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STRONGLY REGULAR FAMILY OF BOUNDARY-FITTED

TETRAHEDRAL MESHES OF BOUNDED C2 DOMAINS

Radim Hošek, Praha

(Received January 8, 2016)

Abstract. We give a constructive proof that for any bounded domain of the class C2

there exists a strongly regular family of boundary-fitted tetrahedral meshes. We adopt
a refinement technique introduced by Křížek and modify it so that a refined mesh is again
boundary-fitted. An alternative regularity criterion based on similarity with the Som-
merville tetrahedron is used and shown to be equivalent to other standard criteria. The
sequence of regularities during the refinement process is estimated from below and shown
to converge to a positive number by virtue of the convergence of q-Pochhammer symbol.
The final result takes the form of an implication with an assumption that can be obviously
fulfilled for any bounded C2 domain.

Keywords: boundary fitted mesh; strongly regular family; Sommerville tetrahedron; Som-
merville regularity ratio; mesh refinement; tetrahedral mesh
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1. Introduction

In numerical schemes approximating PDE problems, smooth domains Ω are often

approximated by polyhedral domains Ωh that are split into tetrahedral meshes. Each

such mesh is characterized by a discretization parameter h, bounding from above the

size of elements. For convergence proofs, we need this parameter to decrease to zero,

usually by decomposition of every element into several smaller ones. Using this

process we create a new, finer mesh. However, during this process we need to control

the quality of the mesh, mainly the shape regularity, excluding the occurrence of

extremely flat or prolonged elements, see [3], Section 14.

The research of R.Hošek leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC Grant Agreement 320078.
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Creating such strongly regular refinement of the mesh is elementary in 2D, the

technique for 3D case was shown by Křížek in [9]. In our work we will have special

requirement on the mesh: The vertices of the mesh that lie on the boundary of the

polyhedral domain ∂Ωh should lie also on the boundary of the smooth domain ∂Ω.

We call such mesh boundary-fitted. The proof of existence of such a refinement for

2D can be found in [8], for 3D we bring the result in this paper.

The motivation for this work emanates from [5], where the authors define a nu-

merical method for compressible Navier-Stokes equations in a strongly regular family

of boundary-fitted meshes.

We start with the following three definitions and state the main result afterwards.

Definition 1. Let Ω ⊂ R
3 be a bounded domain of the class C2. We de-

note by rΩ ∈ R
+ the minimal radius of an osculation sphere of ∂Ω and set h0 :=

min{ 1
2rΩ,

1
2α}, where α is a lower bound for the mutual distance of two parts of the

boundary ∂Ω.

For the exact definition of α we refer to the standard Evans’ PDE textbook [4],

page 626.

Definition 2. We say that a couple (Ωh, Th) is an approximative domain with
a boundary-fitted mesh of Ω, if ∂Ωh consists of triangles, vertices of these triangles

belong to ∂Ω and Th is a mesh consisting of closed tetrahedral elements K satisfying
the following conditions:

⊲ For any element K ∈ Th, any of its faces is either a face of another element L ∈ Th,
or a face of the polyhedron Ωh,

⊲ diamK 6 h 6 h0 for any K ∈ Th,
⊲

⋃
K∈Th

K = Ωh.

Further, we denote by ̺(K) the radius of the largest ball contained in the ele-

ment K.

Definition 3. We say that the infinite sequence {Th}h→0 is a family of boundary-

fitted meshes if for any ε > 0 there exists h ∈ (0, ε) such that Th is a boundary-fitted
mesh in the sense of Definition 2.

In addition, if there exists θ0 > 0 independent of h such that for any Th and any
K ∈ Th we have

θ(K) :=
̺(K)

diamK
> θ0,

we say that {Th}h→0 is a strongly regular family.

There are several equivalent definitions of strong regularity, see [2]. We introduce

a different regularity criterion and use it later in this work.
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Having introduced the basic definitions, we can state the main theorem.

Theorem 1. Let Ω be a bounded domain in R3 of the class C2. Suppose that for

some h1 6 h0 there exists an approximative domain (Ωh1
, Th1

) with boundary-fitted

mesh and let

(1) θ(K) >
4b
√
2

rΩ
diamK

for any K ∈ Th1
, where

(2) b > b0 =
8√
3
(2 +

√
5).

Then there exists a strongly regular family of boundary-fitted meshes {Th}h→0.

