
Commentationes Mathematicae Universitatis Carolinae

Adam Bartoš
On n-thin dense sets in powers of topological spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 57 (2016), No. 1, 73–82

Persistent URL: http://dml.cz/dmlcz/144916

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144916
http://dml.cz


Comment.Math.Univ.Carolin. 57,1 (2016) 73–82 73

On n-thin dense sets in powers of topological spaces

Adam Bartoš

Abstract. A subset of a product of topological spaces is called n-thin if every its
two distinct points differ in at least n coordinates. We generalize a construction
of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable T3

space X without isolated points such that Xn contains an n-thin dense subset,
but Xn+1 does not contain any n-thin dense subset. We also observe that part
of the construction can be carried out under MA.

Keywords: dense set; thin set; κ-thin set; independent family

Classification: 54B10, 54A35

1. Introduction

We start by summarizing the definitions of thin-type subsets of products of
topological spaces.

Definition 1.1. Let D be a subset of a product topological space
∏

α∈A Xα. We
say that the set D is

• thin if ∀x 6= y ∈ D : |{α ∈ A : xα 6= yα}| ≥ 2, i.e. if every two distinct
points of D differ in at least two coordinates (of course they differ in at
least one coordinate);

• very thin if (∀x 6= y ∈ D)(∀α ∈ A) : xα 6= yα, i.e. if every two distinct
points of D differ in all coordinates;

• κ-thin if ∀x 6= y ∈ D : |{α ∈ A : xα 6= yα}| ≥ κ, i.e. if every two distinct
points of D differ in at least κ coordinates;

• <κ-thin if ∀x 6= y ∈ D : |{α ∈ A : xα = yα}| < κ, i.e. if every two distinct
points of D agree in less than κ coordinates;

• almost very thin if ∀x 6= y ∈ D : |{α ∈ A : xα = yα}| < ω, i.e. if every two
distinct points of D differ in all but finitely many coordinates.

The notions of thin and very thin sets were introduced in [Pi]. However, there
are intermediate conditions between these two extreme ones. We can either de-
mand that every two distinct points differ in a large set of coordinates or that
every two distinct points agree only in a small set of coordinates. These two kinds
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of conditions are different in infinite products and lead to the notions of κ-thin
and <κ-thin sets. The notion of <κ-thin sets was defined in [HG, 4.1].

The (non)strictness of the defining inequalities is justified since the condition
“every two distinct points differ in more than κ coordinates” is equivalent to
being κ+-thin, and the condition “every two distinct points agree in at most κ
coordinates” is equivalent to being <κ+-thin.

Remark 1.2. Note that the thin-type notions depend on a fixed product structure.
Even though the spaces (X×Y )×(X×Y )×(X×Y ) and X×Y ×X×Y ×X×Y
are homeomorphic, the elements of the first one are triples of pairs, whereas the
elements of the second one are sextuples, which is an essential difference when
considering thin-type properties of a set.

Observation 1.3. Let us observe the basic relations between the various thin-

type notions.

• Clearly, every set is 0-thin, and every set in a nonempty product is 1-thin.

The notion of thin set is the same as the notion of 2-thin set, which is the

first nontrivial case.

• In a given product
∏

α∈A Xα we consider κ-thin subsets only for κ ≤ |A|.
Every very thin set is κ-thin for every κ considered.

• For λ ≤ κ, κ-thinness implies λ-thinness, but <λ-thinness implies <κ-

thinness.

• Very thin sets are the same as <1-thin sets.

• Almost very thin sets are the same as <ω-thin sets.

• Every subset of a finite product is almost very thin, whereas in an infinite

product the notion is stronger than any κ-thinness considered.

• For the smallest nontrivial product, product of two spaces, the strongest

notion of very thinness coincides with the weakest notion of thinness.

Observation 1.4.

• If D is a κ-thin subset of
∏

α∈A Xα and D′ ⊆ D, then D′ is also κ-thin.

• If D is a <κ-thin subset of
∏

α∈A Xα and D′ ⊆ D, then D′ is also <κ-

thin.

