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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 1 , P AGES 1 3 1 – 1 5 2

STABILIZATION OF HOMOGENEOUS POLYNOMIAL
SYSTEMS IN THE PLANE

Hamadi Jerbi, Thouraya Kharrat and Khaled Sioud

In this paper, we study the problem of stabilization via homogeneous feedback of single-
input homogeneous polynomial systems in the plane. We give a complete classification of
systems for which there exists a homogeneous stabilizing feedback that is smooth on R2\{(0, 0)}
and preserve the homogeneity of the closed loop system. Our results are essentially based on
Theorem of Hahn in which the author gives necessary and sufficient conditions of stability of
homogeneous systems in the plane.
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1. INTRODUCTION

For affine in the control systems in the form

ẋ = f(x) + ug(x) (1)

where the state x ∈ Rn, the input u ∈ R, f(0) = 0, and f, g are smooth vector fields, the
basic stabilization Lyapunov condition provided in [1, 10, 11] and [12] can be expressed
as follows. There exists a positive definite real function V : Rn −→ R (i. e., V (0) = 0
and V (x) > 0 for x 6= 0 near zero) such that for any x 6= 0 near zero with ∇V.g(x) = 0
it holds ∇V.f(x) < 0. In [1] it was shown that if the above condition is fulfilled, then
the system (1) is stabilizable at the origin by means of a nonlinear feedback law which
is smooth for x 6= 0. The same result was proved independently in [10, 11] and [12],
where the corresponding stabilizing feedback laws are more explicitly identified. One
of the interesting topics in control theory is the stabilization of homogeneous systems
affine in control. The importance of such systems is due to the fact that they model
several phenomena. In addition, under the classical theorem of Massera [9], a vector
field regular enough is asymptotically stable, if the first nonzero term in its Taylor
expansion, which defines a homogeneous vector field, is asymptotically stable. One direct
consequence of this result is: if a nonlinear control system admits a first approximation
stabilizable by a homogeneous feedback, then the original system is also stabilizable by
the same homogeneous feedback. In order to make use of this approximation property
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in the design of locally stabilizing feedbacks for nonlinear systems, the main idea lies
in the construction of homogeneous feedback laws that preserve the homogeneity of
the resulting closed loop system. These laws can be shown to be locally stabilizing
the approximated nonlinear system ([7, 10, 11] and [12]). It was shown in [8] that for
general controllable homogeneous systems, the existence of a stabilizing feedback does
not necessarily imply the existence of a homogeneous stabilizing feedback. It is well
known that homogeneous vector fields of even degree can not be asymptotically stable
at the origin [11]. Accordingly, our results are valid only if the homogeneity degree is
odd.

In this paper, we give a complete characterization of single-input homogeneous sys-
tems in the plane of the form{

ẋ1 = P1(x1, x2) + uQ1(x1, x2)
ẋ2 = P2(x1, x2) + uQ2(x1, x2) (2)

where (x1, x2) ∈ R2, u ∈ R, P1 and P2 being homogeneous polynomials of degree
2k+ 1, Q1 and Q2 are homogeneous polynomials of degree q, with k and q are integers.
The problem is to find a feedback function (x1, x2) 7→ u(x1, x2) which is homogeneous
of degree 2k + 1 − q and asymptotically stabilizes the control system (2). If such a
feedback exists, we say that the system (2) is globally asymptotically stabilizable (GAS)
at the origin. We give some methods for the construction of a homogeneous feedback
which makes the system (2) globally asymptotically stable. Obviously, asymptotic con-
trollability at the origin is a necessary condition for asymptotic stabilizability. For this,
we recall the following: we say that the system (2) is asymptotically controllable at
the origin if for any given (x0

1, x
0
2) ∈ R2, there exists a time-dependent control law u

such that limt→+∞(x1(t), x2(t)) = 0, (x1(t), x2(t)) denoting the solution of the control
system (2), with initial condition (x1(0), x2(0)) = (x0

1, x
0
2). In this paper, the study of

the stabilization via homogeneous feedback of the control system (2) is based essentially
on a theorem given by Hahn in [3], in which the author gives necessary and sufficient
conditions for stability of homogeneous systems in the plane. In [6], the authors give
necessary and sufficient conditions for the existence of a stabilizing homogeneous feed-
back. They give an explicit construction of the stabilizing feedback in the case where
the polynomial functions Q1 and Q2 have no common linear factor and the functions
G and H introduced in definition (5) have no common zeros. In [5], the authors give
a classification of the globally stabilizable systems of the form (2), when Q1 and Q2

have no common linear factor. The form of the feedback considered in this paper is
complicated and hard to compute explicitly. In the present work, the goal is to simplify
this form and to complete the classification of the stabilizability of the system (2) in
the case where Q1 and Q2 have common linear factor and the functions G and H have
common zeros. We treat two cases. In the first case the function G is definite and in the
second one G has at least a linear factor in its factorization.

2. PRELIMINARY RESULTS

Let x = (x1, x2), y = (y1, y2) ∈ R2. We introduce the following notations:
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• 〈xT | yT 〉 =
2∑
i=1

xiyi denotes the Euclidean inner product.

• ‖x‖ =
√
〈xT | xT 〉 denotes the Euclidean norm on R2.

• Let M ∈Mn,p(R), MT denotes the transpose matrix of M .

Definition. Let P : R2 → R2 be a polynomial function. We say that P is homogeneous
of degree d ∈ N, if

P (λx) = λdP (x), ∀λ ∈ R, ∀x ∈ R2.

We recall the following theorem, which gives necessary and sufficient conditions for
the stability of homogeneous systems in the plane and plays an important role in our
study.

Theorem 2.1. (Hahn [3]) Consider the two-dimensional system{
ẋ1 = X1(x1, x2)
ẋ2 = X2(x1, x2) (3)

where X1(0, 0) = 0, X2(0, 0) = 0 and the vector fields X1 and X2 are Lipschitz, contin-
uous and homogeneous of degree p.

Let Φ(x1, x2) = det
(
X1(x1, x2) x1

X2(x1, x2) x2

)
.

The system (3) is asymptotically stable if and only if one of the following conditions
is satisfied:

(i) the system (3) does not have any one-dimensional invariant subspace and

X2(1, 0)
∫ 2π

0

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ < 0,

(ii) the restriction of the system (3) to each of its one-dimensional invariant subspaces
is asymptotically stable, i. e. if the point (ξ1, ξ2) ∈ R2\{(0, 0)} satisfies Φ(ξ1, ξ2) =
0, then 〈(

X1(ξ1, ξ2)
X2(ξ1, ξ2)

)
|
(
ξ1
ξ2

)〉
< 0.

In the following, we give a result which plays an important role in the study of the
stability of the system (3), when it has no one-dimensional invariant subspace.

Proposition 2.2. If Φ(x1, x2) 6= 0 for all (x1, x2) ∈ R2 \ {(0, 0)}, then∫ 2π

0

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ = 2 lim
a→+∞

∫ a

−a

X1(1, s)
X2(1, s)− sX1(1, s)

ds.
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P r o o f . Using the homogeneity of the vector field (X1, X2) and the 2π−periodicity of
the functions cosine and sine, we can easily verify that∫ 2π

0

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ

= 2
∫ π

2

−π
2

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ

= 2 lim
α→π

2
−

∫ α

−α

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ.