Moreover, there exists a constant dΩ > 0 depending solely on the geometric prop-

erties of ∂Ω such that for all x ∈ ∂Ωh,

(3) dist[x, ∂Ω] 6 dΩh
2.

R em a r k 1. Note that (2) implies

(4)

(
1 + 8

b
√
3

)2

2
(
1− 8

b
√
3

) < 1.

The rest of the paper is devoted to the proof of Theorem 1.

2. Distance of approximative domain

We start with proving the latter part of Theorem 1 concerning the size of the gap

between Ωh and Ω.

Lemma 1. Let Ω, rΩ, h0 be as in Definition 1. Then for any h 6 h0 and for

any x ∈ Ωh, where Ωh is an approximative domain from Definition 2, the following

inequality holds:

(5) dist[x, ∂Ω] 6
(diamEj

h)
2

rΩ

if x ∈ Ej
h, where E

j
h is an edge of ∂Ωh, and

(6) dist[x, ∂Ω] 6 2
(diamT j

h)
2

rΩ

if x ∈ T j
h , where T

j
h is a boundary triangle of ∂Ωh.
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P r o o f. From the definition of a C2-domain we have ∂Ω =
M⋃
i=1

∂Ωi, where ∂Ωi

are manifolds that are graphs of C2 functions from subsets of R2 to R. Let us denote

these functions by Gi, i = 1, . . . ,M . Then clearly rΩ = (max
i

‖∇2Gi‖∞)−1.

Take any approximative domain Ωh. From Definition 2, ∂Ωh =
⋃
j

T j
h , where T

j
h

are triangles with diameter not exceeding h. Take an arbitrary x ∈ ∂Ωh. Then

there is a triangle T j
h : x ∈ T j

h . Without loss of generality, T
j
h ⊂ G−1

i (∂Ωi) for some

i = i(j). (Actually, it is true up to a rotation and shift of coordinates.)

If x is a vertex, then dist[x, ∂Ω] = 0 by the assumption and both (5), (6) hold.

Let x ∈ T j
h \ {v1, v2, v3} for some boundary triangle T j

h , where v1, v2, v3 are its

vertices. Define g as the restriction of Gi to the line v1x. Then the Taylor expansion

gives

(7) g(y) = g′(v1)(y − v1) +
1

2
g′′(ỹ)(y − v1)

2

for any y on the line and some ỹ ∈ T j
h . Note that g(vr) = 0, r ∈ {1, 2, 3}, as by the

assumption vr ∈ ∂Ω. Further,

(8) |g′′(ỹ)| 6 ‖∇2Gi‖∞ 6
1

rΩ
.

Let x lie on the edge Ej
h of T

j
h ⊂ ∂Ωh. Then we can use (7) twice, for y = x and

y = v2, which together with estimate (8) gives

|g(x)| 6 |g′(v1)(x − v1)|+
(diamEj

h)
2

2rΩ
, |g′(v1)(v2 − v1)| 6

(diamEj
h)

2

2rΩ
,

from which we infer |g(x)| 6 r−1
Ω (diamEj

h)
2.

Let x ∈ intT j
h . Then we use (7) twice, for y = x and y = e, where e is the

intersection of the line v1x with the edge v2v3. With help of (8) we get

|g(x)| 6 |g′(v1)(x − v1)|+
1

2rΩ
(diamT j

h)
2,

|g′(v1)(e− v1)| 6 |g(e)|+ 1

2rΩ
(diamT j

h)
2.

As we already have |g(e)| 6 r−1
Ω (diamT j

h)
2 for an edge point e, we can infer |g(x)| 6

2r−1
Ω (diamT j

h)
2. The proof is concluded by realizing that dist[x, ∂Ω] 6 dist[x, g(x)] =

|g(x)|. �

Lemma 1 implies the following corollary.
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Corollary 1 (h2-property). Let Ω, rΩ, h0 be as in Definition 1. Then there exists

dΩ > 0 depending solely on the geometrical properties of Ω such that for any h 6 h0,

Ωh from Definition 2, and for any x ∈ ∂Ωh,

dist[x, ∂Ω] 6 dΩh
2.

P r o o f. Set dΩ := 2r−1
Ω in (5) and (6) and recall that diamEj

h 6 diamT j
h 6

diamK 6 h. �

Note that in this section we worked only with the approximative domain, no

requirements on the mesh were needed.