Hence, systems of all thin-type subsets of a product are closed under subsets.

As we can see, thin-type sets are small in a certain way. On the other hand,
dense sets are large. We focus on subsets of a product which are both thin and
dense. We include a basic example of a very thin dense set.

Example 1.5. Let {Qk : k ∈ ω} be a collection of pairwise disjoint countable
dense subsets of R. Let {Bk : k ∈ ω} be a countable open base of Rn. If we
choose xk ∈ (Qk)n ∩ Bk for every k ∈ ω, then D := {xk : k ∈ ω} is a very thin
dense subset of Rn.

Proposition 1.6. Let X be an at least two point T1 space with an isolated point.

Then Xn does not contain a thin dense subset for any n ∈ ω, n ≥ 1, and Xκ does

not contain a very thin dense subset for any κ ≥ ω.
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Proof: Let 0 ∈ X denote an isolated point. Let D be a dense subset of Xκ and
ω ∋ n < κ. Consider U := {x ∈ Xκ : ∀α < n x(α) = 0}. The set U is open and
contains at least two points. If x ∈ D ∩ U , then U \ {x} is open and nonempty
and there is some y ∈ D ∩ (U \ {x}). Hence, D contains points x 6= y such that
x(α) = y(α) = 0 for every α < n, and so D is not very thin and not even thin if
κ < ω. �

[GNP] contains several sufficient conditions and necessary conditions for ex-
istence of a very thin or thin dense subset. By [GNP, Theorem 2.4], if X is a
topological space and κ ≥ ω, then Xκ contains a κ-thin dense subset. On the
other hand, an isolated point is an obstacle for existence of a thin dense subset
of a finite power by the previous proposition. In the next section we take a look
at finite powers of spaces without isolated points.

2. The construction

[GNP, Example 2.6] provides under the continuum hypothesis a construction of
a countable T3 space X without isolated points such that X2 contains a thin dense
subset, but X3 does not contain any such subset. In this section we generalize the
construction in the following way: for every natural number n there is a countable
T3 space X without isolated points such that Xn contains an n-thin dense subset,
but Xn+1 does not contain any n-thin dense subset. In other words, Xn has a
dense set in which every two points differ in every coordinate, but every dense set
in Xn+1 has a pair of points which agree in at least two coordinates.

We also assume the continuum hypothesis, but part of the construction can be
carried out under Martin’s axiom. In particular, for Xn+1 not having any (n+1)-
thin dense subset rather than n-thin dense subset, Martin’s axiom is sufficient.

We start with a construction of topological spaces using independent families
of subbasic clopen sets.

Definition 2.1. Let X be a set, {Tα : α < κ} a family of subsets of X . For
α ≤ κ we define Σα := {σ : σ a function to {0, 1}, dom(σ) a finite subset of α}.

For σ ∈ Σα we put [σ] :=
⋂

α∈dom(σ) T
σ(α)
α , where T 0

α := Tα and T 1
α := X \ Tα.

We also define [Σα] := {[σ] : σ ∈ Σα}.
For every α ≤ κ, the family [Σα] is closed under finite intersections (except for

the case when the intersection is empty) and covers the set X . Hence, it forms
a base of a topology. The topology induced by the family of subbasic clopen sets

{Tβ : β < α} is the topology on X with the base [Σα]. The members of [Σα] are
called basic clopen sets .

From now on, Xα denotes the set X endowed with the topology induced by
the family of subbasic clopen sets {Tβ : β < α}.

We say that {Tα : α < κ} is an independent family (on X) if the set [σ] is
infinite for every σ ∈ Σκ.

The following proposition summarizes some properties of the well-ordered sys-
tem of topologies introduced by Definition 2.1.
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Proposition 2.2. Let {Tα : α < κ} be an independent family on X .

(i) The topologies of the spaces Xα are getting finer as α increases. That

is, if U is open in Xα, then it is open also in Xβ for every β such that

α ≤ β ≤ κ.

(ii) All the spaces Xα have no isolated points.

