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On matrix Lie rings over a commutative

ring that contain the special linear Lie ring

Evgenii L. Bashkirov, Esra Pekönür

Abstract. Let K be an associative and commutative ring with 1, k a subring of
K such that 1 ∈ k, n ≥ 2 an integer. The paper describes subrings of the general
linear Lie ring gln(K) that contain the Lie ring of all traceless matrices over k.
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1. Introduction and the formulation of main results

This paper addresses a problem which has its origin in group theory, where the
description of linear (matrix) groups lying between two given groups of matrices
led to the creation of a deep and rather branched part of the theory of groups (see,
for instance, [5]). During the recent decade, a number of papers have appeared in
which the similar problems for Lie rings of matrices over commutative associative
rings have been considered ([3], [1], [2], [4]). However, the results in all of these
papers have been obtained under rather rigorous restrictions for the associative
rings, namely, either matrices over the rings could be realized over no smaller ring
([4]), or the associative rings in question are fields, the larger of which being an
algebraic extension of the smaller ([3], [1], [2]). The main result of the present note
establishes that, at least for the Lie rings of all traceless matrices over commutative
associative rings with 1, these restrictions are irrelevant. Roughly speaking, we
show that each matrix Lie ring containing the Lie ring of traceless matrices over
some commutative ring as a subring always contains the Lie ring of traceless
matrices over some, possibly another, commutative ring as an ideal. First let
us agree on notation which will be used throughout the paper and make some
definitions.

All associative rings considered in the paper are assumed to be unitary and all
their subrings have the same identity element 1. Let k be an associative ring. The
multiplicative group of all invertible elements of k is denoted by k×. If a, b ∈ k, we
write [a, b] to denote the Lie product ab − ba. If n ≥ 2 is an integer, then Mn(k)
is as usual the associative ring of all n by n matrices whose entries lie in k. By
the standard matrix unit eij of the ring Mn(k), we understand the matrix with
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the (ij)-th entry equal to 1 and all other entries equal to 0. In the present paper,
the (ij)-th entry of the matrix x ∈ Mn(k) will be designated by xij so that

x =
∑

1≤i,j≤n

eijxij .

If x ∈ Mn(k) and L ⊆ k, then xL denotes the set of all matrices xl with l ∈ L.
Next assume that k is not only associative but also commutative, and let sln(k)
be the set of all matrices in Mn(k) whose trace is 0. Since sln(k) is an additive
subgroup of Mn(k) and is closed under Lie multiplication, it is a Lie ring, the
special linear Lie ring of n by n matrices over k. The set Mn(k) itself forms a
Lie ring under the usual Lie multiplication. This ring is called the general linear
Lie ring and will be denoted by gln(k) in the sequel. In the present paper, we
are interested in the special linear and the general linear Lie rings over various
commutative associative rings. More precisely, we will prove the following.

Theorem 1. Let K be an associative and commutative ring, k a subring of K,
n ≥ 2 an integer and let g be a subring of the Lie ring gln(K) such that g ⊇ sln(k).

Assume that either n ≥ 3, or n = 2 and 2 is invertible in k. Then g can be

written as a sum

g = sln(L) + D,

where L is a subring of K containing k, and D is an abelian Lie ring consisting

of certain diagonal matrices

e11d1 + e22d2 + · · · + enndn

in gln(K) such that di − dj ∈ L for all i, j = 1, 2, . . . , n. In particular, g contains

sln(L) as an ideal.

Applying Theorem 1 to the situation of Lie rings that are intermediate between
two special linear Lie rings over various associative commutative rings allows us
to deduce the following, to some extent, more precise assertion.

Theorem 2. Let K be an associative and commutative ring, k a subring of K,
n ≥ 2 an integer and let g be a subring of the special linear Lie ring sln(K) such

that g ⊇ sln(k). If n is invertible in k, then g = sln(L), where L is a subring of

K containing k.

Note that if n ≥ 3 is not invertible in k, then — as we show in Section 3 —
there exist situations when g normalizes sln(L) not coinciding with it.

2. Proofs of Theorems 1 and 2

For the sake of brevity, let us agree that in the proofs below all integers are
assumed to be members of the collection {1, 2, . . . , n}. By |X | we denote the
cardinality of a set X .
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Proof of Theorem 1: Denote by L the set of nondiagonal elements of all ma-
trices that belong to g. We shall distinguish between two cases which will be
considered separately.

(i) Assume first n ≥ 3. Let α ∈ L. It is claimed that eijα ∈ g for all i 6= j.
Indeed, the relation α ∈ L means that there exists a matrix a ∈ g with ai0j0 = α
for some i0 6= j0. Due to the condition n ≥ 3, one can find an integer s0 which is
distinct from both i0 and j0. Then es0i0 , ej0s0

are in sln(k), hence in g, and the
equation

(1) [es0i0 , [ej0s0
, [ej0i0 , a]]] = ej0i0ai0j0

shows that ej0i0α ∈ g.
If we take this ej0i0α as a and interchange i0 and j0, the argument of the

preceding passage allows us to conclude ei0j0α ∈ g thus establishing the relation
eijα ∈ g whenever

(i) |{i, j} ∩ {i0, j0}| = 2.

It remains to show that eijα ∈ g when

(ii) |{i, j} ∩ {i0, j0}| = 1,

or when

(iii) |{i, j} ∩ {i0, j0}| = 0,

and it is easily seen that it suffices to consider case (ii) only. While considering
this case, one of the following two possibilities may occur:

(a) {i, j} ∩ {i0, j0} = {i0},

(b) {i, j} ∩ {i0, j0} = {j0}.

