13) and (3.15) we can prove the desired result (3.10). O

144



Now we give one concrete case to verify the condition (3.9). Consider the case
K ={ue L*(J;L*(Q)): u(z,t) > 0}. Let vj, in Theorem 3.1 be such that v, = Il,u,
where

Mywleer = /w/|7'| Yw e LQ(Q),

where |7| is the measure of the element 7. Then v, = Iyu € K}, and

(5" (Un) + B* Zn,vn, — w)| = |(§'(Un) + B* Zy, Tyu — u)]
= (' (Un) + B*Zn — Ty (j'(Un) + B*Z3), Iy, (u — Up) — (u — Uy))|

< Y helldU) + B* Znll ) llu = Unll pagr).-
TETH

Hence, the condition (3.9) in Theorem 3.1 is satisfied.

In order to estimate the error || Z; — z(Uh)H%Z(J_LQ(Q)), we need the following well
known stability results for the dual equations

& — div(A*VE) + & (y(Un)E =0, =€ Q,t € [t*,T],
(3.16) €|dQ =0, te [t*,T],
{(x,t*) = gO(x)v T € Qv

and

—G —div(AV() + ¢ =0, =€ Q,te]0,t],
(3.17) C|aQ =0, te [O,t*],
C(z,t") = Co(z), r € Q.

Lemma 3.1. Let £ and ¢ be the solutions of (3.16) and (3.17) respectively [9].
Let Q2 be a convex domain. Then

[l 0P d < Cléalie, Ve e (7]
T
[ 1weP st < ol
T
[ [ te= e ara < Cleolsa,
t* TQ
/t* /Q |t — t*||5t|2dxdt < C”fo”%z(g)a
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and

[ e 0P 4z < CllGla Ve el

.
//|V§|2dxdt<C’||C0H%2(Q)7
0JQ
.
//ﬁ—ﬂw%ﬁhﬁéﬂMﬁmw
0JQ

o
[ [1e=rla dsde < Claalag,
0Jo
where | D?¢| = max{|0%¢/0x;0x;|, 1 < i, j < 2}, and |D*(| is defined similarly.
Next, we recall Gronwall’s Lemma [24].

Lemma 3.2. Let f and g be piecewise continuous nonnegative functions defined
on 0 <t <T, g being non-decreasing. If for each t € J,

(3.18) f@<ﬂﬂﬁéﬂ®®

then f(t) < elg(t).
Now, we estimate the errors Y;, — y(Up) and Py, — p(Up).
Theorem 3.2. Let (P, Yh, Qn, Zn,Un) and (p(Un),y(Un), q(Un), 2(Un),Un) be

the solutions of (2.34)—(2.40) and (2.41)—(2.46), respectively. Then there exists a con-
stant C' independent of h such that

6
(3.19) 1Y — y(Uh)||2L°°(J;L2(Q)) +[1Pn— p(Uh)H%Z(J;Lz(Q)) < szgv
i=2
where
i+1
ng = max {/ th/ Yht+d1VPh+¢(Yh) f BUh) dxdt}
1€[1,N—1] P

2 tit . )
" iegﬁ}il]{/ti_l Zw%lw/m Py = V) dwdt};

T

n3 = |In At| max {Zh / Yy + div Ph +¢(Yh) f— BU,)? da:};

te[0,T]

n? = [In At| max {Zh min /(AilPh — Vwy,)? dx};

te[0.T wneWy, /.
m=|f- 0.0 22) + 1Po = PallZ2(0. .12 ()
+ [1¥Yn — Yh||2L2(O,t*;L2(Q)) + llyg (x) — yo(x)”QL?(Q)'
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Proof. Fori=1,2,...,N, we define pi as
(3.20) (A™'pt o) — (yh,dive,) =0 Vo, € Vi,
Then from (3.20) we deduce that
(3.21) (A 'pit o) — (v ! dive,) =0 Vo, € V.