3. Preliminaries

To prove the existence of a strongly regular family of boundary-fitted meshes, we

will use a decomposition of a tetrahedron into eight tetrahedra which inherit the

regularity estimate. However, it is not the strong regularity condition introduced in

Definition 3 that is being preserved. Therefore, we introduce an alternative criterion

of regularity.

Before that, we recall some properties of affine transformations that play a crucial

role throughout this paper. Some tetrahedra established by the refinement process

need to be modified (boundary vertices should be shifted to the smooth boundary)

so that their union satisfies the definition of a boundary-fitted mesh (Definition 2).

The shift is performed using affine transformations.

The final part of this section is devoted to the so-called q-Pochhammer symbols,

which will finally ensure the existence of a lower bound on the regularity ratio θ0

in (3).

3.1. Affine transformations and singular values. An affine transformation F

is a one-to-one mapping of a linear vector space to itself, preserving linearity and the

ratio of division, see e.g. [1], Proposition 2.8. Endowing the three-dimensional space

with Euclidean coordinates, we can represent an affine transformation F by a 3× 3

nonsingular matrix Q and a shift vector q:

F (x) = Qx+ q.

In what follows, we will be mainly interested in the effects to the geometric proper-

ties of the objects undergoing the transformation. As the translation vector q cannot

affect the shape change, we focus on the properties of the matrix Q.
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Lemma 2 (Singular Value Decomposition). Let Q ∈ R
3×3 be a nonsingu-

lar matrix. Then there exist matrices U , Σ, V satisfying Q = UΣV T , where

UTU = I, V TV = I, and Σ is a diagonal matrix of the so-called singular values

Σ = diag(σ1, σ2, σ3), where all three σi are positive.

Moreover, Q transforms the unit sphere into an ellipsoid with semi-axes of the

lengths σi, i = 1, 2, 3.

The proof of the above assertion can be found in any linear algebra textbook, see

for instance [6], Section 7.3.

From the above lemma we will use mainly σmin := min{σ1, σ2, σ3} and σmax :=

max{σ1, σ2, σ3}, the maximal shrinking and prolongation factors, respectively. In the
sequel, we write σmin(F ) (and σmax(F )) for the minimal (maximal) singular value

of the affine transformation F , referring to the minimal (maximal) singular value of

its matrix Q.

The following lemma provides a tool for estimating singular values of a composition

of affine mappings.

Lemma 3. Let A and B be affine transformations. Then we have

σmin(A ◦B) > σmin(A) · σmin(B)

and

σmax(A ◦B) 6 σmax(A) · σmax(B).

3.2. Sommerville regularity ratio. An alternative regularity criterion, intro-

duced in this section, measures the similarity of a general tetrahedron to a reference

tetrahedron, which is in our case the Sommerville tetrahedron, introduced in 1923

in [10].

Definition 4 (Sommerville tetrahedron). Sommerville tetrahedron is any tetra-

hedron similar to the unit tetrahedron K̃, which is defined through Euclidean coor-

dinates of its vertices:

Ã =
[
1
2 , 0, 0

]⊤
, B̃ =

[
− 1

2 , 0, 0
]⊤

, C̃ =
[
0, 12 ,

1
2

]⊤
, D̃ =

[
0,− 1

2 ,
1
2

]⊤
.

The unit Sommerville tetrahedron K̃ (see Figure 1) has two opposite edges of

length 1, the other four of length
√
3/2 and dihedral angles attain the values 60◦ and

90◦. For further use we will need the following characterization of K̃:

(9) diam K̃ = 1, e(K̃) =

√
3

2
, ˜̺= θ(K̃) =

√
2

8
, m(K̃) =

√
2

2
,

238



where e(K̃) is the length of the shortest edge, ˜̺= ̺(K̃) is the radius of an inscribed

sphere and m(K̃) is the shortest median of a face of the Sommerville tetrahedron.

For detailed computations, see [7].

Ã
B̃

C̃

D̃

Figure 1. The unit Sommerville tetrahedron K̃ inscribed in two auxilliary cubes. (Axes are
omitted for the sake of brevity.)

Note that for any tetrahedron K = co(ABCD), there exists a unique affine trans-

formation FK that maps the Sommerville tetrahedron K̃ = co(ÃB̃C̃D̃) onto K,

i.e.

(10) FK(x̃) = QK x̃+ qK ,

determined by FK(Ã) = A,FK(B̃) = B,FK(C̃) = C,FK(D̃) = D. It can be easily

shown that QK = [A−B,C −D,C +D −A−B] and qK = 1
2 (A+B).

