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Abstract. The generalized Riemann integral of Pfeffer (1991) is defined on all bounded
BV subsets of Rn, but it is additive only with respect to pairs of disjoint sets whose closures
intersect in a set of σ-finite Hausdorff measure of codimension one. Imposing a stronger
regularity condition on partitions of BV sets, we define a Riemann-type integral which
satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral
is lipeomorphism-invariant and closed with respect to the formation of improper integrals.
Its definition in R coincides with the Henstock-Kurzweil definition of the Denjoy-Perron
integral.
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1. Introduction

More than a century ago, independently and by different means, Denjoy in [1] and

Perron in [12] defined an extension of the Lebesgue integral that satisfies the funda-

mental theorem of calculus for each differentiable function in an interval. While the

usefulness and aesthetic appeal of the Denjoy-Perron integral is undeniable, both of

its definitions are complicated and resistant to a usable higher-dimensional general-

ization.

In the second half of the last century, Henstock in [5], [4] and Kurzweil in [6] dis-

covered independently that the Denjoy-Perron integral can be obtained by a minor,

but ingenious, modification of the classical Riemann integral. The simplicity of the
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Henstock-Kurzweil definition revitalized the surge for a multi-dimensional general-

ization. In spite of many attempts, it took more than twenty years before Mawhin

in [11] observed that partitioning a multi-dimensional interval A to subintervals sim-

ilar to A yields the divergence theorem for any differentiable vector field defined in

a neighborhood of A. Several improvements of Mawhin’s pioneering work followed

(see [10], [9], [18], [8], [7], [17]), but all resulting integrals were defined either on

intervals, or on sets not sufficiently general for applications.

The Riemann-type definition of an integral on the family of all bounded BV sets

in R
n is due to the second author (see [16]), and we refer to it as the R-integral

(Definition 2.8). For the descriptive definition of the R-integral and the detailed

development of its properties we refer to [15], or in a more concise form to [14]. Note

that BV sets are the most general sets for which the surface area and exterior normal

can be profitably defined. In other words, BV sets form the largest family of sets for

which the divergence theorem can be formulated.

The additivity property of the R-integral is limited. Improving it requires a trans-

finite extension akin to that of the constructive definition of the Denjoy-Perron in-

tegral. While the extended integral, i.e., the GR-integral (see [15], Section 6.3)

is finitely additive in any dimension, in the real line it is still less general than

the Denjoy-Perron integral (see [16], Example 6.9 and Proposition 10.8). The pur-

pose of this paper is to show that a stricter regularity condition on the partitioning

sets leads to a proper extension of the R-integral, called the R∗-integral, which is

finitely additive in the usual sense (Theorem 3.14), shares the important proper-

ties of the R-integral, and coincides with the Denjoy-Perron integral in the real line

(Proposition 3.6). The unrestricted Gauss-Green theorem and the area theorem for

lipeomorphisms are valid for the R∗-integral (Theorems 3.19 and 3.24). The area

theorem facilitates the obvious definition of the R∗-integral on Lipschitz manifolds.

The R∗-integral is also closed with respect to the formation of improper integrals

(Theorem 3.20), and consequently extends the GR-integral.

The main difference between the R and R∗-integrals lies in the regularity condi-

tions placed on BV sets. The regularity applied in defining the R-integral relates

diameter, perimeter and volume so that regular BV sets enjoy both the reverse

isoperimetric and reverse isodiametric inequalities. If a regular BV set E of small

diameter contains a generic point of the essential interior of any BV set A, then

the intersection E ∩ A is again regular (see [15], Lemma 2.5.2), but little can be

said about the difference E − A. An unpleasant consequence is that there are BV

sets A ⊂ B and an R-integrable function on A whose zero extension to B is not

R-integrable (see [15], Section 6.1). To avoid this pathology we impose an additional

condition on a regular BV set E. Specifically, we require that for any BV set A the

smaller of the perimeters of E ∩A and E −A is controlled by the relative perimeter
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of A in E. Cubes in Rn satisfy this condition (Lemma 3.1), and its utility transpires

from Lemmas 3.7 and 3.8.

2. Preliminaries

Finite and countably infinite sets are called countable. If A and B are sets, then

A△B = (A−B)∪(B−A) is their symmetric difference. The sets of all positive inte-
gers and all real numbers are denoted by N and R, respectively. When no attributes

are added, functions are assumed to be real-valued.

The ambient space of this paper is Rn, where n > 1 is a fixed integer. In R
n we

shall use exclusively the Euclidean norm |x| induced by the usual scalar product x ·y.
For x ∈ R

m and r > 0, we denote by U(x, r) and B(x, r) the open and closed balls

centered at x of radius r, respectively. The zero vector in R
m is denoted by 0, and

we write U(r) instead of U(0, r). The diameter and closure of a set E ⊂ R
m are

denoted by d(E) and clE, respectively. By 1E we denote the indicator of a set

E ⊂ R
m. Equalities such as γ = γ(n), κ := κ(n), . . ., indicate that γ, κ, . . ., are

constants depending only on the dimension n.

Lebesgue measure in R
n is denoted by L ; however, for E ⊂ R

n, we write |E|
instead of L (E). Throughout the paper,

α(n) := L ({x ∈ R
n : |x| 6 1}).

Unless specified otherwise, the words measure, measurable, and negligible as well

as the expressions almost all, almost everywhere, and absolutely continuous always

refer to Lebesgue measure L . In R
n we also use the (n− 1)-dimensional Hausdorff

measure, denoted by H .