Combining (2.34), (3.20)—(3.21), and the definitions of Y, and P, we can get the
equality

(3.22) (A_lph,’vh) — (Y, divoy) =0 Vo, € V.
Let ¢ be the solution of (3.17) with (o(x) = (Y5 — y(Up))(z,t*). Then we have

IYi = y(Un)IZ2() = (Ya = y(Un)) (=, ), {(x,17))

- / (Y = y(U)es ©) — (Yh — y(Un), div(AVC))) dt
+A(Mn%¢MWMO&+«%—M%N%%d%W-

Furthermore, by using (2.34)—(2.36), (2.41)—(2.43) and (2.50)—(2.52), we infer that

323) 1% = 9Oy = | (O = 9O O + GT), TO)
+ / (6(Y1). 0) — (B(y(U), 0)) dt
0*
-14 (Vi div (T, (AVO))) dt + (Vi — y(Un))(x, 0), ((x, 0))

- / (Y = ()1 ©) + (div(By — p(U)), )t

+
*

+ [ (A7'Py, I (AVQ)) — (div Py, C)) dt

+*

(O(u(U), ) dt + / (6(V). C) dt

-
*

+ [ (@(Yh) = ¢(Ya), ) dt + (Vi — y(Un))(x,0), {(x, 0))

o— S— >—
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-
/ (Yot + div P, + ¢(Y3,) — f — BU,, ¢) dt
0

*

t
/ (F= 1,0+ (B, — P, v0)) dt

0
+/Ot (Vwy, — APy, AVC — 11, (AVQ)) dt
+A V).0) dt + (Vi — y(Un)) (2,0), ¢(x,0).

When t* € (t;-1,t;], i < 2, then
(3.24) 1(Yn = y(Un)) (@, )72

ta ~ —~ -~
< c/ > w2 /(Yht +div P, + ¢(Y3) — f — BU,)?da dt
to T T

t2
i AP, — Vawy)? de dt
0 Zwinel‘I}Vh[.( h wy)” dz

+C|If - fH%l(O,t*;L?(Q)) +C|| Py — Ph”%?(o,t*;LQ(Q))
+ COlYn = Yal 220,00 12(0)) + Cllvg (2) = yo(2) 1720

When ¢ > 2, then
(3:25) [|(Yn — y(Un))(z,t) 220

c/ ZhQ/ Yie + div Py + ¢(Yy) — f — BU,)? dz dt

ti—2 -

+C‘1n

*

tE%lzti;XQ {Z h / Yht * div Ph * ¢(Yh) fA_ BUh)Q dx}

i A7lp, — 2
—I-C'/ wagll/h/T( w — Vwp)® da dt

ti—2 -

hZ . (AP, — 2d
e A0 iy [ B vunas
+ CIf = fllZr (0,00 220)) + Ol Py — PullZ2 0,022 ()
+C|Yn — Yh"%z(o,t*;LQ(Q)) + C||y6‘(x) - yO(x)H%Z(Qy

+C‘lnt

Hence,

6
(3.26) 1Y — y(Uh)||2Loo(J;L2(Q)) < 02771‘2-

=2
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Similarly to Theorem 3.2 of [5], we have derived the estimate

(3:27) 1P = p(Un) 12,20 < CUF = FIIF2(r20p) + | (Yn = Ya)ell 22200
+ ||Ph - Ph||L2(J;L2(Q)) + Hyo (z) — yo(x)”LQ(Q))'

This proves (3.19). O

Now, we are in the position to estimate the error ||Zh = 2(Un) || 22(s;22(9))-

Theorem 3.3. Let (P, Yh, Qn, Zn,Ur) and (p(Uy),y(Ur),q(Ur), z(Up),Up,) be
the solutions of (2.34)—(2.40) and (2.41)—(2.46), respectively. Then we have the error
estimate

11
(3.28) 1Zn — Z(Uh)||2L°°(J;L2(Q)) + 1Qn — Q(Uh)H%Z(J;m(Q)) < szzv
where 1o — ¢ are defined in Theorem 3.2, and

tit1 - P ~
R [ (=Zp; + di "Yi) Zn — ¢b (V)2 da dt 3
= ([ > [ 2+ v @t 6 T~ () e
2 fit 1 / 2
i e (X, [ st - Y arar