However, as we get a different transformation just by relabelling the vertices of

the tetrahedron K, we must be careful with employing the following alternative

regularity criterion.

Definition 5. Let K = co(ABCD) be a tetrahedron, let

(11) AK := {FK ;FK is an affine transformation, FK(K̃) = K}

be a set of all affine transformations mapping Sommerville tetrahedron K̃ onto K.

Then we define the Sommerville regularity ratio of the tetrahedron K as

(12) κ(K) = max
FK∈AK

σmin(FK)

σmax(FK)
,

where σmin(FK), σmax(FK) are the minimal and maximal singular values of FK ,

respectively.
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Note that κ attains its maximum of 1 for the Sommerville tetrahedron, while the

minimal value of 0 would be attained for a degenerate tetrahedron. Consequently, κ

plays the role of a regularity measure.

R em a r k 2. Taking the regular tetrahedron as the reference one, we could leave

out the maximization in (12). However, we prefer the Sommerville tetrahedron, as

its copies tile the three-dimensional space, see [7], [10], while the regular tetrahedron

does not.

Analogously to other standard regularity ratios, also the Sommerville regularity

ratio (12) can be used to formulate a criterion for strong regularity. We show its

equivalence to a standard regularity criterion in a form of two lemmas that we use

directly in the next section.

Lemma 4. Let κ0 > 0 and let there exist a sequence hn → 0 such that {Thn
}n∈N

is a family of boundary-fitted meshes satisfying

κ(K) > κ0 > 0

for any n ∈ N and any K ∈ Thn
.

Then {Thn
}n∈N is a strongly regular family of boundary-fitted meshes.

The proof is strongly based on ideas of Křížek, see [9].

P r o o f. We take an arbitrary n ∈ N, an arbitrary elementK ∈ Thn
, and consider

the affine function FK from (11). We denote by S̃(x̃0, ˜̺) the inscribed sphere of K̃.
Then FK(S̃) =: E ⊂ K is an ellipsoid. Let us label its center with x0. Take r(K)

as the shortest semi-axis of E . Then the sphere S(x0, r(K)) is contained in K and

therefore ̺(K) > r(K).

From the properties of the singular values of an affine transformation we get the

estimates r(K) = σmin(FK) · ˜̺ and diamK 6 σmax(FK) · diam K̃. Hence, we can

write

(13) θ(K) =
̺(K)

diamK
>

r(K)

diamK
>

σmin(FK) · ˜̺
σmax(FK) · diam K̃

= κ(K)θ(K̃),

where the last equality holds assuming we take an appropriate FK that realizes the

maximum in (12). By the assumption, κ(K) > κ0 and using (13), we can conclude

θ(K) > κ0θ(K̃) =

√
2

8
κ0 =: θ0

for any K in the family of meshes. �
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Lemma 5. Let s > 0 and let K be a tetrahedron satisfying θ(K) > s. Then

κ(K) >

√
2

8
s.

P r o o f. Setting K into coordinates in such a way that its shortest edge belongs

to the line parallel to the longest edge of the Sommerville tetrahedron, we can write

̺(K) 6 σmin(FK)·diam K̃. Further, the mapping FK transforms the inscribed sphere

of K̃ onto an inscribed ellipsoid of K, hence diamK > σmax(FK)˜̺. Therefore,

s 6 θ(K) =
̺(K)

diamK
6

σmin(FK) · diam K̃

σmax(FK) · ̺(K̃)
6 κ(K)

8√
2
.

�

We conclude this part with the following corollary of Lemma 3.

Corollary 2. Let K,K ′ be two tetrahedra, and let S be an affine transformation

that maps K onto K ′. Then we have

κ(K ′) > κ(K)
σmin(S)

σmax(S)
.

3.3. q-Pochhammer symbol. Further, we prove some properties of the so-called

q-Pochhammer symbol, which will be the final tool used for showing the existence of

a lower bound κ0.

Definition 6. Let n ∈ N and a, q ∈ [0, 1]. The product

(a; q)n :=

n−1∏

j=0

(1− aqj)

is called the q-Pochhammer symbol.