Let A ⊂ R
n be a measurable set. We let int∗A and ext∗A be the sets of all density

points of A and R
n −A, respectively, and define

∂∗A = R
n − (int∗A ∪ ext∗A) and cl∗A = int∗A ∪ ∂∗A;

we call these sets the essential interior, essential exterior, essential boundary, and

essential closure of A, respectively. We say that A is an admissible set if

int∗A ⊂ A ⊂ cl∗A

and ∂A is compact. Note that the complement Rn−A of an admissible set A is also

admissible. The relative perimeter of a measurable set E in A is the number

P (E, inA) = H (∂∗E ∩ int∗A).
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The (absolute) perimeter of a measurable set E is the number

P (E) = P (E, inRn) = H (∂∗E).

A measurable set A ⊂ R
n such that P (A, inE) <∞ for each bounded measurable

set E is called a locally BV set ; if |A|+ P (A) <∞, then A is called a BV set. Note
that Rn is a locally BV set, and that the intersection of a BV set and a locally BV

set is a BV set. If A is an admissible locally BV set, then so is Rn −A. The families

of all BV sets, all bounded BV sets, and all locally BV sets are denoted by BV, BVc,

and BV loc, respectively. By ABV and ABV loc we denote, respectively, the families

of all admissible sets in BV and BVloc. Note that ABV ⊂ BVc.

Lemma 2.1. If A and E are BV sets, then P (E, inA) = P (A ∩ E, inA) and

P (E, inA) =
1

2
[P (E ∩ A) + P (A− E)− P (A)] = P (A− E, inA).

P r o o f. The first equality follows from [13], Corollary 4.2.5. It shows that the

remaining equalities do not change when E is replaced by E ∩A. Thus it suffices to
prove them for E ⊂ A. In this case [13], Proposition 6.6.3 implies

P (E) + P (A− E)− P (A)

= 2P (E)− 2H (∂∗E ∩ ∂∗A)
= 2[H (∂∗E ∩ int∗A) + H (∂∗E ∩ ∂∗A)]− 2H (∂∗E ∩ ∂∗A)
= 2P (E, inA)

and consequently

2P (A− E, inA) = P [(A− E) ∩ A] + P [A− (A− E)]− P (A)

= P (A− E) + P (E ∩ A)− P (A) = 2P (E, inA).

�

If A is a BV set, then forH almost all x ∈ ∂∗A there exists a unique unit exterior

normal νA(x) such that the Gauss-Green formula

∫

∂∗A

v · νA dH =

∫

A

div v dL

for each v ∈ C1(Rn;Rn); see [13], Section 6.5.
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Definition 2.2. A finitely additive function F defined on BVc is called a charge

if for each ε > 0 there is θ > 0 such that

|F (B)| 6 θ|B|+ ε[P (B) + 1]

for each BV set B ⊂ U(1/ε).

We say that a sequence {Ak} in BVc converges to a set A, and write Ak → A,

if there is a compact set K ⊂ R
m containing each Ak, supP (Ak) < ∞, and

lim |A△Ak| = 0.

The following characterization of charges is proved in [15], Section 2.2.

Proposition 2.3. A finitely additive function F defined on BVc is a charge if and

only if F satisfies the following condition: F (A) = limF (Ak) for each sequence {Ak}
in BVc converging to A.

If F is a charge and A is a locally BV set, then

F A : B 7→ F (A ∩B) : BVc → R.

is also a charge. We say that F is a charge in A when F = F A; note, however,

that a charge in A is still defined on the whole of BVc. The linear space of all charges

in a locally bounded BV set A is denoted by CH(A).

Lemma 2.4. Let F be a charge. If F (C) > 0 for each cube C ⊂ R
n, then F > 0.

The lemma is a direct consequence of [13], Proposition 6.7.3.

Lemma 2.5. Let F be a charge and ε > 0. There is an absolutely continuous

Radon measure µ in R
n such that for each BV set B ⊂ U(1/ε),

∣

∣F (B)
∣

∣ 6 µ(B) + εP (B).

P r o o f. By [2], Theorem 6.2, there are f ∈ L1
loc(R

n) and v ∈ C(Rn;Rn) such

that

F (B) =

∫

B

f dL +

∫

∂∗B

v · νB dH

for each B ∈ BVc. As by [15], Proposition 2.1.7 and Remark 2.1.8, there is θ > 0

such that ∫

∂∗B

v · νB dH 6 θ|B|+ εP (B)

for every BV set B ⊂ U(1/ε), it suffices to let µ =
∫

(f + θ) dL . �
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R em a r k 2.6. The word “charge” has been used in the literature to describe

several distinct concepts. For instance, our notion of charge, which was introduced

in [15], Section 2.1, differs from that given in [13], Section 10.1.

The regularity of a bounded BV set E ⊂ R
n is defined by

r(E) =







|E|
d(E)P (E)

if |E| > 0,

0 if |E| = 0.

Note that r(E) = 1/
(

2n
√
n
)

when E is a cube. The isoperimetric inequality

(2.1) nnα(n)|E|n−1 6 P (E)n

relates the regularity of E to the common concept of shape:

(2.2) nnα(n)r(E)n 6
|E|
d(E)n

.

The critical boundary of a locally BV set A is the set

(2.3) ∂cA =

{

x ∈ R
m : lim sup

r→0

P [A, inB(x, r)]

rn−1
> 0

}

,

and the sets intcA = int∗A − ∂cA and extcA = ext∗A − ∂cA are called the critical

interior and critical exterior of A, respectively. It is clear that

∂∗A ⊂ ∂cA, extcA = intc(R
n −A), R

n = intcA ∪ extcA ∪ ∂cA,

and it follows from [13], Section 7.3 that H (∂cA− ∂∗A) = 0.