9 4 [, . oD 2 ,
U9|lnAt|tg[1&§]{zT:h7/T( Znt +divQn + &' (Yn)Zn — g5(Ya)) dx},

2 = |In At h2. '/A—l "(Py) — 2dz b
Mo = [In Itg[lggg] Z: 7+ in T( Qn + 91 (Pn) — Vwp)™ dz o5

wp €Wp

i = 11Qn — Qh”%2(J;L2(Q)) +1Pn— Ph||2L2(J;L2(Q))
+ 1Yn — Yh||2L2(J;L2(Q)) +11Zn — ZhH%Z(J;m(Q)) +1(Zn — Zh)tH%Z(J;LZ(Q))-

Proof. Fori=1,2,...,N, we first define ¢, as
(3.29) (A7 g}, vn) = (24, divon) = —(g1(P},), vn)  Yon € Vi
Then from (3.29) we deduce that
(3.30) (A7'g o) — (27 divoy) = —(g1(p) 1), o) Yo, € Vi,
Combining (2.37), (3.30) and the definitions of Z;,, Qp, and Py, we get

(331) (AilQh,’Uh) - (Zh,diV’Uh) = —(gll(Ph),’Uh) Yo, € V.
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Let £ be the solution of (3.16) with &o(x) = (Zn — 2(Up))(z,t*). Then it follows from
(2.37)~(2.39) and (2.44)—(2.46) that

123 = =) sty = (2 — 20,7, 60, £°)
T
= [ (= 20)1.6) = (7 — 2(Un) div(A'VE)
+ (' W(Un)(Zn — 2(Un)), €)) dt

= [ 200 + (a0, 9 + (T )
+ [ ko), 99 - G aiviavenar
+ / f((d(y(%))(zh = 20),€) + (¢ (W(Un) = & (V1)) 20, ) dt.
Furthermore, combining (2.37)(2.39), (2.44)~(2.46) and (2.50)~(2.52), we obtain

(3.32) [1(Zn—2(Un))(@,t")|Z2q)

= [ (=20 )+ (@i¥(@u =) O+ (& (Ta) o))
T

T ~ ~ ~
+ [ (@ ®00). 98~ Wiv Gu ) dt+ [ (@ WU WU =T 7,6

T

- [ G divmave) aes |6 )2~ Z0).6)
T T

= [ 2 i Quer (T 2= g5(T), ) dt = [ (03U ~05(Th).)

+ [ (6 00). VO +(@1. V)t~ [ (47 Quet gl (Po). T (4VE) e

t*

T ~ o~ ~
+ [ (@ 0= 2).6+ @ 0 0~ 2.
= / (—Zne+div Qu+¢' (Vi) Zn — gh(Yn), &) dt

T
+/ (A™'Qu+gi(Pr) — Vwy, AVE—TL,(AVE)) dt
"

T

+ [ )01+ G- @ Ve [ (65(T) - gh(v(U). )

*

T _ T __ .
+ [ @220, d+ [ (@ WU @0) =) Zn€)
= F+Ey+Es+Ey+ Es+ Es.
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To prove (3.28), the first step is to estimate Ey. Let t* € (t;-1,¢;] when i > N — 1;
by Lemmas 2.1-2.2 and Lemma 3.1, we have

T
(3.33) B, = / (—Zne + div Qp, + &' (V) Z — g5(Yn), € — Tn€) dt
t

*

T
<cC / ST = Zo + div O + & (V) 2o — g5Vl ey €L s
t* T

T ~ o~ ~ ~
< C(9) /t Z h? /T(—th +divQn + &' (Ya) Zn — g5(Ya))? da dt

T
+C6/ /|V§|2dxdt
t* JQ

tN - - -
<00 [ SR [ (2t dn Gk 8 T2 )

N-2 T

+COll(Zn — 2(Un) (2, )20

When i < N — 1,
(3.34)

tit1 - o _
E, = / (=Zne +divQn + &' (Yn) Zn — g5(Yn), € — Tpk) dt
t

*

T o~ o~ ~ o~
+ / (= Zns + div O + & (V) Zn — gy(Ti), € — mn) dlt

tit1

tit1 ~ ~ ~ ~
< C/ E | = Zne + div Qn + &' (Yn) Zn — g5(Yi)|l L2(ry hr €] 1 () dE
£ -