(iii) All the spaces Xα are regular.

(iv) If any space Xα is T0, then all the spaces Xβ for β ≥ α are T3.

(v) If α is a limit ordinal and D is a dense subset of Xβ for every β ∈ B
where B is a cofinal subset of α, then D is also dense in Xα.

(vi) If D is open dense in Xα, then it is open dense in Xβ for every β ≥ α.

(vii) If N is nowhere dense in Xα, then it is nowhere dense in Xβ for every

β ≥ α.

(viii) All the previous propositions hold also for all powers {(Xα)λ : α < κ}.
That is, the propositions with (Xα)λ, (Xβ)λ substituted for Xα, Xβ,

respectively, hold.

Proof: (i) This follows clearly from the definition of the spaces Xα.

(ii) Since every family {Tβ : β < α} is independent, every space Xα has a base
consisting of infinite sets.

(iii) All the spaces Xα have a base consisting of clopen sets by the definition.

(iv) From the previous claims it follows that all the spaces X≥α are T0 and
regular, and hence they are Hausdorff and T3.

(v) Since B is cofinal in α, it follows that Σα =
⋃

β∈B Σβ . Hence, every basic
clopen subset of Xα is a basic clopen subset of Xβ for some β ∈ B and so has
nonempty intersection with D.

(vi) Let σ ∈ Σα+1 and σ′ := σ ↾ α. Since D is open dense in Xα, there is
σ′′ ∈ Σα, σ′′ ⊇ σ′ such that [σ′′] ⊆ D ∩ [σ′]. Hence, ∅ 6= [σ′′ ∪ σ] ⊆ D ∩ [σ]. That
proves the induction step for successor ordinals. The limit steps are handled by
the previous claim.

(vii) If N is nowhere dense in Xα and β ≥ α, then X \ clXα
(N) is open dense

in Xα and by the previous claim it is also open dense in Xβ . Since the space
Xβ has a finer topology than Xα, it follows that X \ clXβ

(N) is also open dense,
which is equivalent to N being nowhere dense in Xβ.

(viii) We proceed similarly as above. We use the standard product base, whose
members are of form

⋂

i∈F π−1
i [[σi]] for a finite set F ⊂ λ. When proving the

power variant of the claim (iii) we also use the fact that a product of regular
spaces is regular (see [En, 2.3.11, p. 80]). �

Definition 2.3. Until the end of the section we will use the following notation.

• We fix a natural number n ≥ 1.
• The universe X of our topological space is ω.
• We define D := {〈kn + i : i < n〉 : k ∈ ω} ⊆ Xn. This will be our n-thin

dense subset of Xn.
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Lemma 2.4. There exists an independent family {Tα : α < ω} on X such that

the space Xω is T3 and D is dense in (Xω)n.

Proof: We start with any independent family {Tα : α < ω} on X . It is a stan-
dard fact that there is even an independent family of size c on ω (for example
[Je, Lemma 7.7]). We may also assume that our family separates points, i.e. for
each x 6= y ∈ X there is α < ω such that |{x, y} ∩ Tα| = 1. This is possible since
any countable independent family can be extended to an independent family se-
parating given pair, and there are only countably many pairs. So Xω is T3 by the
previous proposition.

It is enough to show that there is a dense subset {xk : k < ω} ⊆ (Xω)n such
that f : ω×n → ω defined as f(k, i) := xk(i) is a bijection. Then we can enumerate
ω in a way that our dense set becomes D. Let {

∏

i<n Bk,i : k < ω} ∋ ∅ be an
open base of (Xω)n. We define xk(i) := min(Bk,i \{xl(j) : 〈l, j〉 <lex 〈k, i〉}), that
is the minimal element of Bk,i not chosen so far. Clearly, the set {xk : k < ω} is
dense and f is injective. It is surjective as well since each number is in infinitely
many sets Bk,i. �

Remark 2.5. The space Xω from the previous lemma is T3 and second countable,
hence metrizable by Urysohn’s metrization theorem. It is also countable without
isolated points, so it is homeomorphic to Q by [En, 6.2.A (d), p. 370]. In the
previous lemma we have just enumerated the rational numbers so that D becomes
a dense set.