A gage on a set A ⊂ R
n is a nonnegative function defined on A whose null set

{δ = 0} is of σ-finite measure H . A partition is a finite, possibly empty, collection

P = {(E1, x1), . . . , (Ep, xp)},

where E1, . . . , Ep are disjoint bounded BV sets. The body of P is the union

[P ] =
p
⋃

i=1

Ei. Given η > 0 and a gage δ on a set A, we say that P is

(i) η-regular if r(Ei ∪ {xi}) > η for i = 1, . . . , p;

(ii) δ-fine if Ei ⊂ U(xi, δ(xi)) for i = 1, . . . , p.

Note that if P is η-regular and δ-fine, then each xi is in A− {δ = 0}. The following
useful fact about partitions is established in [15], Lemma 2.6.6.

Lemma 2.7. Let A ∈ ABV loc and ε > η > 0. There is a gage δ on A with the

following property: if {(E1, x1), . . . , (Ep, xp)} is an ε-regular δ-fine partition, then
{(A ∩E1, x1), . . . , (A ∩ Ep, xp)} is an η-regular δ-fine partition.
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The next definition originates from [16], Proposition 7.7.

Definition 2.8. A function f defined on a set A ∈ ABV is called R integrable if
there is a charge F in A that satisfies the following condition: given ε > 0, we can

find a gage δ on A so that

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ < ε

for each ε-regular δ-fine partition P = {(A1, x1), . . . , (Ap, xp)} with [P ] ⊂ A.

The charge F in Definition 2.8, which is uniquely determined by f , is called the

indefinite R-integral of f , denoted by (R)
∫

f . By R(A) we denote the linear space of

all R-integrable functions on A. The number (R)
∫

A
f = F (A) is called the R-integral

of f on A.

The R-integral has many useful properties, including the area theorem for local

lipeomorphisms and the Gauss-Green theorem for pointwise Lipschitz vector fields;

see [16], or [15], [14], where the R-integral is studied from the descriptive point of

view. At the same time, the additive property of the R-integral is deficient, see [15],

Proposition 5.1.8 and Section 6.1. Moreover, [16], Example 6.9 shows that if n = 1,

then the R-integral is less general then the Denjoy-Perron integral.

3. R∗-integral

Given ε > 0, a set E ∈ BVc is called ε-isoperimetric if for each T ∈ BV,

min{P (E ∩ T ), P (E − T )} 6
1

ε
P (T, inE).

According to Lemma 2.1, in testing for the ε-isoperimetric property of E it suffices

to consider only BV sets T ⊂ E.

Lemma 3.1. Every cube C ⊂ R
n is κ-isoperimetric for a constant κ = κ(n).

Making κ smaller, we assume throughout that κ < 1/(2n
√
n).

P r o o f. Choose a BV set T ⊂ C and assume |T | 6 |C|/2. Then [13], Corol-
lary 4.2.5 and Lemma 6.7.2 show that there is β = β(n) > 0 such that

P (T ) 6 P (intC ∩ ∂∗T ) + P (∂C ∩ ∂∗T ) 6 (1 + β)P (T, inC).

If |T | > |C|/2 then |C − T | < |C|/2, and we obtain

P (C − T ) = P [C ∩ (C − T )] 6 (1 + β)P (C − T, inC) = (1 + β)P (T, inC)

by the first part of the proof and Lemma 2.1. �
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Ob s e r v a t i o n 3.2. Let E ⊂ R be a BV set that is ε-isoperimetric for some

ε > 0. Then E is equivalent to a closed interval I and cl∗E = I.

P r o o f. Let E = A∪B where A and B are BV sets of positive measure such that
clA∩clB = ∅, and let T = A. Then P (T, inE) = 0 while P (E∩T ) = P (A) > 0 and

P (E − T ) = P (B) > 0, a contradiction. Thus E is equivalent to a closed interval I,

and the equality cl∗E = I is obvious. �

An ε-regular partition P = {(E1, x1), . . . , (Ep, xp)} is called strongly ε-regular if
each Ei is ε-isoperimetric and xi ∈ cl∗Ei for i = 1, . . . , p. If each Ei is a cube, then P

is strongly κ-regular, since r(Ei) = 1/(2n
√
n) > κ for i = 1, . . . , p.

Definition 3.3. Let G be a charge. A function f : R
n → R is called R∗-

integrable with respect to G if there is a charge F that satisfies the following condi-

tion: given ε > 0, we can find a gage δ on R
n so that

p
∑

i=1

|f(xi)G(Ei)− F (Ei)| < ε

for each strongly ε-regular δ-fine partition {(E1, x1), . . . , (Ep, xp)}. The charge F
is unique by the next proposition. It is called the indefinite R∗-integral of f with

respect to G and denoted by (R∗)
∫

f dG. If G = L , we usually drop the reference

to L and call F the indefinite R∗-integral of f .

Proposition 3.4. If f : R
n → R is R∗-integrable with respect to a chargeG, then

the indefinite R∗-integral of f is unique.

P r o o f. Let F1 and F2 be indefinite R∗-integrals of f with respect to the

charge G, and let H = |F1 − F2|. Choose a cube C ⊂ R
m and 0 < ε 6 κ, and find

a gage δ corresponding to ε and both F1 and F2. It follows from [15], Lemma 2.6.4

that there is a strongly ε-regular δ-fine partition P = {(E1, x1), . . . , (Ep, xp)} such
that [P ] ⊂ C and H(C − [P ]) < ε. Thus

H(C) 6 H(K − [P ]) +H([P ]) < ε+

∣

∣

∣

∣

p
∑

i=1

[F1(Ei)− F2(Ei)]

∣

∣

∣

∣

6 ε+

p
∑

i=1

|F1(Ei)− f(xi)G(Ei)|+
p

∑

i=1

|f(xi)G(Ei)− F2(Ei)| < 3ε.