Consider (a). If i = i0, then it must be shown that ei0jα ∈ g. But we have already
proved that ei0j0α ∈ g. Moreover, j 6= j0 according to the condition defining (a),
so g ∋ [ei0j0α, ej0j ] = ei0jα. Suppose next that j = i0, and hence i 6= j0. Now
i 6= i0, and it must be demonstrated that eii0α ∈ g. But as we have already
established, the relation ei0j0α ∈ g implies ei0iα ∈ g, and therefore eii0α ∈ g by
case (i). Suppose further that possibility (b) takes place. Then ej0i0α ∈ g by
case (i), so the relation eijα ∈ g follows from (a).

Next it is claimed that L is a subring of K. To this end in view, we take
α, β ∈ L and seek to show that both α + β, αβ are in L too. At this place, we
again employ the assumption n ≥ 3 to obtain by the above reasoning that all the
matrices e12α, e12β, e23β are in g. Therefore the matrices

e12α + e12β = e12(α + β), [e12α, e23β] = e13αβ
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also belong to g, showing that α + β, αβ ∈ L as required. Clearly k ⊆ L. Note
then that e1jL ⊆ g for j 6= 1, so

[e1jL, ej1] = (e11 − ejj)L ⊆ g

which completes proving the inclusion sln(L) ⊆ g. Furthermore, according to our
previous considerations, if a is an arbitrary matrix in g, then aijeij ∈ g for all
i 6= j implying

d(a) = e11a11 + e22a22 + · · · + ennann ∈ g.

Therefore,

[d(a), e1j ] = e1j(a11 − ajj) ∈ g,

hence

a11 − ajj ∈ L

by the definition of L. This means that the matrix d(a) normalizes sln(L), and
so every matrix a of g can be written as a sum of a matrix that belongs to sln(L)
and the diagonal matrix d(a) ∈ gln(K) normalizing sln(L) and lying in g. Letting
D be the set of all d(a), when a runs over g, we see that g can be expressed as a
sum of the form required, and hence sln(L) is an ideal of g.

(ii) Assume n = 2. Equation (1) is senseless in this case, and therefore, we use
the condition that 2 ∈ k× instead. Recall that here L is the set of all elements of
K that occupy either position (12) or position (21) in some matrix of g.

If a ∈ g, then g contains the matrix

a′ = [a, e12] = e12(a11 − a22) − (e11 − e22)a21,

whence we conclude that

(2) a11 − a22 ∈ L.

Taking a′ as a yields −2e12a21 ∈ g, and so e12a21 ∈ g since 2 is invertible in k. Also
g contains [e12a21, e21] = (e11 − e22)a21 as well as [ 1

2
e21, (e11 − e22)a21] = e21a21.

Similarly,

e21a12, (e11 − e22)a12, e12a12 ∈ g.

Thus if α, β are arbitrary elements in L, then e12β, e21α are in g, and so g contains

[[e12β, e21α],
1

2
e12] = e12αβ

which means actually that L is a subring of K. In addition, our above argument
shows that e12L, e21L, (e11 − e22)L ⊆ g and thus sl2(L) ⊆ g. Moreover, every
a ∈ g can be written as

a =

(

0 a12

a21 0

)

+

(

a11 0
0 a22

)

,
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where the first summand is in sl2(L) while the second, being in g, normalizes
sl2(L) according to (2). The theorem is proved completely. �

Proof of Theorem 2: By Theorem 1 one can find a subring L of K containing
k such that g = sln(L) + D where D is an abelian Lie ring that consists of some
diagonal matrices normalizing sln(L). It is sufficient to show that D ⊆ sln(L).

Let d be any matrix in D. Write d = e11d1 +e22d2 + · · ·+enndn(di ∈ K). Then
since d normalizes sln(L), we have d1 − dj ∈ L for all j = 2, 3, . . . , n. Adding
yields

n
∑

j=2

(d1 − dj) ∈ L.

But since g is contained in sln(L), the trace of d is 0, so we obtain that the left
hand side of the last expression is

(n − 1)d1−

n
∑

j=2

dj = nd1 −

n
∑

j=1

dj = nd1,

whence nd1 ∈ L. According to our assumption, n−1 is defined in k, hence in L.
Therefore L contains n−1(nd1) = d1 which yields dj ∈ L for all j = 1, 2, . . . , n.
Thus d ∈ sln(L) as we intended to prove. The theorem is proved. �

3. Examples

First we give an example which shows that if n ≥ 3 is noninvertible, under
assumption of Theorem 2 there exist Lie rings of traceless matrices that contain
sln(L) as an ideal but not coincide with sln(R) for any commutative associative
ring R. Indeed, let g be the Lie ring sln(Z) + xZ, where Z is the ring of integers
and

x = e11

1

n
+ e22

1

n
+ · · · + en−1,n−1

1

n
− enn

n − 1

n
.

Then x normalizes sln(Z), hence sln(Z) is an ideal of g. On the other hand, if
g = sln(R) for some ring R, then 1/n ∈ R. So 1/n2 must be also in R and thus
the matrix e12

1

n2 must be in g which is obviously false.
Next we show that if 2 is noninvertible in k, then the part of Theorem 1 related

to Lie rings of degree 2 is not true at all. For instance, consider the Lie ring g of
all matrices

(

α β
γ −α

)

with α, β ∈ Z[i], γ ∈ Z[2i] (i2 = −1). Clearly,

sl2(Z) $ g $ sl2(Z[i]).
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However, for any associative and commutative ring L, this g does not contain
sl2(L) as an ideal, since otherwise [e12i, e21] = (e11 − e22)i ∈ sl2(L), and so i ∈ L
implying L = Z[i] which is impossible.
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