T
e / ™0 = Zoe + div G+ ¢ () 2 — 5T | oy 216 oo

tiv1

tita - ~ o~ ~
<0 [T Y0 [k i@+ 62— u(Ti) e
t* T T
T ~ o~ ~ ~
+C(6)/ |t—t*|’12hf_/(—th+dinh+¢’(Yh)Zh—g’Q(Yh))dedt
tit1 r T
tit1 T
+C6/ |V§|2dxdt+C§/ |t—t*|/ |D2¢|? dx dt
t* Q tit1 Q

tit1 ~ ~  ~ ~
<00 [ S0 [t i@t 62— gulTi) e
ti—1 T

T

TA—tt* {Z i /(—th +divQn + ¢' (V) Zn — g5(Yn))? dx}

+COll(Zn — 2(Un) (2, 1)1 Z20)-

+C(§)‘ln

max
t€(tiv1,T)
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Now we estimate Ey. Let t* € (t,_1,t;] again. Similarly, when i > N — 1,
T

(335 Ea= [ (A7'Qu+ gl(Ph) - Vun AVE - IL(AVE) di
t

< C(9) /tN Z min /(AilQh + g1 (Py) — Vwp,)? dz dt

- wp EWp e
+C8[[(Zn — 2(Un)) (2, t)||72(0-
When i < N —1,

(3.36)
tita
d) /1t 1 Z:w?glw /T(Aleh + g1 (Pn) — Vwp,)? dz dt
+ C(é)‘ln At Z h%. min / 1Qn + g\ (Py) — Vwy)? dx
T —t* te[t,+1, wh€Wn J !

+ C6||(Zn — 2(Un))(z, t* )||L2(Q)'

Next we estimate E3, Fy. It follows from Lemma 3.1 that

*

T ~
(337)  Ey= / (6 (p(U)) — 4 (P) + On — Q. VE) dt
CO P = PO e 20y + CONTn — QullZ e o126

+05// |VE|? da dt
-

CO)1Pn — pUn)F 2+ 112y + C (0 )| Qn — QnllZz e+ 112
+05||( n— 2(Un)) (@, t )||L2(Q)7

and

*

CONYn = yUn)1F1 - 12200 + €0 max, {||§($ )72}

0(5)||?h - Yh”%l(t*’T;LQ(Q)) + 0(5)||Yh — y(Uh)||L1(t*,T;L2(Q))
+C0[[(Zn — 2(Un)) (2, 1) |72 (0-

Further, we estimate Fs5, Eg. It follows from Lemma 3.1 that

(338)  Ei= / (g5(V2) — gh(y(UM)), &) dt

T ~
(339) B = / (& (y(UR)(Zn — Zn). )t

¢

CONZn = ZullZ e 1120y +C8 e e, 720}
< CONZn = ZullF e 1i120y) + C8lI(Zn = 2(Un)) (2, )72,
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and

T ~ o~ ~
(340)  Eo= / (& U) (O) — T) 2, €)

¢

CONYa = yUDa e 72200 + o max {1€(z, 720}

C(é)HYh - y(Uh)||i1(t*7T;L2(Q)) + C( )”Yh - Yh”Ll(t*,T;L?(Q))
+ C6[(Zn — 2(Un))(x, t*)H%?(Q)'

Hence, from (3.33)—(3.40) we have that when t* € (¢;_1,%], ¢ > N — 1, then

(3.41) 1(Zn — 2(Un)) (2, )22
C/ > n2 / —Znt + div Qp + ¢ (Ya) Zn — gh(Y3))? da dt
tn
: A—l /P _ 2
+C/N_22w§£‘£l‘/h/7( Qn + 91 (Pn) — Vwp)* da dt

+ C|Yn — y(Uh)”%l(t*,T;Lz(Q)) + |\ Py — p(Uh)||2L2(t*,T;L2(Q))
+CllQn = Qull 2 200y + ClIYA = Yall2a (o 20y

+ClZ - Zh”%?(t*,T;L?(Q))'