As ε is arbitrary, H(C) = 0 and the proposition follows from Lemma 2.4. �

224



Let G be a charge. It is clear that the set R∗(R
n, G) of all functions f : R

n → R

that are R∗-integrable with respect to G is a linear space, and that

f 7→ (R∗)

∫

f dG : R∗(R
n, G) → CH(Rn)

is a linear map. An argument similar to the proof of Proposition 3.4 shows that if

G > 0 and f ∈ R∗(R
n, G) is nonnegative, then so is (R∗)

∫

f dG. If G = L , we write

R∗(R
m) and (R∗)

∫

f instead of R∗(R
m,L ) and (R∗)

∫

f dL , respectively.

Proofs analogous to those of [16], Section 5 establish the next proposition.

Proposition 3.5. EachR∗-integrable function is measurable, L
1
loc(R

n) ⊂ R∗(R
n)

and (R∗)
∫

f =
∫

f dL for every f ∈ L1
loc(R

n). In addition,

L1
loc(R

n) = {f ∈ R∗(R
n) : |f | ∈ R∗(R

n)}.

An immediate consequence of Proposition 3.4 is that neither the R∗-integrability

of f : R
m → R, nor (R∗)

∫

f , depends on the values of f on a negligible set.

Proposition 3.6. A function f defined on R is R∗-integrable if and only if it is

Denjoy-Perron integrable on each compact interval A ⊂ R. If F = (R∗)
∫

f , then

F (A) equals the Denjoy-Perron integral of f on A.

P r o o f. We prove the proposition using the Henstock-Kurzweil definition of the

Denjoy-Perron integral, see [3], Definition 9.3. Let f be Denjoy-Perron integrable on

each compact subinterval of R. It follows from [3], Theorem 9.12 that the indefinite

Denjoy-Perron integral is a charge, and the Henstock lemma ([3], Lemma 9.11),

combined with Observation 3.2, shows that f is R∗-integrable.

Conversely, let f be R∗-integrable and F = (R∗)
∫

f . Choose a compact interval

A ⊂ R and ε > 0. There is a gage δ on R such that

p
∑

i=1

∣

∣f(xi)|Ei| − F (Ei)
∣

∣ < ε

for each δ-fine partition {(E1, x1), . . . , (Ep, xp)}, where every Ei is a closed interval

containing xi. Enumerate the countable set {δ = 0} as {z1, z2, . . .}, and without
loss of generality assume that f(zk) = 0 for k = 1, 2, . . . There are rk > 0 such that

|F (J)| < ε2−k for every interval J ⊂ A with |J | < 2rk. Let

δ+(x) =

{

δ(x) if δ(x) > 0,

rk if x = zk,
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and select a δ+-fine partition P = {(A1, x1), . . . , (Ap, xp)} so that each Ai is a closed

interval containing xi and [P ] = A. Then P is the disjoint union of partitions Q

and S such that Q is δ-fine and S = {(Ai1 , zk1
), . . . , (Ais , zks

)}. Hence
∣

∣

∣

∣

p
∑

i=1

f(xi)|Ai| − F (A)

∣

∣

∣

∣

6

p
∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣

=
∑

(Ai,xi)∈Q

∣

∣f(xi)|Ai| − F (Ai)
∣

∣+
s

∑

j=1

|F (Aij )| < 2ε.

It follows that the Denjoy-Perron integral of f on A exists and equals F (A). �

Lemma 3.7. Let A ∈ BV loc and ε > 0. For each x ∈ extcA, there is δ > 0 such

that every strongly ε-regular set E with x ∈ cl∗E and d(E) < δ satisfies

P (E ∩ A) 6 P (E −A).

P r o o f. As the case n = 1 is trivial, assume n > 2. Let θ = nnα(n) be the

isoperimetric constant of (2.1). Choose 0 < η < εnθ/2 and find δ > 0 so that

(3.1) |A ∩B(x, d)| 6 ηdn and P [A, inB(x, d)] 6 ηdn−1

whenever d < δ. Select a strongly ε-regular set E with x ∈ cl∗E and d = d(E) < δ.

Then |E| > θ(εd)n by inequality (2.2). Seeking a contradiction, assume that

P (E −A) < P (E ∩ A).

Since E is strongly ε-regular, the isoperimetric inequality (2.1) and (3.1) imply

εθ1/n|E −A|(n−1)/n 6 εP (E −A) 6 P (A, inE)

6 P [A, inB(x, d)] 6 ηdn−1 6
1

2
εnθdn−1

and hence

|E −A| 6 2−n/(n−1)θ(εd)n <
1

2
θ(εd)n.

On the other hand, (3.1) shows that

|E −A| > |E| − |A ∩B(x, d)| > θ(εd)n − ηdn >
1

2
θ(εd)n.

Combining the last two inequalities yields a contradiction. �
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Lemma 3.8. Let F be a charge, and A ∈ ABV loc. Given ε > 0, there is a gage δ

on R
n such that

∑

xi /∈A

|F (A ∩ Ei)| < ε and
∑

xi∈A

|F (Ei −A)| < ε

for each strongly ε-regular δ-fine partition {(E1, x1), . . . , (Ep, xp)}.
P r o o f. Choose ε > 0 so that the compact set ∂A is contained in U = U(1/ε2).

By Lemma 2.5, there is an absolutely continuous Radon measure µ in R
n such that

|F (E)| 6 µ(E) + ε2P (E)

for each BV set E ⊂ U . There is a compact set K ⊂ U ∩A such that

µ(U ∩ A−K) < ε.