Lemma 6. Let a ∈ (0, 1) and q ∈ (0, 1). Then there exists P (a, q) > 0 such that

for any n ∈ N,

(a; q)n > lim
n→∞

(a; q)n = P (a, q).
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P r o o f. As (a; q)n+1 = (1−aqn) · (a; q)n, the sequence is monotonically decreas-
ing. To prove the existence of a positive limit of (a; q)n, it suffices to find its positive

lower bound. Consider

sn :=

n−1∑

k=0

log(1− aqk).

Clearly (a; q)n = exp sn and using log(1 − az) > −7az > −7z for z ∈ (0, 1], a ∈
(0, 1− ε], where ε < 10−3, we can estimate

(14) sn > −7

n−1∑

k=0

qk = −7
1− qn

1− q
.

Combining (14) with the monotonicity of both the exponential function and the

partial sums of the geometric series, we get

(a; q)n = exp sn > exp
(
−7

1− qn

1− q

)
> exp

( −7

1− q

)
> 0.

Note that for ε smaller it is only necessary to increase the multiplicative constant in

estimate (14). �

4. Mesh refinement

In 1982, Křížek proved the following result, see [9].

Theorem 2 ([9], Theorem 3.2). For any polyhedron there exists a strongly regular

family of decompositions into tetrahedra.

For our purpose it is not possible to use this result directly, because the decom-

position in [9] creates a mesh that is no longer boundary-fitted, as new vertices on

the boundary of the polyhedral domain are created and do not lie on ∂Ω, in general.

Our idea is to use this decomposition and to modify (i.e. affinely transform) the

tetrahedra in the boundary layer to put all boundary vertices to ∂Ω. By virtue of

Lemma 1 we will show that this change is small in comparison with the diameter of

the element, and the strong regularity is therefore preserved.

4.1. Decomposition of a tetrahedron. We start with the first step, from the

proof of Theorem 2 we extract the following lemma.
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Lemma 7. Let Th be a mesh of Ωh. Then for any K ∈ Th there exists its
decomposition D(K) = {Ki}8i=1 into eight face-to-face tetrahedra such that the

vertices ofKi are either vertices ofK or midpoints of its edges, and for all i = 1, . . . , 8

we have that

(15) diamKi 6
1

2
diamK and κ(Ki) > κ(K).

P r o o f. The unit Sommerville tetrahedron K̃ can be decomposed into eight

tetrahedra similar to K̃—cutting all six edges at their midpoints creates four tetra-

hedra and one octahedron which can be decomposed into four identical tetrahedra,

see Figure 2 and [9], proof of Theorem 3.2 or [11], Theorem 4.3. We denote the

decomposition by D̃ = {K̃i}8i=1 and it follows that diam K̃i =
1
2 . Then we take the

affine transformation FK that realizes κ(K). We observe that

FK(D̃) = {FK(K̃i), K̃i ∈ D̃}8i=1

is a decomposition of K.

M1

M2

M3

Ã

B̃

M5

M6

M4

C̃

D̃

Figure 2. The sketch of Křížek’s decomposition of the Sommerville tetrahedron K̃. Repro-
duction from [9].

The key idea is that K̃i are also Sommerville tetrahedra and FK transforms K̃i into

Ki, which implies κ(Ki) > κ(K) for any Ki ∈ D(K), since FK does not have to be

the mapping realizing the maximum in κ(Ki). The first part of (15) is a consequence

of the ratio of division being invariant w.r.t. an affine transformation. �
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4.2. Correction of the decomposition. The tetrahedra Ki ∈ D(K), K ∈ Th,
do not create a boundary-fitted mesh (according to Definition 2) as new vertices

were created on the boundary of the polyhedral domain Ωh that do not belong to

the boundary of the smooth domain Ω. To fix that, we apply an affine shift to

these vertices. We set the domain of vertices that must be shifted in order to obtain

a boundary-fitted mesh:

V (Th) := {x is a vertex of some Ki ∈ D(K), K ∈ Th and x ∈ ∂Ωh \ ∂Ω}.

For any x ∈ V (Th) we choose one y(x) ∈ ∂Ω such that

(16) dist[x, ∂Ω] = dist[x, y(x)].

Then for any Ki ∈ D(K) of a given K ∈ Th, we consider an affine shift function
SKi
defined uniquely by the images of four vertices of the tetrahedron Ki:

(17) SKi
(v) =

{
y(v) for v ∈ V (Th), v a vertex of Ki,

v for v 6∈ V (Th), v a vertex of Ki.