We get for 0 < α < π
2∫ α

−α

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ

=
∫ α

−α

cosp+1 θX1(1, sin θ
cos θ ) + sin θ cosp θX2(1, sin θ

cos θ )
cosp+1 θX2(1, sin θ

cos θ )− cosp θ sin θX1(1, sin θ
cos θ )

dθ·

By the change of coordinates u = tan θ, we deduce∫ 2π

0

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ

= 2 lim
a→+∞

∫ a

−a

X1(1, u) + uX2(1, u)
X2(1, u)− uX1(1, u)

du
(1 + u2)

·

Let a > 0, one has∫ a

−a

X1(1, u) + uX2(1, u)
X2(1, u)− uX1(1, u)

du
(1 + u2)

=
∫ a

−a

X1(1, u) + uX2(1, u) + u2X1(1, u)− u2X1(1, u)
X2(1, u)− uX1(1, u)

du
(1 + u2)

=
∫ a

−a

(1 + u2X1(1, u)) + u(X2(1, u)− uX1(1, u))
X2(1, u)− uX1(1, u)

du
(1 + u2)

=
∫ a

−a

(1 + u2)X1(1, u)du
(1 + u2)(X2(1, u)− uX1(1, u))

+
∫ a

−a

u(X2(1, u)− uX1(1, u))
X2(1, u)− uX1(1, u)

du
(1 + u2)

=
∫ a

−a

X1(1, u)
X2(1, u)− uX1(1, u)

du+
∫ a

−a

u

(1 + u2)
du

=
∫ a

−a

X1(1, u)
X2(1, u)− uX1(1, u)

du.

We conclude by∫ 2π

0

cos θX1(cos θ, sin θ) + sin θX2(cos θ, sin θ)
cos θX2(cos θ, sin θ)− sin θX1(cos θ, sin θ)

dθ = 2 lim
a→+∞

∫ a

−a

X1(1, u)
X2(1, u)− uX1(1, u)

du.

�
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Now, we consider the homogeneous polynomial system{
ẋ1 = P1(x1, x2) + uQ1(x1, x2)

ẋ2 = P2(x1, x2) + uQ2(x1, x2)
(4)

where Q1 and Q2 are homogeneous polynomials of degree q and P1 and P2 are ho-
mogeneous polynomials of degree 2k + 1. The problem is to construct a homogeneous
feedback of degree 2k + 1− q which stabilizes the system (4).

We define the following polynomial functions which paly an important role in our
study.

G(x1, x2) = det

(
Q1(x1, x2) x1

Q2(x1, x2) x2

)
= x2Q1(x1, x2)− x1Q2(x1, x2);

H(x1, x2) = det

(
P1(x1, x2) x1

P2(x1, x2) x2

)
= x2P1(x1, x2)− x1P2(x1, x2);

F(x1, x2) = det

(
P1(x1, x2) Q1(x1, x2)
P2(x1, x2) Q2(x1, x2)

)
= P1(x1, x2)Q2(x1, x2)− P2(x1, x2)Q1(x1, x2).

(5)

It is easy to remark that G, H and F are homogeneous polynomials of degree q + 1,
2k + 2 and 2k + q + 1 respectively.

Since G is a homogeneous polynomial of degree q + 1, one can write for x2 6= 0:

G(x1, x2) = G(x2(
x1

x2
, 1)) = xq+1

2 G(z, 1), where z =
x1

x2
.

It is clear that g(z) := G(z, 1) is a polynomial function, so one has

G(z, 1) =
p1∏
i=1

(ciz − c̃i)ηi
∏
j

(ajz2 + ãjz + bj)µj ,

with ã2
j − 4ajbj < 0 and ηi and µj lie in N \ {0}. We get

G(x1, x2) = xq+1
2

p1∏
i=1

(
ci
x1

x2
− c̃i

)ηi∏
j

(aj

(
x1

x2
)2 + ãj

x1

x2
+ bj

)µj
=

p1∏
i=1

(cix1 − c̃ix2)ηi
∏
j

(ajx2
1 + ãjx1x2 + bjx

2
2)µj .

As G has only a finite number of zeros on the unit sphere, we denote these zeros by
Ci = (c̃i, ci) = (cos θi, sin θi) with order of multiplicity ηi, for i ∈ I1 := {1, . . . , p1}.
Without loss of generality, we can assume that 0 ≤ θ1 < θ2 < . . . < θp1 < π. We
denote SpG = {C1, C2, · · · , Cp1} the set of the zeros of the function G on the top half
of the unit sphere. Since H is a homogeneous polynomial function of degree 2k + 2,
it has a finite number of zeros on the top half of the unit sphere. We denote (d̃j , dj),
j ∈ I2 := {1, . . . , p2}, the common zeros of the two functions G and H on the top half
of the unit sphere. So, one can write



136 H. JERBI, T. KHARRAT AND K. SIOUD

H(x1, x2) =

 p2∏
j=1

(djx1 − d̃jx2)γj

 H̃(x1, x2), with H̃(c̃i, ci) 6= 0 for all i ∈ I1.

It is clear that the set {(d̃j , dj), j ∈ I2} is a subset of {(c̃i, ci), i ∈ I1}.

Let u(x1, x2) an homogeneous feedback of degree (2k + 1− q). The closed loop system
(4) by the feedback u can be written as{

ẋ1 = P1(x1, x2) + u(x1, x2)Q1(x1, x2) = X1(x1, x2)

ẋ2 = P2(x1, x2) + u(x1, x2)Q2(x1, x2) = X2(x1, x2).
(6)

We recall the function Φ(x1, x2) = x2X1(x1, x2)− x1X2(x1, x2).
It is clear that Φ(x1, x2) = H(x1, x2) + u(x1, x2)G(x1, x2).
Since u(x1, x2) is homogeneous of degree 2k + 1− q, we get the function Φ is homo-

geneous of degree 2k + 2. From Theorem 2.1, the function Φ plays an important role
in the study of the stability of the closed loop system (6). Moreover to determine a
feedback u(x1, x2) which stabilizes the system (4), we construct a function Φ satisfying
the following conditions:

(A1) The function Φ is C∞ in R2 \ {(0, 0)} and homogeneous of degree 2k + 2;

(A2) The functions (cix1 − c̃ix2)ηi divide Φ(x1, x2)−H(x1, x2) for all i ∈ I1;

(A3) If the set of points ξ ∈ R2 \{(0, 0)} such that Φ(ξ) = 0 is non empty and the point
ξ = (ξ1, ξ2) satisfies Φ(ξ) = 0, then 〈(X1(ξ), X2(ξ))T | (ξ)T 〉 < 0.

Proposition 2.3. (Jerbi and Kharrat [6]) Let ξ = (ξ1, ξ2) ∈ R2\{(0, 0)}. If Φ(ξ1, ξ2) =
0 and F(ξ1, ξ2) 6= 0, then the subset

Γ = {(x1, x2) ∈ R2, such that ξ1x2 − ξ2x1 = 0}

is invariant by the closed loop system (6) and one has

〈(X1(ξ1, ξ2), X2(ξ1, ξ2))T |(ξ1, ξ2)T 〉 = −F(ξ1, ξ2)
G(ξ1, ξ2)

(ξ2
1 + ξ2

2).

Remark 2.4. If Φ(ξ1, ξ2) = 0 and F(ξ1, ξ2) 6= 0, then G(ξ1, ξ2) 6= 0.