Using Lemma 3.7, for each x ∈ U ∩ extcA find δx > 0 so that B(x, δx) ⊂ U , and

(3.2) P (E ∩ A) 6 P (E −A)

for each strongly ε-regular set E with x ∈ cl∗E and d(E) < δx. Making δx smaller,

we may assume that K ∩ B(x, δx) = ∅. As A is an admissible set, intcA ⊂ A and

A ∩ extcA = ∅. Hence we can define a gage δ on R
n by letting

δ(x) =























1 if x ∈ intcA,

0 if x ∈ ∂cA,

δx if x ∈ U ∩ extcA,

dist(x, ∂A) if x ∈ extcA− U.

Let P = {(E1, x1), . . . , (Ep, xp)} be a strongly ε-regular δ-fine partition. From the
definition of δ, inequality (3.2), and the strong ε-regularity of Ei, we obtain

(i) xi /∈ ∂cA for i = 1, . . . , p;

(ii) A ∩ Ei ⊂ U ∩ A−K when xi ∈ U ∩ extcA;

(iii) A ∩ Ei = ∅ when xi ∈ extcA− U ;

(iv) P (A ∩Ei) 6 (1/ε)P (A, inEi) when xi ∈ U ∩ extcA.

Consequently,

∑

xi /∈A

|F (A ∩ Ei)| =
∑

xi /∈intcA

|F (A ∩ Ei)| =
∑

xi∈U∩extcA

|F (A ∩ Ei)|

6
∑

xi∈U∩extcA

[µ(A ∩ Ei) + ε2P (A ∩ Ei)]

6 µ(U ∩ A−K) + ε
∑

xi∈U∩extcA

P (A, inEi) 6 ε[1 + P (A)],
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which proves the first desired inequality. Since R
n − A is in ABV loc, the lemma

follows by symmetry. �

Proposition 3.9. Let G be a charge, f ∈ R∗(R
n, G), and F = (R∗)

∫

f dG. If

A ∈ ABV loc, then 1Af ∈ R∗(R
n, G) and (R∗)

∫

1Af dG = F A.

P r o o f. Choose ε > 0. By the definition of R∗-integrability and Lemma 3.8,

there is a gage δ on R
n such that

p
∑

i=1

|F (Ei)− f(xi)G(Ei)| < ε,

∑

xi /∈A

|F (A ∩ Ei)| < ε and
∑

xi∈A

|F (Ei −A)| < ε

for each strongly ε-regular δ-fine partition P = {(E1, x1), . . . , (Ep, xp)}. Thus

p
∑

i=1

|(F A)(Ei)− 1A(xi)f(xi)G(Ei)|

=
∑

xi∈A

|(F A)(Ei)− f(xi)G(Ei)|+
∑

xi /∈A

|(F A)(Ei)|

<
∑

xi∈A

|(F A)(Ei)− F (Ei)|+
∑

xi∈A

|F (Ei)− f(xi)G(Ei)|+ ε

<
∑

xi∈A

|F (Ei −A)|+ 2ε < 3ε.

�

Corollary 3.10. Let G be a charge, f ∈ R∗(R
n, G), and F = (R∗)

∫

f dG. If

A,B ∈ ABV and f = 0 on R
n − (A ∩B), then F (A) = F (B).

P r o o f. The assumption f = 0 on Rn− (A∩B) implies that f1A = f1B. Thus,

by Proposition 3.9, F A = F B and

F (A) = F A(A ∪B) = F B(A ∪B) = F (B).

�

The zero extension of a function f defined on any set A ⊂ R
n is given by

f(x) =

{

f(x) if x ∈ A,

0 if x ∈ R
n −A.
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Definition 3.11. Let G be a charge, and A ⊂ R
n. A function f : A → R

is called R∗-integrable with respect to G if f ∈ R∗(R
n, G). The unique charge

F = (R∗)
∫

f dG is called the indefinite R∗-integral of f with respect to G, denoted

by (R∗)
∫

f dG. If A ∈ ABV, then the number

(R∗)

∫

A

f dG = F (A)

is called the definite R∗-integral of f over A with respect to G.

For A ∈ ABV loc, the linear space of all functions f : A→ R that are R∗-integrable

with respect to G is denoted by R∗(A,G). The symbols R∗(A) and (R∗)
∫

A
f stand

for R∗(A,L ) and (R∗)
∫

A f dL , respectively.

R em a r k 3.12. If A is a bounded set, then we can define the definite R∗-integral

of f over A with respect to G as

(R∗)

∫

A

f dG = F (B),

where B is an arbitraryABV set containing A. By Corollary 3.10, this definition does
not depend on the choice of B. In addition, naturally defined improper integrals can

determine the definite R∗-integral over unbounded subsets of R
n so that when applied

to integration with respect to Lebesgue measure, the following is true: (R∗)
∫

A f =
∫

A
f for each measurable set A on which the Lebesgue integral

∫

A
f exists. In this

way, the definite R∗-integral extends the Lebesgue integral completely. We do not

pursue the details, since only bounded sets are considered in the present paper.

Proposition 3.13. Let G be a charge, A ∈ ABV loc, and f ∈ R∗(A,G). Then

f ↾ B belongs to R∗(B,G) for each B ∈ ABV loc with B ⊂ A, and

(R∗)

∫

(f ↾ B) dG =

[

(R∗)

∫

f dG

]

B.

P r o o f. By our assumption f ∈ R∗(R
n, G). Since f ↾ B = 1Bf for each B ⊂ A,

the proposition is a direct consequence of Proposition 3.9. �

Let G be a charge, A ∈ ABV, and f ∈ R∗(A,G). If B ∈ ABV is a subset of A, we
usually skip the restriction symbol f ↾ A, and write f ∈ R∗(B,G) and (R∗)

∫

B f dG.