From Lemma 1 we have an upper bound on the size of this shift. We have to

prove that under the assumptions given in Theorem 1, the shift of vertices does not

damage the topology of the finer mesh.

Lemma 8. Let Ω, Ωh, Th be as in Definitions 1 and 2. Let v1, v2 be distinct

vertices of the refined mesh, i.e. vi, i = 1, 2, is either a vertex or a midpoint of an

edge of some tetrahedron in Th. Let

{tv1 + (1− t)v2, t ∈ (0, t1)} ⊂ K ∈ Th,
{tv1 + (1− t)v2, t ∈ (t2, 1)} ⊂ L ∈ Th,

for some t1, t2 ∈ (0, 1), t1 6 t2, and K,L ∈ Th not necessarily distinct. Then

(18) dist[v1, v2] >

√
3

8
(σmin(FK) + σmin(FL)).

P r o o f. Let K = L. Then the segment v1v2 is either half of an edge, a mid-

segment of a face triangle, an edge itself, the median of a face, or a median of

a tetrahedron (both v1, v2 are midpoints of the edges of tetrahedron K). For the

first three options, we clearly have dist[v1, v2] >
1
2e(K) > 1

4

√
3σmin(FK). For a me-

dian of a triangle we have dist[v1, v2] > m(K) > 1
2

√
2 σmin(FK), as an affine mapping
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maps median onto median. The same estimate applies to the last option. In both

cases we used (9).

Let K 6= L. If v1 is a vertex of K, then we denote by ΓK the face of K opposite

to v1. Then dist[v1,ΓK ] > σmin(FK) · 1
2

√
2, where the last fraction is the (minimal)

distance of a vertex from the opposite face in the Sommerville tetrahedron.

In the case of v1 being the midpoint of an edge of K, we denote by Γ1
K , Γ

2
K the

faces of K that do not contain v1. Then

min
i=1,2

dist[v1,Γ
i
K ] > σmin(FK)

√
2

4
,

where the last fraction is the minimal value of such distance in the Sommerville

tetrahedron.

Taking the minimum over the above listed possibilities, we conclude that (18)

holds. �

Lemma 9. For any h 6 h0, let every K ∈ Th satisfy the so-called minimal
regularity condition

(19) κ(K) > b
diamK

rΩ
, where b > b0 =

8√
3
(2 +

√
5).

Then for any vertices v1, v2 of Ki ∈ D(K), Lj ∈ D(L), respectively, we have that

dist[v1, v2] > dist[v1, SKi
(v1)] + dist[v2, SLj

(v2)],

i.e. the shift above does not damage the topological properties of the mesh.

P r o o f. By construction, if vi ∈ V (Th), then it is the midpoint of an edge of
some boundary triangle T h

j . By virtue of Lemma 1, in particular from (5), together

with (16) and (17) we obtain

(20)
1

rΩ

(
(diamK)2 + (diamL)2

)
> dist[v1, SKi

(v1)] + dist[v2, SLj
(v2)].

Lemma 8 gives

(21) dist[v1, v2] >

√
3

8
(σmin(FK) + σmin(FL)),

where FK and FL realize the maxima in κ(K) and κ(L), respectively. From the

definition of κ and Lemma 2 we have

(22) σmin(FK) = κ(K)σmax(FK) > κ(K) diamK
2√
3
> κ(K) diamK.
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Using the assumption (19), we can rewrite (22) as

(23) σmin(FK) + σmin(FL) > b
(diamK)2 + (diamL)2

rΩ
.

Substituting (23) into (21), we get

(24) dist[v1, v2] >
b
√
3

8rΩ

(
(diamK)2 + (diamL)2

)
,

which, combined with (20), completes the proof, since 1
8b
√
3 > 1. �

Having defined the shift, we focus on the bounds of the singular values of the affine

shift, which will be needed in a moment.

Lemma 10. Let K ∈ Th be a tetrahedron, let Ki ∈ D(K) and let the affine

shift SKi
be defined by (17). Then for its singular values we have

σmin(SKi
) > 1− 8√

3rΩ

diamK

κ(K)
,(25)

σmax(SKi
) 6 1 +

8√
3rΩ

diamK

κ(K)
,(26)

and the regularity criterion for the new tetrahedra satisfies the estimate

(27) κ(SKi
) >

1− 8√
3rΩ

diamK
κ(K)

1 + 8√
3rΩ

diamK
κ(K)

κ(K) >

(
1− 8√

3rΩ

diamK

κ(K)

)2
κ(K).