Indeed, if Φ(ξ1, ξ2) = 0 and G(ξ1, ξ2) = 0, then H(ξ1, ξ2) = 0. We get by the defi-

nition of the functions G and H the family of vectors
{(
Q1(ξ1, ξ2)
Q2(ξ1, ξ2)

)
,

(
ξ1
ξ2

)}
and{(

P1(ξ1, ξ2)
P2(ξ1, ξ2)

)
,

(
ξ1
ξ2

)}
are repectively dependant. This implies F(ξ1, ξ2) = 0.

The following theorem gives sufficient conditions for the global asymptotic stabiliza-
tion of the system (4).
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Theorem 2.5. If there exists a function Φ satisfying to conditions (A1), (A2) and (A3),
then the feedback

u(x1, x2) =
Φ(x1, x2)−H(x1, x2)

G(x1, x2)
if (x1, x2) 6= (0, 0)

is C∞ on R2 \ {(0, 0)} homogeneous of degree 2k + 1− q and stabilizes the system (4).

P r o o f . A simple computation gives

Φ(x1, x2) = det

(
X1(x1, x2) x1

X1(x1, x2) x2

)
= H(x1, x2) + u(x1, x2)G(x1, x2),

where (X1, X2) is the vector field of the closed loop system (6). By assumption (A3), if
the point ξ = (ξ1, ξ2)T ∈ R2\{(0, 0)} satisfies Φ(ξ) = 0, then 〈(X1(ξ), X2(ξ))T | (ξ)〉 < 0.

By Theorem 2.1, the closed loop system (6) is globally asymptotically stable at the
origin. �

3. CONSTRUCTION OF THE FUNCTION Φ(X1, X2)

We use the numerical data P1(x1, x2), P2(x1, x2), Q1(x1, x2) and Q2(x1, x2) to compute
the functions G(x1, x2), H(x1, x2), F(x1, x2) and their zeros and to construct explicitly
the desired functions Φ. We have two cases; in the first one, we treat the case when the
function G(x1, x2) is definite i. e. it has no zeros on the unit sphere. In the second one,
we suppose that G(x1, x2) has at least a linear factor in its factorization i. e. G has zeros
on the unit sphere.

3.1. Case when the function G(x1, x2) is definite

We recall that G(x1, x2) = x2Q1(x1, x2) − x1Q2(x1, x2) and SpG is the set of the zeros
of G on the top half of the unit sphere.
In this subsection, we consider the case where the function G(x1, x2) is definite and
Sp(G) = ∅.

Theorem 3.1. If there exists a point M = (m1,m2) such that G(M)F(M) > 0, then
the function

Φ(x1, x2) = (m2x1 −m1x2)2k+2

satisfies to conditions (A1), (A2) and (A3), and the feedback

u(x1, x2) =
Φ(x1, x2)−H(x1, x2)

G(x1, x2)

is C∞ on R2 \ {(0, 0)}, homogeneous of degree 2k + 1− q and stabilizes the system (4).

P r o o f . It is clear that Φ is homogeneous of degree 2k + 2, G(x1, x2) is definite, the
point M satisfies Φ(M) = 0 and

〈(X1(m̃,m), X2(m̃,m))T |(m̃,m)T 〉 = −F(m̃,m)
G(m̃,m)

(m2 + m̃2) < 0.



138 H. JERBI, T. KHARRAT AND K. SIOUD

So according to Theorem 2.5, the feedback

u(x1, x2) =
Φ(x1, x2)−H(x1, x2)

G(x1, x2)

is C∞ on R2 \ {(0, 0)}, homogeneous of degree 2k + 1− q and stabilizes the system (4).
�

If G(x1, x2)F(x1, x2) ≤ 0 for all (x1, x2) ∈ R2 \ {(0, 0)}, then we can not construct
a function Φ satisfying to conditions (A1), (A2) and (A3). So we look for a feedback
function u such that the closed loop system satisfies to condition (i) of Theorem 2.1. We
have the following result.

Theorem 3.2. Suppose that G(x1, x2)F(x1, x2) ≤ 0 for all (x1, x2) ∈ R2 \ {(0, 0)}. We
define

I = lim
a→+∞

∫ a

−a

(1 + s2)pQ1(1, s)− σ
(
(1 + s2)pG(1, s)

)′
(1 + s2)pG(1, s)

ds,

where ((1 + s2)pG(1, s))′ is the derivative of the function s 7→
(
(1 + s2)pG(1, s)),

p = k + 1−q
2 and the constant σ is chosen to satisfy the degree of[

(1 + s2)pQ1(1, s)− σ((1 + s2)pG(1, s)
)′] is equal to 2p+ q−1 and ε = sign(Q2(1, 0)I).

One has the two following cases:

i) If I = 0, then the system (4) is not asymptotically controllable at the origin.

ii) If I 6= 0, then for b = 2n large enough, the feedback u(x1, x2) = bε(x2
1 + x2

2)p

stabilizes the homogeneous system (4).

P r o o f . i) If I = 0, then all the orbits of the equation (ẋ1, ẋ2) = Q(x1, x2) are
periodic. So the vector field P(x1, x2) heads towards outside of these orbits, it follows
that system (4) is not asymptotically controllable at the origin.
ii) If I 6= 0, we choose b = 2n large enough to satisfy

Φ(x1, x2) = H(x1, x2) + bε(x2
1 + x2

2)pG(x1, x2)

is a definite function. This implies that the orbits of the closed loop system (6) by
the feedback u(x1, x2) are spirals. We prove that for n large enough the condition (ii)
of Theorem 2.1 is satisfied. We know that the closed loop system (4) by the feedback
u(x1, x2) is in the form (6), we prove that for n large enough,

X2(1, 0) lim
a→+∞

∫ a

−a

P1(1, s) + u(1, s)Q1(1, s)
H(1, s) + u(1, s)G(1, s)

ds < 0.

Let a > 0, one has∫ a

−a

P1(1, s) + u(1, s)Q1(1, s)
H(1, s) + u(1, s)G(1, s)

ds

=
∫ a

−a

P1(1, s) + u(1, s)Q1(1, s)− σ
(
H(1, s) + u(1, s)G(1, s)

)′
H(1, s) + u(1, s)G(1, s)

ds,
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where σ is chosen to satisfy

degree
(
P1(1, s)− σH′(1, s)

)
≤ 2k

and
degree

(
(1 + s2)pQ1(1, s)− σ((1 + s2)pG(1, s))′

)
≤ 2k.

On the other hand one has for all s,

P1(1, s) + u(1, s)Q1(1, s)− σ
(
H(1, s) + u(1, s)G(1, s)

)′
H(1, s) + u(1, s)G(1, s)

=
P1(1, s) + 2nε(1 + s2)pQ1(1, s)− σ

(
H(1, s) + 2nε(1 + s2)pG(1, s)

)′
H(1, s) + 2nε(1 + s2)pG(1, s)

=
P1(1, s)− σH′(1, s)

H(1, s) + 2nε(1 + s2)pG(1, s)
+

2nε
(
(1 + s2)pQ1(1, s)− σ((1 + s2)pG(1, s))′

)
H(1, s) + 2nε(1 + s2)pG(1, s)

·

By the limit definition, there exists a positive integer n0, such that for all n > n0, for
all s one has

|H(1, s) + 2nε(1 + s2)pG(1, s)| ≥ 2n0(1 + s2)p|G(1, s)| − |H(1, s)| > 0.