Definition 2.6. Let {Tβ : β < α} be an independent family on X . We define

C := {C = 〈fC , gC〉 : f : n → Σα, g : n → {0, 1}}.

The family C represents a collection of conditions, meaning of which is made clear
in the following lemma.

Lemma 2.7. Let {Tβ : β < α} be an independent family on X , α ≥ ω, Tα ⊆ X .

If

∀C ∈ C : D ∩
∏

i<n([fC(i)] ∩ T
gC(i)
α ) 6= ∅,

where T 0
α := Tα, T 1

α := X \ Tα, then {Tβ : β < α + 1} is an independent family

and D is dense in (Xα+1)
n.

Proof: We can see that the sets
∏

i<n[fC(i)], C ∈ C, form a base of (Xα)n,

and the sets
∏

i<n[fC(i)] ∩ T
gC(i)
α , C ∈ C, form a base of (Xα+1)

n. Hence, D is
clearly dense in (Xα+1)

n. Also, the hypothesis implies that the sets [fC(i)] ∩ Tα

and [fC(i)] ∩ (X \ Tα), C ∈ C, are nonempty. Hence, for every σ ∈ Σα+1 we have
[σ] 6= ∅, which is enough for an infinite family to be independent. �

Definition 2.8. Let x ∈ Xm, 1 ≤ m < ω, t is an injective mapping from
a nonempty subset of n to m. We say that the point x is of type t, if its coordinates
are distinct and there exists kx ∈ ω such that

• xt(i) = kxn + i for i ∈ dom(t),
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• xj < kxn for j /∈ rng(t).

We also say that a set E ⊆ Xm is of type t if all its elements are of type t.
We can see that for every point x ∈ Xm with distinct coordinates there exists

unique t such that x is of type t. It is enough to choose kx such that the coordinate
of x with maximum value is of form kxn + i for some i < n, and then define t
accordingly.

The following observation will be used later in proofs.

Observation 2.9. Let k ∈ ω. Let A, B ⊆ X such that A ⊆ {kn + i : i < n}
and max B < kn. Let e ∈ (A ∪ B)m \ Bm ⊆ Xm be of type t. Then ke = k, i.e.

et(i) = kn + i for i ∈ dom(t) and ej < kn for j /∈ rng(t). And also

Ihigh := {i < m : ei ∈ A} = rng(t),

Ilow := {i < m : ei ∈ B} = m \ rng(t).

The following lemma allows us to extend an independent family on X while
preserving the density of D, but preventing a given thin set E from being dense.

Lemma 2.10. Let {Tβ : β < α} be an independent family on X such that D is

dense in (Xα)n, ω ≤ α < ω1. Then there exists Tα ⊆ X such that {Tβ : β < α+1}
is an independent family and D is dense in (Xα+1)

n. Moreover, the following

holds.

(i) If E ⊆ Xm, 1 ≤ m < ω, is an l-thin set of type t for some l > | dom(t)|,
then we can arrange that E ∩ (Tα)m = ∅.

(ii) If E ⊆ Xm, n < m < 2n, is an n-thin set of type t with dom(t) = n, then

we can arrange that E ∩ (Tα)m is nowhere dense in (Xα+1)
m.

Proof: We have |C| = |Σα| = |α| = ω. Hence, we can enumerate C as {〈fj, gj〉 :
j < ω}. We inductively define numbers kj ∈ ω such that pairs of disjoint finite
sets Aj = 〈Aj,0, Aj,1〉, and sets Fj and Bj satisfy

Fj :=
⋃

i<j Ai,0,

Bj := {k ∈ ω : k ≤ max(
⋃

i<j Ai,0 ∪ Ai,1)},

〈kjn + i : i < n〉 ∈ D ∩
(
∏

i<n[fj(i)]
)

\ (Bj)
n,

Aj,0 := {kjn + i : gj(i) = 0}, Aj,1 := {kjn + i : gj(i) = 1}.