P r o o f. The maximal singular value of SKi
represents the maximal relative

prolongation, which can be achieved at the shortest edge of Ki, i.e. e(Ki) =
1
2e(K)

by moving the vertices from each other with the maximal radius, i.e.

(28) σmax(SKi
) 6

1
2e(K) + 2r−1

Ω (diamK)2

1
2e(K)

= 1 + 4
(diamK)2

e(K)rΩ
.

Using e(K) > e(K̃) · σmin(FK) and diamK 6 diam K̃ · σmax(FK), where FK realizes

the maximum in the definition of κ, we can deduce that

(29) e(K) > κ(K) · diamK
e(K̃)

diam K̃
= κ(K) · diamK

√
3

2
.

Using estimate (29) in (28), we conclude (26). The same steps prove the inequal-

ity (25). Then by virtue of Corollary 2 we can estimate

(30) κ(SKi
(Ki)) >

σmin(SKi
)

σmax(SKi
)
κ(K).

The last relation (27) is obtained from (30) using the estimates (25), (26), and the

inequality (1 + z)−1 > 1− z, z ∈ R
+. �

246



Next we show that shifting the new vertices to the smooth boundary does not

disturb the uniform decrease of the discretization parameter.

Lemma 11. Let h 6 h0 and let Th be a boundary-fitted mesh. Let a tetrahedron
K ∈ Th satisfy the minimal regularity condition (19) with some admissible b. Then

there exists a number µ(b) ∈ (0, 1) such that for any Ki ∈ D(K) we have

(31) diamSKi
(Ki) 6 µ(b) · diamK.

P r o o f. From Lemma 7 we recall diamKi 6
1
2 diamK. From the construction

it follows that

(32) diamSKi
(Ki) 6

σmax(SKi
)

2
diamK.

Substituting the minimal regularity condition (19) into the upper bound (26) for

σmax(SKi
), we get the estimate

(33) σmax(SKi
) 6 1 +

8

b
√
3
.

Then, combining (32) and (33), we conclude that

diamSKi
(Ki) 6

(1
2
+

4

b
√
3

)
diamK =: µ(b) · diamK.

The factor µ(b) belongs to (0, 1), as clearly b > 8/
√
3. �

Corollary 3. Let h 6 h0 and let Th be a boundary-fitted mesh. Let everyK ∈ Th
satisfy the minimal regularity condition (19) with some admissible b. Then

Tk := {SKi
(Ki),Ki ∈ D(K),K ∈ Th}

is a boundary-fitted mesh in the sense of Definition 2 with

(34) k <
(1
2
+

4

b
√
3

)
h.

P r o o f. The construction together with condition (19) ensures that Tk is
a boundary-fitted mesh. Even if every element is transformed by a different affine

function, still the common faces (and edges) of two neighbouring elements are trans-

formed identically for both elements, hence the face-to-face property is preserved.
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We define k to be the maximal diameter of an element in Tk, say L. But clearly

this L was created by splitting and shifting some tetrahedron M ∈ Th. Then it
follows from Lemma 11 that

k = diamL < µ(b) · diamM 6 µ(b) · h =
(1
2
+

4

b
√
3

)
h.

�

R em a r k 3. Notice that so far it has been sufficient that b > 8/
√
3. For the next

lemma we need the stronger condition (19), indeed.

Next, we need to show that in the process of refinement, the newly established

elements do not violate the minimal regularity condition (19) with given b, which is

necessary to allow the repetition of the refinement process.

Lemma 12. Let K be such that κ(K) satisfies condition (19) with some admis-

sible b and let Ki ∈ D(K). Then SKi
(Ki) also satisfies (19) with b.

P r o o f. We know from (27) that

(35) κ(SKi
(Ki)) >

1− 8√
3rΩ

diamK
κ(K)

1 + 8√
3rΩ

diamK
κ(K)

κ(K),

and from (19) that

(36) κ(K) >
b

rΩ
diamK.

Substituting (36) into (35), we get

(37) κ(SKi
(Ki)) >

1− 8
b
√
3

1 + 8
b
√
3

b

rΩ
diamK.