Theorem 3.14. Let G be a charge, and let A,B ∈ ABV be such that A ∩ B is
of σ-finite measure H . If f : A ∪ B → R satisfies f ↾ A ∈ R∗(A,G) and f ↾ B ∈
R∗(B,G), then f ∈ R∗(A ∪B,G) and

(3.3) (R∗)

∫

A∪B

f dG = (R∗)

∫

A

f dG+ (R∗)

∫

B

f dG.
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P r o o f. Since integration does not depend on the values of f on sets of σ-finite

measure H , we may assume that A ∩ B = ∅. By our assumptions, f1A and f1B

belong to R∗(R
n, G), and by linearity so does f1A∪B, and

(3.4) (R∗)

∫

f1A∪B dG = (R∗)

∫

f1A dG+ (R∗)

∫

f1B dG.

By Corollary 3.10,
[

(R∗)

∫

f1A dG

]

(A ∪B) =

[

(R∗)

∫

f1A dG

]

(A) = (R∗)

∫

A

f dG

and similarly
[

(R∗)

∫

f1B dG

]

(A ∪B) =

[

(R∗)

∫

f1B dG

]

(B) = (R∗)

∫

B

f dG.

Therefore, the formula (3.3) follows by evaluating (3.4) on A ∪B. �

Proposition 3.15. Let G be a charge, and let f : R
n → R be such that f ↾ B

belongs to R∗(B,G) for each closed ball B ⊂ R
n. Then f ∈ R∗(R

n, G).

P r o o f. Choose ε > 0, and let B0 = ∅, and for k = 1, 2, . . .,

Bk = B(0, k), gk = f ↾ Bk, Fk = (R∗)

∫

gk dG.

Since Fk = Fk+1 Bk by Proposition 3.13, letting F (A) = Fk(A) for each A in ABV
with A ⊂ Bk defines a charge F such that F Bk = Fk for k = 1, 2, . . . There are

gages δk in R
n such that

(3.5)

p
∑

i=1

|gk(xi)G(Ei)− Fk(Ei)| < ε2−k

for each strongly ε-regular δk-fine partition {(E1, x1), . . . , (Ep, xp)}. The formula

δ(x) =















min{δ1(x), dist(x, ∂B1)} if x ∈ intB1,

min{δk(x), dist(x, ∂Bk ∪ ∂Bk−1)} if k > 2 and x ∈ intBk −Bk−1,

0 if x ∈
∞
⋃

k=1

∂Bk

defines a gage δ on R
n. If {(E1, x1), . . . , (Ep, xp)} is a strongly ε-regular δ-fine

partition, let Ik = {1 6 i 6 p : xi ∈ intBk −Bk−1}. By (3.5),
p

∑

i=1

|f(xi)G(Ei)− F (Ei)| =
∞
∑

k=1

∑

xi∈Ik

|gk(xi)G(Ei)− Fk(Ei)| < ε

and we see that f ∈ R∗(R
n, G) and (R∗)

∫

f dG = F . �
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Proposition 3.16. Let G be a charge, and A ∈ ABV loc. Then

R∗(A,G) = R∗(A,G A) and (R∗)

∫

f dG = (R∗)

∫

f d(G A)

is a charge in A for each f ∈ R∗(A,G).

P r o o f. Select f : A→ R and let g = f . Choose ε > 0, and for k = 1, 2, . . ., let

Bk = {x ∈ R
n : k− 1 6 |f(x)| < k}. By Lemma 3.8, there are gages δk, k = 1, 2, . . .,

on R
n such that

∑

xi∈A

|G(Ei −A)| < ε

k
2−k

for each strongly ε-regular δk-fine partition {(E1, x1), . . . , (Ep, xp)}. Define a gage
δ on R

n by letting δ(x) = δk(x) for x ∈ Bk, and select a strongly ε-regular δ-fine

partition {(E1, x1), . . . , (Ep, xp)}. Now for any charge F ,
∣

∣

∣

∣

p
∑

i=1

|F (Ei)− g(xi)(G A)(Ei)| −
p

∑

i=1

|F (Ei)− g(xi)G(Ei)|
∣

∣

∣

∣

6

p
∑

i=1

|g(xi)|
∣

∣G(Ei)− (G A)(Ei)
∣

∣

=

p
∑

i=1

|g(xi)|
∣

∣G(Ei −A)
∣

∣ 6

∞
∑

k=1

k
∑

xi∈A∩Bk

|G(Ei −A)| < ε.

Thus f belongs to R∗(A,G) if and only if it belongs to R∗(A,G A), and the common

indefinite R∗-integral F is a charge in A by Proposition 3.13. �

Theorem 3.17. Let G be a charge, A ∈ ABV loc, and f : A → R. Then f

belongs to R∗(A,G) if and only if there is a charge F in A that satisfies the following

condition: given ε > 0, we can find a gage δ on A so that

(3.6)

p
∑

i=1

|f(xi)(G A)(Ei)− F (Ei)| < ε,

or equivalently

(3.7)

p
∑

i=1

|f(xi)G(Ei)− F (Ei)| < ε,

for each strongly ε-regular δ-fine partition {(E1, x1), . . . , (Ep, xp)}. In either case

F = (R∗)

∫

f dG.
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P r o o f. Let F be a charge in A that satisfies condition (3.6), and let g = f .

