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Abstract

In this paper we solve the problem of finding integrals of equations de-
termining the Killing tensors on an n-dimensional differentiable manifold
M endowed with an equiaffine SL(n, IR)-structure and discuss possible
applications of obtained results in Riemannian geometry.
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1 Introduction

1.1. The “structural point of view” of affine differential geometry was intro-
duced by K. Nomizu in 1982 in a lecture at Münster University with the title
“What is Affine Differential Geometry?” (see [12]). In the opinion of K. Nomizu,
the geometry of a manifold M endowed with an equiaffine structure is called
affine differential geometry.
In recent years, there has been a new ware of papers devoted to affine dif-

ferential geometry. Today the number of publications (including monographs)
on affine differential geometry reached a considerable level. The main part of
these publications is devoted to geometry of hypersurfaces (see [15, 16] for the
history and references).
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1.2. In the present paper we solve the problem of finding integrals of equa-
tions determining the Killing tensors (see [8] for the definitions, properties and
applications) on an n-dimensional differentiable manifold M endowed with an
equiaffine structure. The paper is a direct continuation of [18]. The same nota-
tions are used here.
The first of two present theorems proved in our paper is an affine analog

of the statement published in the paper [17], which appeared in the process of
solving problems in General relativity.

2 Definitions and results

2.1. In order to clarify the approach to problem of finding integrals of equations
determining the Killing tensors on an n-dimensional differentiable manifold M
we shall start with a brief introduction to the subject which emphasizes the
notion of an equiaffine SL(n, IR)-structure.
Let M be a connected differentiable manifold of dimension n (n > 2), and

let L(M) be the corresponding bundle of linear frames with structural group
GL(n, IR). We define SL(n, IR)-structure on M as a principal SL(n, IR)- sub-
bundle of L(M). It is well known that an SL(n, IR)-structure is simply a volume
element onM , i.e. an n-form η that does not vanishing anywhere (see [6, Chap-
ter I, §2]).
We recall the famous problem of the existence of a uniquely determined

linear connection ∇ reducible to G for each given G-structure on M (see [1, p.
213]). For example, if M is a manifold with a pseudo-Riemannian metric g of
an arbitrary index k, then the bundle L(M) admits a unique linear connection
∇ without torsion that is reducible to O(m, k)-structure. Such a connection is
called the Levi-Civita connection. It is characterized by the following condition
∇g = 0.
A linear connection ∇ having zero torsion and reducible to SL(n, IR) is said

to be equiaffine and can be characterized by the following equivalent conditions
(see [15, p. 99], [16, pp. 57–58]):
(1) ∇η = 0;
(2) the Ricci tensor Ric of∇ is symmetric; that means Ric(X,Y ) = Ric(Y,X)

for any vector fields X,Y ∈ C∞TM .
An equiaffine SL(n, IR)-structure or an equiaffine structure on an n-dimen-

sional differentiable manifold M is a pair (η,∇), where ∇ is a linear connection
with zero torsion and η is a volume element which is parallel relative to ∇ (see
[13, p. 43]).
The curvature tensor R of an equiaffine connection ∇ admits a point-wise

SL(n, IR)-invariant decomposition of the form

R = (n− 1)−1[idM ⊗Ric-Ric⊗ idM ] +W

where W is the Weyl projective curvature tensor (see [16, p. 73–74], [2, §40]).
Then two classes of equiaffine structures can be distinguished in accordance
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with this decomposition: the Ricci-flat equiaffine SL(n, IR)-structures for which
Ric = 0, and the equiprojective SL(n, IR)-structures for which

R = (n− 1)−1[idM ⊗Ric-Ric⊗ idM ].

Remark 1 Recall that a linear connection ∇ with zero torsion is called Ricci-
flat if the Ricci tensor Ric = 0 (see [9]). On the anther hand, a connection
∇ is called equiprojective if the Weyl projective curvature tensor W = 0 (see
[15, §18]). In the literature equiprojective connections sometimes are called
projectively flat (see, for example, [16, p. 73]).

An autodiffeomorphism of the manifoldM is an automorphism of SL(n, IR)-
structure if and only if it preserves the volume element η. Let X be a vector
field on M . The function divX defined by the formula (divX)η = LXη where
LX is the Lie differentiation in the direction of the vector field X is called
the divergence of X with respect to the n- form η (see [7, Appendix no. 6]).
Obviously, X is an infinitesimal automorphism of an SL(n, IR)-structure if and
only if divX = 0. Such a vector field X is said to be solenoidal.
For an arbitrary vector field X on M with a linear connection ∇ we can

introduce the tensor field AX = LX −∇X regarded as a field of linear endomor-
phisms of the tangent bundle TM . If M is an n-dimensional with an equiaffine
SL(n, IR)-structure then the formula traceAX = − divX can be verified directly
(see [7, Appendix no. 6]).
We have the SL(n, IR)-invariant decomposition