Finally, (34) implies

diamK >
2

1 + 8
b
√
3

diamSKi
(Ki),

which substituted into (37) together with inequality (4) from Remark 1 recovers (19)

with b also for SKi
(Ki). �
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Theorem 3 (Existence of family). Let Ω, h0 be as in Definition 1 and for some

h1 6 h0 let there exist a boundary-fitted mesh Th1
of Ω such that every tetrahedron

K ∈ Th1
satisfies (19)with some admissible b. Then there exists a family of boundary-

fitted meshes {Thn
}n∈N with hn → 0.

P r o o f. We proceed via mathematical induction. By assumption, for h1 there

exists a boundary-fitted mesh Th1
with elements satisfying (19) with b.

Corollary 3 gives the following implication: If for hn there exists a boundary-fitted

mesh Thn
with elements satisfying regularity condition (19) with some b, then there

exists hn+1 6 µ(b)hn such that there exists a boundary-fitted mesh Thn+1
. By virtue

of Lemma 12 all elements of this finer mesh satisfy (19) with b.

The proof is completed, as we have proven the property for h1 as well as the

induction step. �

4.3. Proof of the Sommerville strong regularity.

Theorem 4. Let Ω, h0 be as in Definition 1. For h1 6 h0 let there exist Th1

a boundary-fitted mesh of Ω, whose every element satisfies (19) with some admissi-

ble b. Then the family {Thn
}n∈N of boundary-fitted meshes obtained through The-

orem 3 is Sommerville strongly regular, i.e. there exists κ0 > 0 such that for any

n ∈ N, any K ∈ Thn
we have that κ(K) > κ0.

P r o o f. Consider the family of elements {Ln}n∈N∪{0} such that L0 ∈ Th1
, and

for any n ∈ N, Ln ∈ Thn+1
and Ln := SKi

(Ki), where Ki ∈ D(Ln−1).

Thanks to Lemma 10 we have

(38) κ(Ln+1) >

(
1− 8√

3

diamLn

rΩκ(Ln)

)2
κ(Ln).

Further, we have from Lemma 11 that

(39) diamLn 6
1

2

(
1 +

8

b
√
3

)
diamLn−1,

and from Lemma 10 combined with (19) also

(40) κ(Ln) >
1− 8

b
√
3

1 + 8
b
√
3

κ(Ln−1).

Combining (39) and (40), we get

diamLn

κ(Ln)
6

1

2

(
1 + 8

b
√
3

)2

1− 8
b
√
3

diamLn−1

κ(Ln−1)
,
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i.e.

diamLn

κ(Ln)
6

((
1 + 8

b
√
3

)2

2
(
1− 8

b
√
3

)
)n

diamL0

κ(L0)
.

As the condition (19) holds also for L0, we have

(41)
diamLn

κ(Ln)
6

((
1 + 8

b
√
3

)2

2
(
1− 8

b
√
3

)
)n

rΩ
b
.

Then, substituting (41) to (38), we get

κ(Ln+1) >

(
1− 8

b
√
3

((
1 + 8

b
√
3

)2

2
(
1− 8

b
√
3

)
)n)

κ(Ln).

Hence, we can explicitly estimate

(42) κ(Ln+1) >
n∏

i=0

(
1− 8

b
√
3

((
1 + 8

b
√
3

)2

2
(
1− 8

b
√
3

)
)i)

κ(L0).

The product on the right-hand side of (42) is a q-Pochhammer symbol with param-

eters

a =
8

b
√
3
, q =

(
1 + 8

b
√
3

)2

2
(
1− 8

b
√
3

) .

Assumption (19) guarantees that q ∈ (0, 1), see Remark 1, and also a ∈ (0, 1).

Therefore, we have from Lemma 6 that the right-hand side of (42) has a positive

limit P (a, q) > 0 for n → ∞ and hence also

κ(Ln) > (a; q)n · κ(L0) > P (a, q) · κ(L0).

We recall that L0 ∈ Th1
and set

κ0 := P (a, q) · min
L∈Th1

κ(L),

which completes the proof. �
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5. Proof of Theorem 1

The final step of the proof is a simple bridging of the main Theorem 1 and Theo-

rem 4.

P r o o f. By virtue of Lemma 5, the conditions (1), (2) can be transformed to the

minimal regularity condition (19). Then we apply Theorem 4 to get the existence

of a family of boundary-fitted meshes satisfying κ(K) > κ0 > 0 for all tetrahedral

elements K in the family of meshes. Then by virtue of Lemma 4 we conclude the

strong regularity of the family.

The estimate (3) is ensured by Corollary 1. �
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