Choose ε > 0 and find a gage δ on A corresponding to F and ε according to our

assumption. By Lemma 3.8, there is a gage σ on R
n such that

∑

xi /∈A

|F (A ∩ Ei)| < ε

for each strongly ε-regular σ-fine partition {(E1, x1), . . . , (Ep, xp)}. The formula

∆(x) =

{

min{δ(x), σ(x)} if x ∈ A,

σ(x) if x ∈ R
n −A

defines a gage ∆ on R
n, and if {(E1, x1), . . . , (Ep, xp)} is a ∆-fine partition, then

{(Ei, xi) : xi ∈ A} is a δ-fine partition. Since F = F A,

p
∑

i=1

|F (Ei)− g(xi)(G A)(Ei)| =
∑

xi∈A

|F (Ei)− g(xi)(G A)(Ei)|+
p

∑

xi /∈A

|F (Ei)|

< ε+

p
∑

xi /∈A

|F (A ∩ Ei)| < 2ε

and we see that g ∈ R∗(R
n, G A). By definition f belongs to R∗(A,G A), and

hence to R∗(A,G) according to Proposition 3.16. In addition,

F = (R∗)

∫

f d(G A) = (R∗)

∫

f dG.

Conversely, let f ∈ R∗(A,G). Then there is a gage δ on R
n such that

p
∑

i=1

|f(xi)G(Ei)− F (Ei)| =
p

∑

i=1

|g(xi)G(Ei)− F (Ei)| < ε

for each strongly ε-regular (δ ↾ A)-fine partition P = {(E1, x1), . . . , (Ep, xp)}, since
such P is also δ-fine. Thus F satisfies condition (3.7), and we infer that condi-

tions (3.6) and (3.7) are equivalent. �

Corollary 3.18. Let A ∈ ABV. Then R(A) ⊂ R∗(A) and for each f ∈ R(A),

(R∗)

∫

A

f = (R)

∫

A

f.
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P r o o f. Let F = (R)
∫

f , and choose ε > η > 0. There is a gage δ on A such

that
p

∑

i=1

∣

∣f(xi)|Ai| − F (Ai)
∣

∣ < η

for each η-regular δ-fine partition P = {(A1, x1), . . . , (Ap, xp)} with [P ] ⊂ A. Mak-

ing δ smaller, we may assume that if {(E1, x1), . . . , (Ep, xp)} is an ε-regular δ-fine
partition, then {(A ∩ E, xi) : i = 1, . . . , p} is an η-regular δ-fine partition, see [15],
Lemma 2.6.6. Thus if {(E1, x1), . . . , (Ep, xp)} is a strongly ε-regular δ-fine partition,
then

p
∑

i=1

∣

∣f(xi)|A ∩ Ei| − F (Ei)
∣

∣ =

p
∑

i=1

∣

∣f(xi)|A ∩ Ei| − F (A ∩Ei)
∣

∣ < η < ε

and the corollary follows from Theorem 3.17. �

The following divergence theorem is an immediate consequence of Corollary 2.13

and [16], Theorem 5.19.

Theorem 3.19 (Gauss-Green). Let A ∈ ABV, let v be a continuous vector field
defined on clA, and let S ⊂ A be a set of σ-finite measure H . If v is pointwise

Lipschitz in A− S, then div v belongs to R∗(A) and

(R∗)

∫

A

div v dL =

∫

∂∗A

v · νA dH .

Theorem 3.20. Let G be a charge, and let f be a function defined on A ∈ ABV.
Suppose there are a charge F in A and a sequence {Ak} in ABV such that

Ak ⊂ A, f ∈ R∗(Ak, G), F Ak = (R∗)

∫

(f ↾ Ak) dG

for k = 1, 2, . . . If Ak → A, then f ∈ R∗(A,G) and

(R∗)

∫

A

f dG = F (A).

P r o o f. It follows from [15], Corollary 6.2.7 that the set C = A −
∞
⋃

k=1

Ak has

σ-finite measure H . Choose ε > 0, and find gages δk on R
n so that

∑

xi∈Ak

|f(xi)G(Ei)− F (Ak ∩ Ei)| < ε2−k and
∑

xi∈Ak

|F (Ei −Ak)| < ε2−k(3.8)
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for each strongly ε-regular δk-fine partition {(E1, x1), . . . , (Ep, xp)}; see Theorem 3.17
and Lemma 3.8. For each x ∈ A − C let kx = min{k ∈ N : x ∈ Ak}, and define
a gage δ on A by letting δ(x) = δkx

(x) if x ∈ A− C, and δ(x) = 0 if x ∈ C. Given

a δ-fine partition {(E1, x1), . . . , (Ep, xp)}, let Ik = {i : kxi
= k} and observe that

{1, . . . , p} =
q
⋃

k=1

Ik, where q = max
i
kxi
and some Ik may be empty. Now

p
∑

i=1

|f(xi)G(Ei)− F (Ei)| =
q

∑

k=1

∑

i∈Ik

|f(xi)G(Ei)− F (Ei)|,
∑

i∈Ik

|f(xi)G(Ei)− F (Ei)| =
∑

xi∈Ak

|f(xi)G(Ei)− F (Ak ∩ Ei)|

+
∑

xi∈Ak

|F (Ei −Ak)| < ε2−k+1,

where the inequality follows from (3.8). Consequently,

p
∑

i=1

|f(xi)G(Ei)− F (Ei)| < 2ε

and the theorem follows from Theorem 3.17. �

R em a r k 3.21. Corollary 3.18 and Theorem 3.20 show that the R∗-integral ex-

tends the GR-integral defined in [15], Section 6.3. The extension is proper, since the

R-integral and GR-integral coincide in dimension one; see [16], Corollary 9.12, where

the GR-integral is called the continuous integral.

Proposition 3.22. Let G be a charge, h ∈ R∗(R
n, G), and H = (R∗)

∫

h dG.

If A ∈ ABV loc, then f : A → R belongs to R∗(A,H) if and only if fh belongs to

R∗(A,G), in which case

(R∗)

∫

fh dG = (R∗)

∫

f dH.