When i < N —1,

(342) [[(Zn—2(Un) (2, 1)1 Z2(q)

tit1 ~ ~
Zh / (= Zni+div Qp —gh(Yn))? da dt
ti—1 T
4 . A 1NN V)2
+C‘1nT_ te[rgiiT]{zT:hT/r( Znt+div Qr+¢' (Yn) Zn — 92(Yn)) dx}
tita

Z min /(A_lQh—l—gll(Ph)—th)dedt

ticg o Wh EWr

2 -1 / _ 2
(e {Zh wfénvﬂvh/T Qn+g1(Pn)—Ywp) dx}

+C||Yn _y(Uh)”Ll(t*,T;L?(Q)) +C||Pn— (Uh)”%Z(t*,T;L?(Q))
+C1Qn—=QnllT 2+ 11200y FClIYR =Yl 71 (6 12 ()

+C‘1n

T—t*

+C|Zn— Zh||2L2(t*,T;L2(Q))'
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Then, it follows from (3.41)—(3.42) that

11

(3.43) 1Zn — Z(Uh)H%x(J;m(Q)) < 027712 +C|\Py — p(Uh)l|2L2(J;L2(Q))
i=7

+ ClIYn — y(Un)l|Z 2,22y

Similarly to (3.27), we can prove that

(3.44) || @Qn — Q(Uh)H%?(J;m(Q))
< C(IYh = y(Un)Z2(5,220)) + 1P = DU T 2,120
+1|1Qn — QhH%Z(J;H(Q)) + Y5 - Yh||2L2(J;L2(Q)) +11Zn - ZhH%Z(J;L?(Q))
+1(Zn - Zn)il72(r. 020 + 1P — Pull7(r.020)-

Combining (3.43), (3.44), and Theorem 3.2 yields (3.28). d

Let (p,y,q,z,u) and (Pn,Yn,Qn, Zn,Up) be the solutions of (2.5)—(2.11) and
(2.34)—(2.40), respectively. We decompose the errors as follows:

p—Pp:=e1+e1, e1=p—pUs
y—Yp:=rit+e, m=y—yUs
q—Qni=ce2+ez, e2=q—q(Uy
z2—Zp=rotes, ro=2—2(Un), ex=2z(Up)— 2.

From (2.5)—(2.11) and (2.34)—(2.40), we derive the error equations:

(3.45) (A ey, v) — (ry,dive) =0,
(346)  (rir,w) + (diver,w) + (¢(y) — ¢(y(Un)), w) = (B(u — Un), w),
(3.47) (A7lea,v) = (ro,dive) = —(91(p) — 91(p(Un)), v),
(34.8) (rae, w) + (div 2, w) + (¢'(y)z — ¢ (y(Un))2(Un), w)

= (92(y) — 92(y(Un)), w),

forany v e V,w e W.

Theorem 3.4. Let (p,y,q,z,u) and (p(Up),y(Ur), q(Uy), 2(Un),Ur) be the so-
lutions of (2.5)—(2.11) and (2.41)—(2.46), respectively. There is a constant C' > 0,
independent of h, such that

(3.49) leillzz(rr2@) + Irill e (s2)) < Cllu — Unllrz(s;z2(0))

<
<

(3.50) le2llL2(r;z2(0) + Ir2lle(s.02()) < Cllu = Unllr2(s.02(0)-
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Proof. Part I. Choosing v = ¢; and w = r; as the test functions and adding
the two relations of (3.45)—(3.46), we see

(3.51) (A7 ter,e1) + (r1g,m) = (B(u = Up), 1) = (¢(y) — &(y(Un)), 1)
= (B(u—Un),r1) = (&' (1) (y — y(Un)),m1).