Note that the intersections D∩
∏

i<n[fj(i)] are infinite while the sets Bj are finite,
so it is always possible to choose some kj . If a set E is given, we choose such
numbers kj that E ∩ (Fj+1)

m = E ∩ (Fj)
m whenever it is possible. Finally, we

define Tα :=
⋃

j<ω Aj,0 =
⋃

j<ω Fj .

We have D ∩
∏

i<n([fj(i)] ∩ Aj,gj(i)) 6= ∅ and X \ Tα ⊇
⋃

j<ω Aj,1. Hence, the

family {Tβ : β < α+1} is independent and D is dense in (Xα+1)
n by Lemma 2.7.
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Case (i). Since F0 = ∅, it is enough to show that we can always arrange E ∩
(Fj+1)

m = E∩(Fj)
m. Consider a potential point e ∈ E∩Fj+1 . By Observation 2.9

applied to (kj , Aj,0, Fj , e) we have ke = kj and

Ihigh := {i < m : ei ∈ Aj,0 = Fj+1 \ Fj} = rng(t),

Ilow := {i < m : ei ∈ Fj} = m \ rng(t).

For any e′, e′′ ∈ E such that e′i = e′′i for every i ∈ Ilow, it holds that e′ = e′′,
since E is l-thin and |Ihigh| = | dom(t)| < l. Therefore, the point e is uniquely
determined by its coordinates indexed by Ilow whose values lie in the finite set
Fj . Hence, there are only finitely many such points e and corresponding numbers
ke ∈ ω. We can omit these when choosing kj .

Case (ii). We will show by contradiction that E ∩ (Tα)m is nowhere dense in
(Xα+1)

m. Otherwise, there exist sets Ci for i < m that are basic clopen in Xα+1

and such that E ∩ (Tα)m ∩
∏

i<m Ci is dense in
∏

i<m Ci. We may suppose that
the sets Ci are of form [σi] ∩ Tα where σi ∈ Σα. So Ci ⊆ Tα and E ∩

∏

i<m Ci is
dense in

∏

i<m Ci.
We choose a point e ∈ E ∩

∏

i<m Ci. We have

e ∈ (Tα)m = (
⋃

j<ω Fj)
m =

⋃

j<ω(Fj)
m =

⋃

j<ω((Fj+1)
m \ (Fj)

m),

hence there is some j such that e ∈ (Fj+1)
m \ (Fj)

m. By Observation 2.9 applied
to (kj , Aj,0, Fj , e) it holds that ke = kj , i.e. et(i) = kjn + i ∈ Aj,0 ∩ [fj(i)] for
i ∈ dom(t) = n. Thus, gj(i) = 0 for every i < n. Define

Ut(i) := [fj(i)], i ∈ dom(t),

Ui := X, i /∈ rng(t),

and put Vi := Ci∩Ui for i < m. Since e ∈
∏

i<m Vi, the sets Vi are nonempty, and
hence they are basic clopen in Xα+1 and infinite. Therefore, the sets Vi \ kjn are
nonempty and open in Ci, respectively, and the set

∏

i<m(Vi \ kjn) is nonempty
and open in

∏

i<m Ci. It contains a point e′ ∈ E, because of the density.
It holds that e′i ≥ kjn for i < m. Also, ke′n + i = e′

t(i) ∈ Ut(i) = [fj(i)]

for i ∈ dom(t) = n. Hence, ke′ is another candidate when choosing kj in the
j-th step of the induction. If F ′

j+1 denotes the corresponding alternative to Fj+1,

then the equality E ∩ (F ′
j+1)

m = E ∩ (Fj)
m cannot hold. Otherwise, we could

not have chosen the original kj , which does not satisfy the condition. Hence,
there is a point e′′ ∈ E ∩ (F ′

j+1)
m \ (Fj)

m. By Observation 2.9 applied to (ke′ ,

F ′
j+1\Fj = {ke′n+i : i < n}, Fj , e′′) we have ke′′ = ke′ , i.e. e′′

t(i) = ke′n+i = e′
t(i).