AX = −n−1(divX) idM +ȦX

at every point x ∈M .
Two classes of vector fields on M endowed with an equiaffine SL(n, IR)-

structure can be distinguished in accordance with this decomposition: the
solenoidal vector fields and the concircular vector fields for which, by defini-
tion (see [14, p. 322], [9]), we have AX = −n−1(divX) idM .
The integrability conditions of the structure equationAX = −n−1(divX) idM

of the concircular vector field X is the Ricci’s identity

Y (divX)Z − Z(divX)Y = nR(Y, Z)X

for any vector fields Y, Z ∈ C∞TM (see [2, §11]). This identity are equivalent
to the condition W (Y, Z)X = 0 for any vector fields Y, Z ∈ C∞TM . It fol-
lows that an equiaffine SL(n, IR)- structure on an n-dimensional manifold M is
equiprojective if and only if there exist n linearly independent concircular vector
fields X1, X2, . . . , Xp on M (see also [24]). This statement is an affine analog
of the well known fact for the Riemannian manifold M of constant sectional
curvature (see [3]).

Remark 2 A pseudo-Riemannian manifold (M, g) with a projectively flat Levi-
Civita connection ∇ is a manifold of constant section curvature (see [15, §18]).
Therefore a manifold M endowed with an equiprojective SL(n, IR)-structure is
an affine analog of a pseudo-Riemannian manifold of constant sectional curva-
ture.
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2.2. We consider an n-dimensional manifoldM with an equiaffine SL(n, IR)-
structure and denote by ΛpM (1 ≤ p ≤ n− 1) the pth exterior power Λp(T ∗M)
of the cotangent bundle T ∗M of M . Hence C∞ΛpM , the space of all C∞-
sections of ΛpM , is the space of skew-symmetric covariant tensor fields of degree
p (1 ≤ p ≤ n− 1).
Let γ : J ⊂ IR → M be an arbitrary geodesic on M with affine parameter

t ∈ J . In this case, we have ∇ dγ
dt

dγ
dt = 0 for the tangent vector dγdt of γ.

Definition 1 (see [18]). A skew-symmetric tensor field ω ∈ C∞ΛpM (1 ≤ p ≤
n − 1) on an n-dimensional manifold M with an equiaffine SL(n, IR)-structure
is called Killing-Yano tensor of degree p if the tensor

i dγ
dt
ω := trace

(
dγ

dt
⊗ ω

)
is parallel along an arbitrary geodesic γ on M .

From this definition we conclude that(
∇ dγ

dt
ω
)(dγ

dt
,X2, . . . , Xp

)
= 0

for any vector fields X2, . . . , Xp ∈ C∞TM . Since the geodesic γ may be chosen
arbitrary, the above relation is possible if and only if ∇ω ∈ C∞Λp+1M , which is
equivalent to dω = (n+1)∇ω for the exterior differential operator d : C∞ΛpM →
C∞Λp+1M .
Obviously, the set of Killing-Yano tensors of degree p (1 ≤ p ≤ n − 1)

constitutes an IR-module of tensor fields on M , denoted by Kp(M, IR).
Let X1, . . . , Xp be p linearly independent concircular vector fields on M

(1 ≤ p ≤ n− 1). Then direct inspection shows that the tensor field ω of degree
n − p dual to the tensor field alt{X1 ⊗ · · · ⊗ Xp} relative to the n-form η is
a Killing-Yano tensor (see also [18]). Therefore on any n-manifold M with
equiprojective SL(n, IR)-structure, there exist at least n![p!(n − p)!]−1 linearly
independent Killing-Yano tensors (see [18]). Moreover the following theorem is
true.

Theorem 1 On an n-dimensional manifold M endowed with an equiprojective
SL(n, IR)-structure (η,∇), there exist a local coordinate system x1, . . . , xn in
which an arbitrary Killing-Yano tensor ω of degree p (1 ≤ p ≤ n − 1) has the
components

ωi1...ip = e(p+1)ψ(Ai0i1...ipx
i0 +Bi1...ip) (2.1)

where Ai0i1...ip and Bi1...ip are arbitrary constants skew-symmetric w.r.t. all
their indices and ψ = (n+ 1)−1 ln(η).

From the theorem we conclude that the maximum of linearly independent the
Killing–Yano tensors is by calculating the number Kp

n of independent Ai0i1...ip
and Bi1...ip which exist after accounting for the symmetries on the indices. It

follows that Kp
n = (n+1)!

(p+1)!(n−p)! is the maximum number linearly independent the
Killing–Yano tensors.
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Corollary 1 Let M be an n-dimensional manifold endowed with an equiprojec-
tive SL(n, IR)-structure then

dimKp(M, IR) =
(n+ 1)!