P r o o f. Choose ε > 0, and find gages δk, k = 1, 2, . . ., on R
n so that

p
∑

i=1

|h(xi)G(Ei)−H(Ei)| <
ε

k
2−k

for each strongly ε-regular δk-fine partition {(E1, x1), . . . , (Ep, xp)}. Let

Ak = {x ∈ A : k − 1 6 |f(x)| < k}, k = 1, 2, . . . ,
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and define gage δ on A by letting δ(x) = δk(x) when x ∈ Ak. Let f ∈ R∗(A,H) and

F = (R∗)
∫

f dH . Theorem 3.17 shows that making δ smaller, we may assume

p
∑

i=1

|f(xi)H(Ei)− F (Ei)| < ε

for each strongly ε-regular δ-fine partition P = {(E1, x1), . . . , (Ep, xp)}. For such P ,
p

∑

i=1

|f(xi)h(xi)G(Ei)− F (Ei)| 6
∞
∑

k=1

∑

xi∈Ak

|f(xi)|
∣

∣h(xi)G(Ei)−H(Ei)
∣

∣

+

p
∑

i=1

|f(xi)H(Ei)− F (Ei)| < ε

∞
∑

k=1

2−k + ε = 2ε.

Thus fh ∈ R∗(A,G) and (R∗)
∫

fh dG = (R∗)
∫

f dH according to Theorem 3.17.

Proving the converse is similar. �

Lemma 3.23. Let Ω ⊂ R
m be an open set, and let ϕ : Ω → R

n be a lipeomor-

phism. There is a constant γ > 1, depending only on ϕ, such that given ε > 0 and

a gage δ on ϕ(Ω), the following is true: δ ◦ ϕ is a gage on Ω, and if

P = {(E1, x1), . . . , (Ep, xp)}

is a strongly ε-regular (δ ◦ ϕ)-fine partition with cl [P ] ⊂ Ω, then

ϕ(P ) = {(ϕ(E1), ϕ(x1)), . . . , (ϕ(Ep), ϕ(xp))}

is a strongly (ε/γ)-regular (γδ)-fine partition with [ϕ(P )] ⊂ ϕ(Ω).

P r o o f. Let ψ = ϕ−1 and c = max{1,Lipϕ,Lipψ}. Clearly δ ◦ϕ is a gage on Ω,
and ϕ(P ) is (cδ)-fine partition with [ϕ(P )] ⊂ ϕ(Ω). By a direct calculation, ϕ(P ) is

(c−2mε)-regular. As cl [P ] is a compact subset of Ω, there is an open BV set U with

cl [P ] ⊂ U and clU ⊂ Ω. Thus we may assume from the onset that Ω and ϕ(Ω) are

BV sets. In view of this, we can verify the isoperimetric property of Ai = ϕ(Ei) by

considering only a BV set T ⊂ ϕ(Ω). Letting S = ψ(T ), we calculate

min {P (Ai ∩ T ), P (Ai − T )} = min{P [ϕ(Ei ∩ S)], P [ϕ(Ei − S)]}
6 cm−1 min{P (Ei ∩ S), P (Ei − S)} 6 cm−1ε−1P (S, inEi)

= cm−1ε−1
H (Ei ∩ ∂∗S) = cm−1ε−1

H [ψ(Ai ∩ ∂∗T )]
6 c2(m−1)ε−1

H (Ai ∩ ∂∗T ) = c2(m−1)ε−1P (T, inAi).

Now it suffices to let γ = c−2m. �
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Theorem 3.24. Let Ω ⊂ R
n be an open nonempty set, and let ϕ : Ω → R

n be a

lipeomorphism. If A ∈ ABV, clA ⊂ Ω, and f : ϕ(A) → R, then f ∈ R∗[ϕ(A)] if and

only if (f ◦ ϕ)|detϕ| belongs to R∗(A), in which case

(3.9) (R∗)

∫

ϕ(A)

f = (R∗)

∫

A

(f ◦ ϕ)|detϕ|.

P r o o f. Assume f ∈ R∗[ϕ(A)]. As clA is a compact set, there is an open set

U ∈ ABV such that clA ⊂ U ⊂ Ω. Note that for any charge G, the set function

E 7→ G(ϕ(E ∩ U)) : BVc → R is a charge as well. Define charges H and F in U by

H(E) = |ϕ(E ∩ U)| and F (E) = (R∗)

∫

ϕ(E∩U)

f, where E ∈ BVc.

By Proposition 3.5 and the area theorem for the Lebesgue integral,

H(E) = |ϕ(E ∩ U)| = (R∗)

∫

E

|detϕ| ↾ U

for each E ∈ ABV. Choose ε > 0, and let γ > 1 be the constant associated with ϕ

according to Lemma 3.23. By Theorem 3.17, there is a gage δ on ϕ(A) such that

(3.10)

p
∑

i=1

∣

∣

∣

∣

f(yi)|Ai| − (R∗)

∫

Ai

f

∣

∣

∣

∣

< ε

for each strongly (ε/γ)-regular (γδ)-fine partition {(A1, y1), . . . , (Ap, yp)}. Now select
a strongly ε-regular (δ ◦ ϕ)-fine partition P = {(E1, x1), . . . , (Ep, xp)}. Making δ
smaller, we may assume that cl [P ] ⊂ U . Lemma 3.23 and (3.10) imply

p
∑

i=1

|f [ϕ(xi)]H(Ei)− F (Ei)| =
p

∑

i=1

∣

∣

∣

∣

f [ϕ(xi)]|ϕ(Ei)| − (R∗)

∫

ϕ(Ei)

f

∣

∣

∣

∣

< ε.

Theorem 3.20 shows that f ◦ ϕ ∈ R∗(A,H) and (R∗)
∫

A
f ◦ ϕdH = (R∗)

∫

ϕ(A)
f ,

and equality (3.9) follows from Proposition 3.22. The converse is obtained from

symmetry. �
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