Indeed, by the hypothesis G is definite, we get G can be written as a product of def-
inite quadratic forms. This implies that, there exists a positive real γ > 0 such that
|G(x1, x2)| ≥ γ‖x2

1 + x2
2‖q+1, (γ is the smallest eigenvalue of the matrices which define

the quadratic forms of |G|). In addition H is a homogeneous polynomial function of
degree 2k + 2, so it can be written as a product of quadratic forms. This implies that,
there exist two reals δ and µ such that

µ‖x2
1 + x2

2‖k+1 ≤ H(x1, x2) ≤ δ‖x2
1 + x2

2‖k+1, ∀(x1, x2) ∈ R2.

We get, for all s ∈ R

|H(1, s) + 2nε(1 + s2)pG(1, s)| ≥ 2nε(1 + s2)p|G(1, s)| − |H(1, s)|
≥ 2nγ(1 + s2)p(1 + s2)

q+1
2 − δ(1 + s2)k+1

But 2nγ(1 + s2)p(1 + s2)
q+1
2 − δ(1 + s2)k+1 = (2nγ − δ)(1 + s2)k+1.

By the limit definition, there exists an integer n0 such that (2nγ − δ) > 0, for all
n > n0. We get for all n > n0, for all s∣∣∣∣ P1(1, s)− σH′(1, s)

H(1, s) + 2nε(1 + s2)pG(1, s)

∣∣∣∣ ≤ |P1(1, s)− σH′(1, s)|
2n0(1 + s2)p|G(1, s)| − |H(1, s)|

·

We have also

2nε
(
(1 + s2)pQ1(1, s)− σ((1 + s2)pG(1, s))′

)
H(1, s) + 2nε(1 + s2)pG(1, s)

=
ε
(
(1 + s2)pQ1(1, s)− σ((1 + s2)pG(1, s))′

)
2−nH(1, s) + ε(1 + s2)pG(1, s)

·
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Using the same arguments as above, there exists a positive integer n1 such that for all
n > n1, for all s

|2−nH(1, s) + ε(1 + s2)pG(1, s)| ≥ (1 + s2)p|G(1, s)| − 2−n1 |H(1, s)| > 0.

So for all n > n1, for all s, one has∣∣∣∣∣ε
(
(1 + s2)pQ1(1, s)− σ((1 + s2)pG(1, s))′

)
2−nH(1, s) + ε(1 + s2)pG(1, s)

∣∣∣∣∣ ≤ |(1 + s2)pQ1(1, s)− σ
(
(1 + s2)pG(1, s)

)′|
(1 + s2)p|G(1, s)| − 2−n1 |H(1, s)|

Let n2 = max{n0, n1}, we get for all n > n2, for all s

∣∣∣∣∣P1(1, s) + 2nε(1 + s2)pQ1(1, s)− σ
(
H(1, s) + 2nε(1 + s2)pG(1, s)

)′
H(1, s) + 2nε(1 + s2)pG(1, s)

∣∣∣∣∣
≤
|P1(1, s)− σH′(1, s)|+ 2n2 |(1 + s2)pQ1(1, s)− σ

(
(1 + s2)pG(1, s)

)′ |
2n2(1 + s2)p|G(1, s)| − |H(1, s)|

·

Using the dominated convergence theorem, we deduce that

lim
n→+∞

lim
a→+∞

∫ a

−a

(
P1(1, s) + 2nε(1 + s2)pQ1(1, s)− σ

(
H(1, s) + 2nε(1 + s2)pG(1, s)

)′
H(1, s) + 2nε(1 + s2)pG(1, s)

)
ds

= lim
a→+∞

∫ a

−a

(1 + s2)pQ1(1, s)− σ
(
(1 + s2)pG(1, s)

)′
(1 + s2)pG(1, s)

ds.

We get for n large enough,

X2(1, 0) lim
a→+∞

∫ a

−a

X1(1, s)
X2(1, s)− sX1(1, s)

ds < 0.

We conclude that the system (6) is G.A.S. �

Example 3.3. We consider the planar homogeneous system{
ẋ1 = P1(x1, x2) + u(136x3

1 − 691x2
1x2 + 1174x1x

2
2 − 667x3

2)
ẋ2 = P2(x1, x2) + u(80x3

1 − 406x2
1x2 + 689x1x

2
2 − 391x3

2) (7)

with
{
P1(x1, x2) = −110x3

1 + 574x2
1x2 − 999x1x

2
2 + 580x3

2,
P2(x1, x2) = −60x3

1 + 314x2
1x2 − 548x1x

2
2 + 319x3

2.

A simple computation gives

G(x1, x2) = (10x2
1 − 34x1x2 + 29x2

2)(8x2
1 − 27x1x2 + 23x2

2).

It is clear that G is a definite function and I = 0, then all the trajectories of ẋ = Q(x)
are periodic.
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We remark that F(2, 1) = −1 and G(2, 1) = −1, then we can choose

Φ(x1, x2) = (x1 − 2x2)4.

Moreover, one has H(x1, x2) = −424x2x
3
1 + 1122x2

1x
2
2 − 1318x1x

3
2 + 580x4

2 + 60x4
1.

It is easy to verify that the function Φ satisfies to conditions of Theorem 3.1, we deduce
that the feedback

u(x1, x2) =
Φ(x1, x2)−H(x1, x2)

G(x1, x2)

is C∞ on R2 \ {(0, 0)} and stabilizes the system (7).

3.2. Case when the function G(x1, x2) has a linear factor

In this case, Φ can be constructed by following the steps below.
First, we calculate the function G(x1, x2) = x2Q1(x1, x2) − x1Q2(x1, x2) and we

determine the zeros of G on the top half of the unit sphere which we denote Ci =
(c̃i, ci) = (cos θi, sin θi) with order of multiplicity ηi, for i ∈ I1 := {1, . . . , p1}.

Without loss of generality, we can choose and order the θi such that 0 ≤ θ1 < θ2 <
. . . < θp1 < π, and denote θp1+1 = θ1. Denote Si = {r(cos θ, sin θ), θi < θ < θi+1, r ∈
R}.

Second, we compute H(x1, x2) = x2P1(x1, x2)− x1P2(x1, x2).
If Sp(G) ∩ Sp(H) 6= ∅ :

We determine the common zeros of G and H on the unit sphere which we denote

Dj = (d̃j , dj) = (cos θj , sin θj), for j ∈ I2 := {1, . . . , p2}.

So, one can write

H(x1, x2) =
p2∏
j=1

(djx1 − d̃jx2)γj H̃(x1, x2),

with H̃(Ci) 6= 0 for all i ∈ I1.
Now, we introduce the following notations, for j ∈ I2,

βj = 〈P(Dj)|Dj〉, αj = 〈Q(Dj)|Dj〉.

Remark 3.4. All straight line 〈Dj |(x1, x2)〉 = 0 is invariant by the open loop system
(4) and in the case when αj = 0 and βj ≥ 0, the system (4) is not asymptotically
controllable at the origin.