Then, using the e-Cauchy inequality, we find an estimate

(3.52) (A7 er,e1) + (rue,m1) < CllralZ2 ) + 1 B(w = Un)llZzq))-

Note that
10
(rlhrl) 28t||r1HL2(Q)7
then the assumption on A implies

10
20t

Integrating (3.53) in time and since r1(0) = 0, by applying Gronwall’s Lemma we

(3.53) lexlZey + 55, 171l Z2() < Cllrllize) + lu = UnllZao)-

easily obtain the error estimate

(3.54) ||51HL2(J L2() T ||7”1||Loo(J L2(Q) X < Cllu— Uh||L2(J L2(Q))"

This implies (3.49).
Part II. Similarly, choosing v = €2 and w = ry as the test functions and adding
the two relations of (3.47)—(3.48), we obtain

(3.55)  (A7e2,e2) = (rae,72) = (95(y) — 92(y(Un)),72) — (91(P) — 91(P(Up)), 2)
— (&' (y)2 — ¢'(Y(Un)2(Un), 2).
Then, using the e-Cauchy inequality, we find an estimate
_ c
(3.56) (A™'e2,22) + (ras, 72) < C(lIral7a() + Irallizio) + llerlZa) + 5 le2l72(0)-

Note that
ote tha 19

(r2t77‘2) 28t||r2HL2(Q)7
then, using the assumption on A, we verify that

10
357)  leallizi) + 55, Iz < Cllirtliz) + IrallZee) + llenlZege))-

Integrating (3.57) in time and since r9(7T") = 0, by applying Gronwall’s Lemma we
easily obtain the error estimate

(3.58) leallZ2(r.r2c)) + Ir2llZe (in2i)) < Cllw = Unll22s.02(0))-
Then (3.50) follows from (3.58) and the previous statements immediately. O

Collecting Theorems 3.1-3.4, we derive the following result.
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Theorem 3.5. Let (p,y,q, z,u) and (Pn, Yn, Qn, Z1, Up) be the solutions of (2.5)—
(2.11) and (2.34)—(2.40), respectively. In addition, assume that (j'(Uy) + B*Zy)|- €
H*(t) for all T € Tp, (s = 0,1), and that there is a v, € K}, such that

(3.59) |("(Un) + B* Zn,vn —w)| < C > helli'(Un) + B* Znll e rllu = Unll 32
T€Th

Then there exists a constant C' independent of h such that

(3.60) = UnllZ2(s.r200)) + 1y = YalZesz200) + 1P = Palli2(s.020)

11
+ 1z = Znll e rinzay + 1 — Qulliarrzy < C D
=1

where 1 is defined in Theorem 3.1, 1a,...,m¢ are defined in Theorem 3.2, and
N7, ...,m1 are defined in Theorems 3.3.

4. NUMERICAL EXAMPLES

The purpose of this section is to illustrate our theoretical results by introducing
two numerical examples. We use the a posteriori error estimates presented in this
paper as indicators for the adaptive finite element approximation. The optimization
problems were solved numerically by a preconditioned projection algorithm, with
codes developed based on AFEPACK [13]. We consider the following nonlinear
parabolic optimal control problem:

T 1 1
i [ (310 = pal? + 3l = valP + 5l - wl?) e
y+divp+y’ =f+u, p=-Vy, y(@0)=0, z€Q, yloao=0,
—z +divg + 5ytz =y — ya, q=—(Vz+p—pa),
2(x,T)=0, €, zlaga=0.

In our examples, we choose the domain Q = [0,1] x [0,1] and T = 1. Let § be
partitioned into 7 as described in Section 2. We shall use 7; as the control mesh
refinement indicator, and 7, — 76 and 17 — 111 as the state’s and co-state’s ones. For
the constrained optimization problem

(4.1) min S(u),

156



where S(u) is a convex functional on U and K = {u € L*(J;L*(Q)): u > 0 a..
in Q x J}, by using the projected gradient method, the iterative scheme reads
(n=0,1,2,...)

(4.2) b(tnt1/2,0) = b(tn,v) — 0n (S (un),v) Vo e,
Un+1 = Pf{(“nﬂ/z),
where b(+,-) is a symmetric and positive definite bilinear form such that there exist
constants ¢y and c¢; satisfying
(4.4) [b(u, v)| < collullullvlly Yu,vel,
b(u, u) > cilfull?,

and the projection operator Pf(: U — K is defined: For given w € U find Pf(w eK
such that