(p+ 1)!(n− p)!
.

On our fixed manifold M with an equiaffine SL(n, IR)-structure, we denote
by SpM the bundle of symmetric covariant tensor fields of degree p on M .
Hence C∞SpM , the space of all C∞-sections of SpM , is the space symmetric
covariant tensor fields of degree p.

Definition 2 (see [18]). A symmetric tensor field ϕ ∈ C∞SpM on an n-
dimensional manifold M with an equiaffine SL(n, IR)-structure is called Killing
tensor of degree p if

ϕ

(
dγ

dt
, . . . ,

dγ

dt

)
= const.

along an arbitrary geodesic γ on M .

Let ϕ
(
dγ
dt , . . . ,

dγ
dt

)
= const. along an arbitrary geodesic γ on M and hence

ϕ is a Killing tensor. Then the above relation is possible if and only if

δ∗ϕ :=
∑
cicl

{∇ϕ} = 0

where for the local components ∇i0ϕi1...ip of ∇ϕ we define the sum∑
cicl

{∇i0ϕi1...ip}

as the sum of the terms obtained by a cyclic permutation of indices i0, i1, . . . , ip.
Obviously, the set of Killing tensors constitutes an IR-module of tensor fields

on M , denoted by Tp(M, IR).
Let M be an n-dimensional manifold endowed with an equiprojective

SL(n, IR)-structure (η,∇), and ω1, . . . , ωp be p linearly independent Killing-
Yano tensors of degree 1 on M . Then direct inspection shows that the tensor
field ϕ := sym{ω1 ⊗ · · · ⊗ ωp} is a Killing tensor of degree p. Therefore on
any n-manifold M with equiprojective SL(n, IR)-structure, there exist at least
(n + p − 1)![p!(n − 1)!]−1 linearly independent Killing tensors (see also [23]).
Moreover the following theorem is true.

Theorem 2 On an n-dimensional manifold M endowed with an equiprojective
SL(n, IR)-structure (η,∇), there exist a local coordinate system x1, . . . , xn in
which the components ϕi1...ip of an arbitrary Killing tensor ϕ of degree p can
be expressed in the form of an pth degree polynomial in the xi’s

ϕi1...ip = e2pψ
p∑
q=0

Ai1...ipj1...jqx
j1 . . . xjq (2.2)
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where the coefficients Ai1...ipj1...jq are constant and symmetric in the set of
indices i1, . . . , ip and the set of indices j1, . . . , jq. In addition to these properties
the coefficients Ai1...ipj1...jq have the following symmetries∑

cicl

{Ai1...ipj1...jp−s
}jp−s+1

= 0 (2.3)

for s = 1, . . . , p− 1 and ∑
cicl

{Ai1...ipj1} = 0. (2.4)

From the theorem we conclude that the maximum number of linearly in-
dependent the Killing tensors is obtained by calculating the number T pn of in-
dependent Ai1...ipj1...jq (q = 0, 1, . . . , n) which exist after accounting for the
symmetries on the indices the dependence relations (2.3) and (2.4). By [4] it
follows that

T pn =
p(p+ 1)2(p+ 2)2 . . . (m+ p− 1)2(m+ p)

(p+ 1)!p!

is the maximum number linearly independent the Killing–Yano tensors. Then
we have the following proposition.

Corollary 2 Let M be an n-dimensional manifold endowed with an equiprojec-
tive SL(n, IR)-structure then

dimT p(M, IR) =
p(p+ 1)2(p+ 2)2 . . . (m+ p− 1)2(m+ p)

p!(p+ 1)!
.

3 Proofs of theorems

3.1. We let f : M̄ → M denote the mapping of an n̄-dimensional manifold M̄
endowed with an equiaffine SL(n̄, IR)-structure onto another an n-dimensional
manifold M endowed with an equiaffine SL(n, IR)-structure, and let f∗ be the
differential of this mapping. For any covariant tensor field ω on M , we can
then define the covariant tensor field f∗ω on M̄ , where f∗ is the transformation
transposed to the transformation f∗.
If dim M̄ = dimM = n and f : M̄ →M is a projective diffeomorphism, i.e.,

a mapping that transforms an arbitrary geodesic in M̄ into a geodesic in M ,
then we have the following lemma.