Remark 3.5. The origin of the homogeneous system (4) and the system described by

(ẋ1, ẋ2)T = (x2
1 + x2

2)pP(x1, x2) + uQ(x1, x2), (8)

where (x1, x2) ∈ R2 and p is a positive integer, are of the same nature. Indeed, if
u(x1, x2) is a homogeneous feedback of degree 2k + 2p + 1 − q, which is continuous
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on R2 \ {(0, 0)} and stabilizes the system (8), then v(x1, x2) =
1

(x2
1 + x2

2)p
u(x1, x2) is

continuous on R2 \ {(0, 0)} and stabilizes the system (4) and inversely the same result
holds. So without loss of generality we can suppose that 2k + 1 > q.

Proposition 3.6. (Jerbi and Ould Maaloum [5]) Let {(d̃j , dj), j ∈ I2} the set of
the common zeros of G and H on the top half of the unit sphere. If the subset {j ∈
I2 such that αj = 0 and βj ≥ 0} is empty, then there exists an homogeneous function
f of degree 2k + 1− q such that (P̃1, P̃2) = (P1,P2) + f (Q1,Q2) satisfies

〈(P̃1(d̃j , dj), P̃2(d̃j , dj))T |(d̃j , dj)T 〉 < 0, for all j ∈ I2.

P r o o f . Let

f : R2 \ {(0, 0)} → R
(x1, x2) 7→ −a(x2

1 + x2
2)k−q(x1Q1(x1, x2) + x2Q2(x1, x2))

and f(0, 0) = 0, where a is a positive real which will be chosen later. It is clear that f
is homogeneous of degree 2k + 1− q.

Let j ∈ I2, since G(Dj) = 0 and H(Dj) = 0, we get Q(Dj) = αjDj and P(Dj) =
βjDj . So

〈P(Dj) + f(Dj)Q(Dj)|Dj〉

= 〈βjDj − a(d̃2
j + d2

j )
k−q d̃jQ1(d̃j , dj) + djQ2(d̃j , dj)

d̃2
j + d2

j

αjDj |Dj〉

= βj − aα2
j .

Finally, if we choose a = ( sup
j∈I2αj 6=0

βj
α2
j

) + 1, we get

〈(
P1(d̃j , dj) + f(d̃j , dj)Q̃1(d̃j , dj)
P2(d̃j , dj) + f(d̃j , dj)Q̃2(d̃j , dj)

)
|
(
d̃j
dj

)〉
< 0,

for all j ∈ I2. �

Remark 3.7. If G = 0 and H 6= 0 (resp. G 6= 0 and H = 0), then all zeros of H (resp.
G) are the common zeros of H and G. In this case, if the subset {j ∈ I2 such that αj =
0 and βj ≥ 0} is empty, then the function f defined in the proof of Proposition 3.6 is
the stabilizing feedback of the system (4).

If G = 0 and H = 0, then there exist homogeneous polynomial functions P1 and Q1

of degree 2k and q − 1 respectively such that

(P1,P2)(x1, x2) = P1(x1, x2)(x1, x2), and (Q1,Q2)(x1, x2) = Q1(x1, x2)(x1, x2).

Proposition 3.8. If G = 0 and H = 0, then the system (4) is globally asymptotically
stable by a homogeneous feedback of degree 2k + 1 − q if and only if the following is
satisfied: for all (x1, x2) ∈ S1, one has {Q1(x1, x2) = 0⇒ P1(x1, x2) < 0}.
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P r o o f . If G(x1, x2) = 0 and H(x1, x2) = 0 for all (x1, x2) ∈ R2, then for all u(x1, x2)
a homogeneous feedback of degree 2k+1−q, the straight line passing through any point
(x1, x2) ∈ R2 \{(0, 0)} is invariant by the closed loop system (6). According to Theorem
2.1, a necessary condition of stability is

P1(x1, x2) + u(x1, x2)Q1(x1, x2) < 0, for all (x1, x2) ∈ R2 \ {(0, 0)}.

We have two cases.

i) If there exists (x1, x2) ∈ S1 such that Q1(x1, x2) = 0 and P1(x1, x2) ≥ 0, then the
system (4) can not be asymptotically stabilizable by a homogeneous feedback of degree
2k + 1− q.

ii) If for all (x1, x2) ∈ S1, one has {Q1(x1, x2) = 0⇒ P1(x1, x2) < 0}, then the feedback
function defined by

u(x1, x2) = −a(x2
1 + x2

2)k−q+2Q1(x1, x2),

where a is a real which will be chosen later, stabilizes the system (4).

Denote ∆ = {(x1, x2) ∈ S1 such that Q1(x1, x2) = 0}. We know that Q1 is ho-
mogeneous of degree q − 1, we deduce that the set ∆ contains a finite number of
points Ni = (cos θi, sin θi) in S1, i ∈ {1, . . . , d}; These points can be ordered as fol-
low 0 ≤ θ1 < θ2 < . . . < θd < 2π and θd+1 = θ1.

Let i ∈ {1, . . . , d}; By continuity of P1 and the fact that P1(Ni) < 0, there exists
δi > 0 such that θi−1 < θi − δi < θi + δi < θi+1 and P1(x1, x2) < 0 for all (x1, x2) ∈
{r(cos θ, sin θ), r > 0, θ ∈]θi − δi, θi + δi[}.

Denote Λ = {(cos θ, sin θ), θ 6∈]θi − δi, θi + δi[, for all i}. Λ is a compact set and for
all (x1, x2) ∈ Λ, one has Q1(x1, x2) 6= 0. So, we can choose

a = sup
(x1,x2)∈Λ

(
P1(x1, x2)
Q2

1(x1, x2)

)
We can easily verify that

P1(x1, x2) + u(x1, x2)Q1(x1, x2) < 0, for all (x1, x2) ∈ R2 \ {(0, 0)}.

We conclude that the closed loop system (6) is globally asymptotically stable at the
origin. �

Now to simplify the notations, we redefine

u := u+ f and (P1,P2) := (P1,P2) + f (Q1,Q2),

where f is the function introduced in the proof of Proposition 3.6. The system (4)
becomes {

ẋ1 = P1(x1, x2) + uQ1(x1, x2)

ẋ2 = P2(x1, x2) + uQ2(x1, x2)
(9)
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which satisfies to the following condition〈(
P1(d̃j , dj)
P2(d̃j , dj)

)
|
(
d̃j
dj

)〉
< 0, for all j ∈ I2. (10)

Denote D(x1, x2) :=
∏p2
j=1(djx− d̃jy)γj , we get H(x1, x2) := D(x1, x2)H̃(x1, x2).

Let λi = H̃(c̃i, ci) 6= 0, for i ∈ {1, · · · , p1) and λp1+1 = H̃(−c̃1,−c1) = ςλ1 (where
ς = (−1)degree( eH) ). If we choose the feedback law u(x1, x2) such that u(Dj) = 0, then
the restriction of the system (9) on the straight line 〈(x1, x2)|Dj〉 = 0 is asymptotically
stable. So we can choose the function u, which verify u(Dj) = 0, in the following form

u(x1, x2) = D(x1, x2)ũ(x1, x2).

The function Φ becomes

Φ(x1, x2) = D(x1, x2)
(
H̃(x1, x2) + ũ(x1, x2)G(x1, x2)

)
.

We denote
Φ̃(x1, x2) = H̃(x1, x2) + ũ(x1, x2)G(x1, x2). (11)

Remark 3.9. i) If Sp(G) ∩ Sp(H) = ∅, then Φ̃ = Φ.

ii) The function Φ̃ must be chosen to satisfy G divide Φ̃− H̃.