(4.6) b(Plw — w, Phw — w) = min b(u — w,u — w).
ucK

The bilinear form b(-,-) provides suitable preconditioning for the projection algo-
rithm. An application of (4.2)—(4.3) to the discretized nonlinear parabolic optimal
control problem yields the algorithm

b(u;+1/2,vh) = b(uf“vh) — (Qn(uﬁl + zfl,vh) Yoy € KZ,

(piw’vh) - (y:;ndivvh) =0 Vo, € Vhta

i i—1
Yp — Y . i i i
( niAtn aUJh) + (div p;,, wn) + (yn’S,wh) + (y,(0) — yo, w(0))
= (f' +up,wn) Vw, € Wi,
(qulavh) - (fol,divvh) = —(p; —pa,vp) Yo, € Vhi7
Lb_l _ Z% ivagi—l i—1,4 _i—1
( At ,’U)h) + (le an ’wh) + (5yn Tz 7wh)

+ (25T, wn(T)) = (Yl = ya,wn) Ywn € W,

i _ pbyi i i i
Up iy = Pr(Up 1)), Upiqys Uy € Kj,

where we have omitted the subscript h, and y%(0) and 25 1(T) denote the n-step
projected gradient iteration of 3*(0) and 2*~1(T). The main computational effort
is to solve the four state and co-state equations, and to compute the projection
PIb(u; +1/20 In this paper we use a fast algebraic multigrid solver to solve the state
and co-state equations. Then it is clear that the key to saving computing time is how

to compute Pf(uib +1/2 efficiently. If one uses the C? finite elements to approximate
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the control, then one has to solve a global variational inequality, via, e.g., the semi-
smooth Newton method. The computational load is not trivial. For the piecewise
constant elements, PI”(u;+1/2|T = max(0, avg(uj,, , »)|7), where avg(uj,,, /,)|; is the
average of u;+1/2 over T.

In solving our discretized optimal control problem, we use the preconditioned
projection gradient method with b(u,v) = (u,v)y and a fixed step size ¢ = 0.8.
We now briefly describe the solution algorithm to be used for solving the numerical

examples in this section:

Algorithm

Step 1: Solve the discretized optimization problem with the projection gradient
method on the current meshes and calculate the error estimators o;;

Step 2: Adjust the meshes using the estimators and update the solution on new
meshes, as described.

Now, we present below two examples to illustrate the theoretical results of the
optimal control problem.

Example 1. We set the known functions as follows:

{0.5, r1 + xo > 1.0,

100, 21+ 22 < 1.0,
T

uozl—sin%—smT—l—/\,

y = sin w1 sin a9 sin 7t,
z = sin 7wz sin g sin 7t
u = max(up — z,0),
T COS X1 Sin mxo Sin 7wt
pP=— . .
msinmxy cosTaysinwt )
5 T COS TTx1 SIn mxo Sin 7t
q= . .
msinmx; cosmxasinmt )’
f = msinwzy sin s cos wt + 2wy + y° — u,
ya = (1— 2772)y + 7 sin wxy sin wxo cos wt — 5ytz,
T COS X1 Sin wxo sin 7t
DPa = . . .
7 sin 7wy cos Txo sin wt

In this example, the optimal control u has a strong discontinuity, introduced by wug.
For this problem, we used the uniformly refined mesh to refine the time. Time step
size At = 1/80. We have used uniformly refined time meshes to reduce approximation
errors, since the total L? error in the space variables at each time step is already of
higher order compared with the total approximation L? error. The control function
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u is discretized by piecewise constant functions, whereas the state (y,p) and the
co-state (z,q) were approximated by the lowest order Raviart-Thomas mixed finite
elements.

Figure 1 shows the surfaces of the approximation solution wu, at t = 0.25. In
Table 1, we give numerical error results of u, ¥ and z on uniform and adaptive
meshes with times step 31. It can be found that the adaptive meshes generated
using our error indicators can save substantial computational work, in comparison
with the uniform meshes. For the control variable u, it can be clearly seen from
the adaptive meshes that one may use three times fewer degrees of freedom of u to
produce a given control error reduction. For the state and co-state variables, similar
behavior has been observed. Then it is clear that the adaptive multi-mesh finite
element methods are more efficient.