Since m > n, there exists i ∈ m \ rng(t). For this i, we have e′i ≥ kjn, but
e′′i ∈ Fj < kjn, hence e′ 6= e′′. Therefore, we have two distinct elements of E that
agree on n coordinates. However, the total number of coordinates is m < 2n, and
that is a contradiction with n-thinness of E. �

Finally, the proof of the main proposition follows.
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Theorem 2.11 (CH). For every natural number n ≥ 2 there is a countable T3

space X without isolated points such that Xn contains an n-thin dense subset,

but Xn+1 does not contain any n-thin dense subset.

Proof: As we said before, the universe of our space will be X = ω, and the set
D will be dense in Xn.

Consider all n-thin sets E ⊆ Xn+1 of all types t. There are continuum many
such sets, but because we assume the continuum hypothesis, we can enumerate
them as {Eα : ω ≤ α < ω1}.

We will inductively construct topologies on X induced by independent families
of subbasic clopen sets {Tβ : β < α} for α < ω1. We start with a T3 space
Xω induced by the family {Tβ : β < ω} from Lemma 2.4. Suppose we have an
independent family {Tβ : β < α} for some ω ≤ α < ω1, i.e. we have the space Xα.
We choose a set Tα such that the space Xα+1 satisfies the following:

• {Tβ : β < α + 1} is still an independent family,
• D is dense in (Xα+1)

n,
• Eα ∩ (Tα)n+1 is nowhere dense in (Xα+1)

n+1.

We use Lemma 2.10. If Eα is of a type t such that | dom(t)| < n, we can use
case (i) to obtain even such Tα that Eα∩ (Tα)n+1 = ∅. Otherwise, Eα is of a type
t such that | dom(t)| ≥ n, and hence dom(t) = n. In that case we use case (ii).

Now we show that the space Xω1
has the desired properties. In particular, Xω1

is a T3 space without isolated points by Proposition 2.2, since even the space Xω

is Hausdorff. Next, D is dense in (Xω1
)n because the density of D is preserved by

our construction at the successor steps, and it is preserved automatically at the
limit steps by Proposition 2.2. Finally, if E is any n-thin subset of Xn+1, we can
decompose it as E =

⋃

i<j<n+1 Eij ∪
⋃

i<k Eαi
, where Eij := {e ∈ E : ei = ej}

for i < j < n and each αi satisfies ω ≤ αi < ω1 and k ∈ ω. This is possible since
any point e ∈ E \

⋃

i<j<n Eij is of some type t, there are only finitely many types,

and each Et := {e ∈ E : e is of type t} is n-thin, and hence Et = Eα for some α.
All the sets Eij are nowhere dense. For any αi we have that Eαi

∩ (Tαi
)n+1 is

nowhere dense in (Xαi+1)
n+1, and hence it is also nowhere dense in (Xω1

)n+1.
Therefore, E ∩ U is nowhere dense in (Xω1

)n+1, where U := (
⋂

i<k Tαi
)n+1 6= ∅,

and hence E is not dense. �

We have constructed a space that contains a very thin dense subset in any
power up to Xn, but Xn+1 does not contain any n-thin dense subset. In the case
n = 2 we have a space X such that X2 contains a thin dense subset, but X3 does
not contain such set. That is the original result [GNP, 2.6].

We can see that the previous proof works also for higher powers Xm. The
additional assumption of Lemma 2.10(i), | dom(t)| < thinness of E, is satisfied
for m > n and E being (n + 1)-thin. Case (ii) holds for n < m < 2n. Also, we
can consider all the sets Eα in all powers Xm for n < m < ω together. There are
still continuum many of them. In conclusion, the following strengthening of the
theorem holds.
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Theorem 2.12 (CH). For every natural number n ≥ 1 there is a countable T3

space X without isolated points such that

• Xn contains an n-thin dense subset, and hence Xm, for any m ≤ n,

contains a very thin dense subset;

• Xm, for n < m < 2n, does not contain any n-thin dense subset;

• Xm, for n < m < ω, does not contain any (n + 1)-thin dense subset, and

hence it does not contain any very thin dense subset.