In the following, we give the necessary steps for the construction of the zeros of the
function Φ̃.

Lemma 3.10. Let i ∈ {1, · · · , p1}. If H̃(Ci)H̃(Ci+1) < 0, then there exists a point
Mi = (m̃i,mi) lie in the sector Si such that Φ̃(Mi) = 0.

P r o o f . Since Φ̃(Ci) = H̃(Ci) for all i ∈ I1, one has: if H̃(Ci)H̃(Ci+1) < 0, then there
exits a point Mi = (m̃i,mi) lie in the sector Si such that Φ̃(Mi) = 0. This is equivalent
to the assumption Φ(Mi) = 0. �

In order to construct a function Φ satisfying to condition (A3), we must choose a
point Mi in the sector Si such that F(m̃i,mi)G(m̃i,mi) > 0.

We recall that λi = H̃(c̃i, ci) 6= 0, for i ∈ {1, · · · , p1}.

Proposition 3.11. Suppose that the system (9) is stabilizable by a homogeneous feed-
back of degree 2k+ 1− q. If λiλi+1 < 0, then there exists a point M = (m̃,m) ∈ S1 ∩Si
in the top half of the unit sphere such that F(M)G(M) > 0.

P r o o f . Let u(x1, x2) be a homogeneous feedback of degree (2k + 1 − q) which stabi-
lizes the control system (9). The closed loop system (9) by the homogeneous feedback
u(x1, x2) can be written as:{

ẋ1 = P1(x1, x2) + u(x1, x2)Q1(x1, x2) = X1(x1, x2)

ẋ2 = P2(x1, x2) + u(x1, x2)Q2(x1, x2) = X2(x1, x2).
(12)
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We recall that Φ(x1, x2) = x2X1(x1, x2)− x1X2(x1, x2).
It is clear that

Φ(x1, x2) = H(x1, x2) + u(x1, x2)G(x1, x2)
= D(x1, x2)

(
H̃(x1, x2) + ũ(x1, x2)G(x1, x2)

)
.

Since u(x1, x2) is homogeneous of degree 2k + 1 − q, it follows that Φ is homogeneous
of degree 2k + 2 and Φ̃ is homogeneous of degree 2k + 2 − degree(D). Using the fact
that G(Ci) = 0 and G(Ci+1) = 0, it follows that Φ̃(Ci)Φ̃(Ci+1) = λiλi+1 < 0. So there
exists M = (m̃,m) ∈ S1 ∩ Si on the top half of the unit sphere such that Φ̃(M) = 0,
which implies Φ(M) = 0. From the form of the function Φ, one has X(M) = νM where
ν = −F(M)G(M). By hypothesis, the closed loop system (12) is asymptotically stable,

so
〈(

X1(m̃,m)
X2(m̃,m)

)
|
(
m̃
m

)〉
< 0, which implies F(M)G(M) > 0. �

In the following, we denote ` the number of the sectors Si satisfying to condition
λiλi+1 < 0.

3.2.1. Case when ` 6= 0:

We have ` ≤ p1. In all of these sectors, we choose a point M on the unit sphere
such that F(M)G(M) > 0. We get ` points Mi = (cosϕi, sinϕi), which we put in order
M1, · · · ,M` such that 0 ≤ ϕ1 < ϕ2 < . . . < ϕ` < π.

Remark 3.12. We recall that λ1 = H̃(c̃1, c1) and λp1+1 = H̃(−c̃1,−c1) = ςλ1, where
ς = (−1)degree( eH). Since H is homogeneous of degree 2k + 2, then in the case where
the degree of D is even, the degree of H̃ is even, ς = 1 and the number of points
Mi is also even and in the case where the degree of D is odd, the degree of H̃ is
odd, ς = −1 and the number of points Mi is also odd. We can deduce that in all
these cases the degree of the homogeneous function D(x1, x2)Z(x1, x2) is even, where
Z(x1, x2) :=

∏`
j=1(mjx− m̃jy).

Example 3.13. Suppose that degree of H̃ is odd. We recall that λi = H̃(c̃i, ci) 6=
0, for i ∈ {1, · · · , p1} and λp1+1 = H̃(−c̃1,−c1) = ςλ1 = −λ1, where ς = (−1)degree( eH).
We suppose more that λi > 0 for i /∈ {4, 5, 8, 14, 17, p1 + 1}.
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λ1 > 0
λ4 < 0

λ5 < 0

λ8 < 0
λ14 < 0

λ17 < 0

λp1+1 < 0

The point Mi defined below lies in the sector Si = {r(cos θ, sin θ), θi < θ <
θi+1, r ∈ R}, when λiλi+1 < 0. In this situation, we have 9 points Mi, i ∈
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{3, 6, 7, 8, 13, 14, 16, 17, p1}, which is odd. In the case when degree of H̃ is even, nec-
essarily one has λp1+1 = λ1 > 0. If we deal with the same situation that λi > 0 for
i /∈ {4, 5, 8, 14, 17}, then one has 8 points Mi, i ∈ {3, 6, 7, 8, 13, 14, 16, 17}, which is
even.

Now, we introduce the function

H(x1, x2) =
H̃(x1, x2)∏̀

j=1

(mjx1 − m̃jx2)

.

It is clear that H(c̃i, ci) > 0 for all i ∈ I1, and this is equivalent to H̃(c̃i, ci)Z(c̃i, ci) > 0
for all i ∈ I1. Without loss of generality, we can suppose that G(1, 0) 6= 0.

Let the following polynomial functions. For s ∈ R,

g(s) := G(s, 1), h̃(s) := H̃(s, 1), Z(s) := Z(s, 1).

Remark 3.14. We can easily remark that Z and g are relatively prime polynomials,
then by the Bézout’s identity, there exist Polynomials U and V in R[X] such that
U(s)Z(s) + V (s)g(s) = 1, for all s ∈ R. We get, for all s ∈ R,

h̃(s)U(s)Z(s) + h̃(s)V (s)g(s) = h̃(s). (13)

Lemma 3.15. There exists a real a > 0 large enough such that h̃(s)U(s) + ag(s)2µ > 0
for all s ∈ R, where µ is an integer chosen to satisfy the degree of the polynomial g(s)2µ

is greater than the degree of h̃(s)U(s).

P r o o f . Denote {si, i ∈ I1} the set of the zeros of g(s). One has Z(si)h̃(si) > 0
for all i ∈ I1; By the fact that U(s)Z(s) + V (s)g(s) = 1, one has Z(si)U(si) = 1
and U(si)h̃(si) > 0 for all i ∈ I1. But the degree of the polynomial function P (s) =
h̃(s)U(s) + g(s)2µ is even, so lims→∞ P (s) = +∞.

Let p1 < p2 < · · · < pm the zeros of P (s). It is clear that P (s) > 0, for all
s 6∈ [p1, pm]. In addition, the set K = {s ∈ [p1, pm] such that P (s) ≤ 0} is compact, so
a1 = mins∈K g(s)2µ > 0.

Let a2 = mins∈[p1,pm] P (s), we get

P (s) + (a− 1)g(s)2µ ≥ a2 + (a− 1)a1, for all s ∈ K.