0.9 4

0.8

0.7 4

0.6

0.5

0.4 -

| / A é“mﬁ
Y
*“m‘w‘"&ﬁ""‘m#‘
0.1+ W&t“\; wa Aﬂ&“ "1
o 4.“«‘:\:@%3‘3?“*%‘“ L

Figure 1. The profile of the approximation solution uy at ¢t = 0.25.

on uniform mesh on adaptive mesh
u y z u y z
nodes 23488 23488 23488 8097 7536 7536
sides 60128 60128 60128 21773 20438 20438
elements 36680 36680 36680 13717 12682 12682
dofs 23488 23488 23488 8097 7536 7536

Total L? error 3.8581e-03 4.2735e-03 3.7356e-03 3.6327e-03 4.1134e-03 3.4846e-03

Table 1. Numerical results of u, y and z on uniform and adaptive meshes with time step 31.
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Example 2. We set the known functions as follows:

0.5, z1+x2 > 1.0,
© 100, z1+2 < 1.0,

. TI1 ]
uozl—smT—smT—l—)\,

u = max(ug — z,0),
y = sin 27y sin 27xe(z1 + x2) sin7t,
z = sin 27wy sin 2wxo(z1 + x2) sin 7t
B (27 cos 2mx1 (1 + x2) + sin 272y ) sin 27xg sin 7t
p=- < (27 cos 2mxa (21 + x2) + sin 27wxs) sin 27z sin 7rt> ’
B (27 cos 2mxy (1 + 2) + sin 2721 ) sin 27w sin 7t
= ( (27 cos 2mxa (21 + x2) + sin 27wxs) sin 271 sin 7rt> ’
f = msin2mxy sin 2wza(x1 + x2) cost — 4w sin 27 (xy + x2) sin 7t
+ 872 sin 27y sin 2rxg (21 + x2) + y° —u,
ya = (1 — 47r2) sin 27y sin 27rxs (21 + x2) sinwt — 5ytz
+ 47 sin 2w (21 + x2) sinwt + 7 sin 27y sin 2wwo (21 + x2) cos e,

B (27 cos 2mxy (1 + 2) + sin 2721 ) sin 27w sin 7t
ba = (27 cos 2mxe (w1 + x2) + sin 27wxs) sin 27z sint )

In Figure 2, we show the profile of the approximation solution u; at t = 0.25.
In Table 2, the mesh information is displayed with L? approximation errors for the
control and the states on the uniform and adaptive meshes with time steps 41. In
the computing, we use 77 as the control mesh refinement indicator, and 72 — 76 and
17 — M1 as the state’s and co-state’s ones in the adaptive finite element method.

on uniform mesh on adaptive mesh
u Y z U Y z
nodes 28718 28718 28718 4596 3797 3797
sides 74652 74652 74652 11624 10585 10585
elements 45974 45974 45974 8323 6947 6947
dofs 28718 28718 28718 4596 3797 3797

Total L? error 1.4623e-04 1.6353e-04 1.4553e-04 1.3210e-04 1.5371e-04 1.3674e-04

Table 2. Numerical results of u, y and z on uniform and adaptive meshes with time step 41.

For the state and co-state variables, it can be clearly seen from the adaptive
meshes that one may use eight times fewer degrees of freedom to produce a given
error reduction. For the adaptive meshes of the control variable u, we can use six
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Figure 2. The profile of the control solution at ¢ = 0.25.

times fewer degrees of freedom to produce a given control error reduction. The
advantage of using the adaptive mesh refinements has been fully justified.

From both the numerical examples, the numerical results show our theoretical
results and the adaptive finite element approximations are obviously more efficient.

5. CONCLUSION AND FUTURE WORKS

In this paper, we derive new a posteriori error estimates in the L>°(.J; L?(£2))-norm
and L2(J; L?(Q))-norm for the mixed finite element solutions of general optimal
control problems governed by nonlinear parabolic equations. The a posteriori error
estimates for the nonlinear parabolic optimal control problems by mixed finite ele-
ment methods seem to be new and are an important step towards developing reliable
adaptive mixed finite element approximation for the optimal control problems.

In our future work, we shall use the mixed finite element methods to deal with non-
linear parabolic integro-differential optimal control problems. Furthermore, we shall
consider a posteriori error estimates and superconvergence of mixed finite element
solutions for nonlinear parabolic integro-differential optimal control problems.
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