In the last part, we show that case (i) of Lemma 2.10 can be strengthened
under Martin’s axiom, and therefore the last theorem partially holds even under
Martin’s axiom.

Lemma 2.13 (MA). Let {Tβ : β < α} be an independent family on X such that

D is dense in (Xα)n, ω ≤ α < c. If E ⊆ Xm for some m such that 1 ≤ m < ω
is an l-thin set of type t for some l > | dom(t)|, then there exists Tα ⊆ X such

that {Tβ : β < α + 1} is an independent family, D is dense in (Xα+1)
n, and

E ∩ (Tα)m = ∅.

Proof: Consider the partially ordered set

A := {A = 〈A0, A1〉 : A0, A1 finite disjoint subsets of X , E ∩ (A0)
m = ∅},

A′ ≤ A :⇐⇒ (A′
0 ⊇ A0) ∧ (A′

1 ⊇ A1).

It holds that |A| = ω, and hence the ordered set A satisfies c. c. c. For C ∈ C we
define

DC := {A ∈ A : D ∩
∏

i<n([fC(i)] ∩ AgC(i)) 6= ∅}.

The sets DC are dense with respect to the ordering of A. For any A ∈ A, we can
choose k ∈ ω such that 〈kn + i : i < n〉 ∈ D ∩

∏

i<n[fC(i)] \ (A0 ∪ A1)
n. This is

possible since we are removing a finite set from the intersection D ∩
∏

i<n[fC(i)]
which is infinite. If we put A′ := 〈A0 ∪{kn+ i : gC(i) = 0}, A1∪{kn+ i : gC(i) =
1}〉, then A′ ≤ A. By an argument similar to that in Lemma 2.10(i), there are
only finitely many numbers k such that E ∩ (A′

0)
m 6= ∅ for corresponding sets A′

0.
Hence, we can choose such k that A′ ∈ DC .

We have that D := {DC : C ∈ C} is a family of dense sets. Since |D| =
|C| = |α| < c, there exists a D-generic filter F by Martin’s axiom. The sets
⋃

A∈F A0 and
⋃

A∈F A1 are infinite and disjoint. If there were A, A′ ∈ F such
that x ∈ A0 ∩ A′

1, there would be A′′ ∈ F such that A′′ ≤ A, A′ because F is a
filter. Then, x ∈ A′′

0 ∩ A′′
1 , which is a contradiction. If we put Tα :=

⋃

A∈F A0,
then X \ Tα ⊇

⋃

A∈F A1 and Tα satisfies the hypotheses of Lemma 2.7. Also,
E ∩ (Tα)m = ∅. Otherwise, there would be sets Ai ∈ F , i < m, and a point
x ∈ E ∩

∏

i<m Ai,0. Hence x ∈ E ∩ (A′
0)

m for any A′ ∈ F such that A′ ≤ Ai for
any i < m, which is a contradiction. �

Corollary 2.14 (MA). For every natural number n ≥ 1 there is a countable T3

space X without isolated points such that

• Xn contains an n-thin dense subset;
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• Xm, for n < m < ω, does not contain any (n + 1)-thin dense subset.

Proof: We proceed analogously to Theorem 2.11. For the sets Eα we take all
(n + 1)-thin subsets of all powers Xm of all possible types t. �

Example 2.15 (MA). There exists a countable T3 space X without isolated
points such that Xn does not contain any thin dense subset for any natural
number n.

Proof: It is a special case of the previous corollary for n = 1. �

Several questions arise naturally.

Question 2.16. Is it possible to prove Theorem 2.12 under Martin’s axiom or
even in ZFC?

Question 2.17. Does there exist a space X such that Xn contains a very thin
dense subset, but Xn+1 does not contain even a thin dense subset?

Question 2.18. Does there exist a space X such that Xn contains an l-thin
dense subset for some 1 < l < n, but Xn+1 does not contain an l-thin dense
subset?
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