We conclude by choosing a = 1 + a1−a2
a1

. �

From Remark 3.5, it is sufficient to construct a feedback law which stabilizes the
homogeneous system {

ẋ1 = (x2
1 + x2

2)pP1(x1, x2) + uQ1(x1, x2)
ẋ2 = (x2

1 + x2
2)pP2(x1, x2) + uQ2(x1, x2) (14)

instead of the system (4), where p is a positive integer chosen to satisfy the conditions
of the following theorem.
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Theorem 3.16. Let a > 0 large enough and µ an integer chosen to satisfy

h̃(s)U(s) + ag(s)2µ > 0 for all s ∈ R.

We define the function

ϕ(s) =
Z(s)D(s)((1 + s2)ph̃(s)U(s) + ag(s)2µ)

1 + g(s)2ν
,

where p is an integer satisfying{
0 < p ≤ q + 1,
degree(Z(s)D(s)) + 2(q + 1)µ− 2(q + 1)ν = 2k + 2 + 2p.

The homogeneous polynomial function

Φ(x1, x2) = x2k+2+2p
2 ϕ(

x1

x2
)

satisfies to conditions of Theorem 2.5.

P r o o f . From remark 3.12, it is clear that degree of (Z(s)D(s)) is even, then using

the Euclidean division of k + 1− degree(Z(s)D(s))
2

by q + 1 we can write

k + 1− degree(Z(s)D(s))
2

= (q + 1)r + p1 = (q + 1)(r + 1)− p,

where p is an integer satisfying 0 < p ≤ q+1. Next, we construct a homogeneous feedback
for the homogeneous system (14). If we choose µ an integer such that µ > r+ 1 and the
degree of the polynomial g(s)2µ is greater than the degree of h̃(s)U(s), then there exists
a real a > 0 large enough such that h̃(s)U(s) + ag(s)2µ > 0 for all s ∈ R. Let

ϕ(s) =
Z(s)D(s)((1 + s2)ph̃(s)U(s) + ag(s)2µ)

1 + g(s)2ν
,

where ν = µ− r − 1. A simple computation gives

(1 + g(s)2ν)ϕ(s) = Z(s)D(s)((1 + s2)ph̃(s)U(s) + ag(s)2µ).

According to the equation (13), one has

(1 + s2)ph(s)U(s)Z(s) + (1 + s2)ph(s)V (s)g(s) = (1 + s2)ph(s).

Then

(1 + g(s)2ν)ϕ(s) = (1 + s2)ph(s)− (1 + s2)ph(s)V (s)g(s) + aZ(s)D(s)g(s)2µ.

Finally

ϕ(s)− (1 + s2)ph(s) = g(s)
(
aZ(s)D(s)g(s)2µ−1 − g(s)2ν−1ϕ(s)− (1 + s2)ph(s)V (s)

)
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and the function g(s) divide ϕ(s)− h(s)(1 + s2)p. Using the condition

degree(Z(s)D(s)) + 2(q + 1)µ− 2(q + 1)ν = 2k + 2 + 2p,

we deduce Φ(x1, x2) = x2k+2+2p
2 ϕ(x1

x2
) is homogeneous of degree 2k+2+2p. We can easily

remark that g(s) := G(1, s) divide ϕ(s)− h(s)(1 + s2)p := Φ(1, s)− (1 + s2)pH(1, s) and
G(x1, x2) divide Φ(x1, x2)−(x2

1 +x2
2)pH(x1, x2). Moreover, the function Φ is constructed

to satisfy Φ(x1, x2) = 0 if and only if D(x1, x2) = 0 and Z(x1, x2) = 0.
If D(x1, x2) = 0, then u(x1, x2) = 0; This implies, by the inequality (10),〈(

X1(x1, x2)
X2(x1, x2)

)
|
(
x1

x2

)〉
=
〈(
P1(x1, x2)
P2(x1, x2)

)
|
(
x1

x2

)〉
< 0.

�

3.2.2. Case when ` = 0:

If ` = 0, then λiλi+1 > 0 for all i. We deal with two cases;

1) Sp(G) ∩ Sp(H) 6= ∅. In this case we choose Z(x1, x2) = 1 and U(x1, x2) = 1 and
the stabilizing feedback of the system (14) can be computed using Theorem 3.16 as

Φ(x1, x2) = D(x1, x2)×

(
(x2

1 + x2
2)pH̃(x1, x2) + aG(x1, x2)2µ

x
2(q+1)ν
2 + G(x1, x2)2ν

)

with degree(D(s)) + 2(q + 1)(µ− ν) = 2k + 2 + 2p.

2) Sp(G) ∩ Sp(H) = ∅. We deal with two subcases;

a) If there exists a point M such that F(M)G(M) > 0, it follows that the system
(9) is G.A.S. by a homogeneous feedback and it can be computed using Theorem 3.16
with the following choice

Z(x1, x2) = (mx1 − m̃x2)2 and D(x1, x2) = 1.

b) If for all M ∈ R2, one has F(M)G(M) ≤ 0, we denote αi = 〈Q(Ci)|Ci〉. We deal
with the following cases:

• If there exist i, j ∈ I1 such that αiαj < 0, then the system (9) is not asymptotically
controllable at the origin (see [6]).

• If there exist i, j ∈ I1 such that αi 6= 0 and αj = 0. Since F(x1, x2)G(x1, x2) ≤ 0
and F(Ci) = αiλi 6= 0, one can write

G(x1, x2) = (cix1 − c̃ix2)2G1(x1, x2).

According to the condition Sp(G) ∩ Sp(H) 6= ∅, with D(x1, x2) = (cix1 − c̃ix2)2, we can
compute the homogeneous feedback v(x1, x2) for the system{

ẋ1 = (cix1 − c̃ix2)2P1(x1, x2) + v(x1, x2)Q1(x1, x2)
ẋ2 = (cix1 − c̃ix2)2P2(x1, x2) + v(x1, x2)Q2(x1, x2).
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The set of the homogeneous vectors fields which are GAS at the origin is an open set,
then for ε > 0 small enough one has the homogeneous system{

ẋ1 = (cix1 − c̃ix2)2P1(x1, x2) + v(x1, x2)Q1(x1, x2) + ε(x2
1 + x2

2)P1(x1, x2)
ẋ2 = (cix1 − c̃ix2)2P2(x1, x2) + v(x1, x2)Q2(x1, x2) + ε(x2

1 + x2
2)P2(x1, x2)

is GAS at the origin. Finally, the system{
ẋ1 = P1(x1, x2) + v(x1,x2)

(cix1−c̃ix2)2+ε(x2
1+x2

2)
Q1(x1, x2)

ẋ2 = P2(x1, x2) + v(x1,x2)
(cix1−c̃ix2)2+ε(x2

1+x2
2)
Q2(x1, x2)

is GAS at the origin.

• If αi = 0 for all i, we compute

I = lim
a→+∞

∫ a

−a

Q1(1, s)
G(1, s)

ds.

i) If I = 0, then all the orbits of the system (ẋ1, ẋ2) = Q(x1, x2) are periodic and the
vector fields P(x1, x2) head towards outside of these orbits. It follows that the system
(9) is not asymptotically controllable at the origin.

ii) In the case where I 6= 0 and G(x1, x2)F(x1, x2) ≤ 0 for all (x1, x2) ∈ R2 \{(0, 0)},
without loss of generality we can suppose G(x1, x2) ≥ 0.

If H(Ci)I ≤ 0, then the system (9) is not asymptotically controllable at the origin.
If H(Ci)I > 0, according to the hypothesis that for all (x1, x2) ∈ R2 \ {(0, 0)} the

function G(x1, x2) ≥ 0, one has q is odd and for b large enough we get

Φ(x1, x2) = H(x1, x2) + bH(Ci)(x2
1 + x2

2)pG(x1, x2)

with 2p + q = 2k + 1, is a definite function. From Theorem 1, the orbits of the closed
loop system (14) by the feedback u(x1, x2) are spirals and for b = 2n large enough one
has

J =
∫ +∞

−∞

P1(1, s) + bH(Ci)(1 + s2)pG(1, s)Q1(1, s)
Φ(1, s)

ds ∼
∫ +∞

−∞

Q1(1, s)
G(1, s)

ds = I.

The closed loop system (14) by the proposed feedback u(x1, x2) = 2nH(Ci)(x2
1 + x2

2)p

yields
X2(1, 0) = P2(1, 0) + 2nH(Ci)Q2(1, 0) = P2(1, 0)− 2nH(Ci)G(1, 0)

Moreover, for n large enough

X2(1, 0)J ∼ −2nH(Ci)G(1, 0)I < 0

The condition (i) of theorem (1) is satisfied and the closed loop system (14) is G.A.S.
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Example 3.17. We consider the planar homogeneous system{
ẋ1 = −2x1 − 6x2 + ux1(2x3

1 + 5x2
1x2 − 13x1x

2
2 + 4x3

2)
ẋ2 = −2x1 − 3x2 + ux1(−x3

1 + 2x2
1x2 + 10x1x

2
2 − 13x3

2) (15)

Denote P = (P1,P2) and Q = (Q1,Q2), where P1(x1, x2) = −2x1 − 6x2, P2(x1, x2) =
−2x1 − 3x2, Q1(x1, x2) = x1(2x3

1 + 5x2
1x2 − 13x1x

2
2 + 4x3

2) and Q2(x1, x2) = x1(−x3
1 +

2x2
1x2 + 10x1x

2
2 − 13x3

2).
It is clear that{
G(x1, x2) = x1(x1 − x2)(x1 + x2)(x1 − 2x2)(x1 + 2x2)
H(x1, x2) = (x1 + 2x2)(2x1 − 3x2).

All the points in SpG are also equilibrium points of the system (ẋ1, ẋ2) = Q(x1, x2).
A simple computation gives

S. pG =
{
C1 =

1√
5

(2, 1), C2 =
1√
2

(1, 1), C3 = (0, 1), C4 =
1√
2

(−1, 1), C5 =
1√
5

(−2, 1)
}

and

SpH =
{

1√
13

(3, 2),
1√
5

(−2, 1)
}
.

The common zeros of G and H are D = 1√
5
(−2, 1).

To construct the stabilizing feedback or the function Φ, we follow the steps below:

• We compute β = 〈(P(D))T |DT 〉 = 1/5 > 0. By the fact that β is positive and D
is also a zero of Φ, we consider a change of feedback law u = u1 + f . The new system
becomes

(ẋ1, ẋ2) = (x2
1 + x2

2)2P(x1, x2) + f(x1, x2)Q(x1, x2) + u1(x1, x2)Q(x1, x2)
= P̃(x1, x2) + u1(x1, x2)Q(x1, x2).

(16)

It is clear that f(x1, x2) = x1 is a homogeneous function of degree one and satisfies
〈(P̃(D))T |DT 〉 = − 43

125 < 0.

• We deal with the new system (16). We recall

P̃1(x1, x2) = −x2x
4
1 − 17x2

2x
3
1 − 8x3

2x
2
1 − 2x4

2x1 − 6x5
2 and

P̃2(x1, x2) = −3x5
1 − x2x

4
1 + 6x2

2x
3
1 − 19x3

2x
2
1 − 2x4

2x1 − 3x5
2.

For the new system one has

H(x1, x2) = x2P̃1(x1, x2)− x1P̃2(x1, x2)
= (x1 + 2x2)(3x5

1 − 5x2x
4
1 + 3x2

2x
3
1 − 4x3

2x
2
1 + 2x4

2x1 − 3x5
2)

= (x1 + 2x2)H̃(x1, x2);
G(x1, x2) = x1(x1 − x2)(x1 + x2)(x1 − 2x2);
Φ(x1, x2) = H(x1, x2) + u1(x1, x2)G(x1, x2).

We compute λi = H̃(Ci), for i ∈ {1, · · · , 4}, we find

λ1 =
1√
5
> 0, λ2 = − 1√

2
< 0, λ3 = −3 < 0 and λ4 = − 5√

2
< 0.
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Since λ1λ2 < 0, then from Proposition 3.11 the system (16) is G.A.S. by an homogeneous
feedback of degree 2k+ 1− q if and only if there exists M = (m̃,m) ∈ S1 ∩S1 in the top
half of the unit sphere such that F(M)G(M) > 0. We can choose M = 1√

13
(3, 2) because

F(M) = 6√
13
G(M); it follows that Z(x1, x2) = 2x1−3x2. We can compute the following

polynomials g(s) := G(s, 1) = s5−5s3+4s, h̃(s) := H̃(s, 1) = 3s5−5s4+3s3−4s2+2s−3
and Z(s) := Z(s, 1) = 2s− 3.

We can easily remark that Z and g are relatively prime polynomials, then by the
Bézout’s identity, there exist polynomials U and V in R[X] such that U(s)Z(s) +
V (s)g(s) = 1.

We get U(s) =
16
105

s4 +
24
105

s3 − 44
105

s2 − 66
105

s− 35
105

, and V (s) = − 32
105

.

A simple computation gives µ = 2, p = 3, ν = 1 and a = 7. These constants satisfies

(s2 + 1)3h̃(s)U(s) + 7g(s)4 > 0, for all s ∈ R.

So, we get

ϕ(s) = Φ(s, 1) =
Z(s)D(s)((1 + s2)3h̃(s)U(s) + 7g(s)4)

1 + g(s)2
.

Finally, the function Φ is given by

Φ(x1, x2) =
(2x1 − 3x2)(x1 + 2x2)(x5

2(x2
1 + x2

2)3H̃(x1, x2)U(x1, x2) + 7G(x1, x2)4)
(x2

1 + x2
2)3(x10

2 + G(x1, x2)2)

with U(x1, x2) = 16
105x

4
1 + 24

105x
3
1x2 − 44

105x
2
1x

2
2 − 66

105x1x
3
2 − 35

105x
4
2, is homogeneous of

degree 6. This let us conclude that the feedback function defined by

u(x1, x2) =
Φ(x1, x2)−H(x1, x2)

G(x1, x2)

stabilizes the system (16).

4. CONCLUSION

In this paper, we study the problem of stabilization of nonlinear control homogeneous
polynomial systems in the plane. We focus on a homogeneous feedback law which
preserve the homogeneity of the closed loop system. Our study is based on Theorem
(2.1) of Hahn, which gives a complete classification of the stability of homogeneous
systems in the plane. Our study is divided in two parts. In the first one, the function
G, defined in (5), is definite i. e. G has no zeros on the unit sphere. In the second one,
the function G has a finite number of zeros on the unit sphere. In each case we study
the possibility of constructing a function Φ which satisfies to conditions (A1) (A2) and
(A3). The construction of such a function Φ allow us to determine a stabilizing feedback
for the system (4).

(Received June 4, 2015)
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