Lemma 1 Let f : M̄ → M be a projective diffeomorphism of n-dimensional
manifolds endowed with the equiaffine SL(n, IR)-structures (η̄, ∇̄) and (η,∇)
respectively. Then for an arbitrary Killing-Yano tensor ω of degree p (1 ≤
p ≤ n − 1) on the manifold M the tensor field ω̄ = e−(p+1)ψ(f∗ω) with ψ =
(n+1)−1 ln(η/η̄) will be the Killing-Yano tensor of degree p on the manifold M̄ .
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Proof It is known that the diffeomorphism f : M̄ → M can be realized
following the principle of equality of the local coordinates x̄1 = x1, . . . , x̄n = xn

at the corresponding points x̄ and x = f(x̄) of these manifolds. In this case, we
have the equalities (see [15, §18], [9, 10, 26])

Γkij = Γ̄kij + ψiδ
k
j + ψjδ

k
i (3.1)

for the objects Γkij and Γ̄kij of the a equiaffine connections ∇ and ∇̄ in the
coordinate system x1, . . . , xn that is common w.r.t. the mapping f : M̄ → M ,
and for the gradient ψj = (n+ 1)−1∂j ln[η/η̄].
Equalities (3.1) imply that the mapping f−1, which in inverse to the projec-

tive diffeomorphism f : M̄ →M , is a projective mapping [10, p. 262].
We set ωi1...ip be the local components of a Killing-Yano tensor ω of degree

p (1 ≤ p ≤ n − 1) arbitrary defined on the manifold M ; by definition, these
components satisfy the equations

∇i0ωi1...ip +∇i1ωi0...ip = 0. (3.2)

From equalities (3.2) we find directly that the components

ω̄i1...ip = e−(p+1)ψωi1...ip (3.3)

of the tensor field ω̄ = e−(p+1)ψ(f∗ω) satisfy the equations

∇̄i0 ω̄i1...ip + ∇̄i1 ω̄i0...ip = 0. (3.4)

Hence, the tensor field ω̄ is a Killing-Yano tensor of degree p (1 ≤ p ≤ n − 1)
on the manifold M̄ . �

3.2. Let An be an n-dimensional affine space with a volume element given
by the determinant: det(e1, . . . , en) = 1, where {e1, . . . , en} is the standard
basis of the underlying vector space for An. We denote by ∇ the standard
linear connection in An relative to which the volume element “det” is parallel
(see [13], [16, p. 10]).
Let f : M̄ → An be a projective diffeomorphism from a manifold M̄ endowed

with equiaffine SL(n, IR)-structure onto an affine space An endowed with stan-
dard equiaffine SL(n, IR)-structure. It is well known that manifolds endowed
with equiprojective SL(n, IR)-structures and only these manifolds are projec-
tively diffeomorphic to an affine space An (see [15, §18], [9]) therefore in our
case the SL(n, IR)- structure of the manifold M̄ must be an equiprojective struc-
ture.
If An is an affine space with the Cartesian system of coordinates x̄1, . . . , x̄n

then the components ω̄i1...ip of the Killing-Yano tensor ω̄ of degree p (1 ≤ p ≤
n− 1) in equation (3.4) must now satisfy

∂jω̄ii1...ip + ∂iω̄ji1...ip = 0 (3.5)

where ∂j = ∂
∂xj . From (3.5) we conclude the following equations

∂k∂jω̄ii1...ip + ∂k∂iω̄ji1...ip = 0; (3.6)
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∂j∂iω̄ki1...ip + ∂j∂kω̄ii1...ip = 0; (3.7)

∂i∂kω̄ji1...ip + ∂i∂jω̄ki1...ip = 0. (3.8)

From (3.6), (3.7), (3.8) we find

∂k∂jω̄i1i2...ip = 0, (3.9)

by using identities ∂2h
∂x̄k∂x̄j = ∂2h

∂x̄j∂x̄k which are carried out for an arbitrary
smooth function h : An → IR. The integrals of equations (3.9) take the form

ω̄i1...ip = Ai0i1...ip x̄
i0 +Bi1...ip (3.10)

for any skew-symmetric constants Ai0i1...ip and Bi1...ip (see also [23, 19]). Taking
the components (3.10) of the Killing-Yano tensor ω̄ in An and using Lemma 1,
we can formulate Theorem 1.
3.3. Let M̄ be a manifold of dimension n endowed with the equiaffine

SL(n, IR)-structure (η̄, ∇̄) and M be a manifold of some dimension endowed
with the equiaffine SL(n, IR)-structure (η,∇). Let there is given a projective
diffeomorphism f : M̄ →M , then we have the following lemma.

Lemma 2 Let f : M̄ → M be a projective diffeomorphism of n-dimensional
manifolds endowed with the equiaffine SL(n, IR)-structures (η̄, ∇̄) and (η,∇)
respectively. Then for an arbitrary Killing tensor ϕ of degree p on the manifold
M the tensor field ϕ̄ = e−2pψ(f∗ϕ) with ψ = (n+1)−1 ln(η/η̄) will be the Killing
tensor of degree p on the manifold M̄ .

Proof We set ϕi1...ip to be components of the Killing tensor ϕ arbitrary
defined on the manifoldM ; by definition, these components satisfy the following
equations

∑
cicl{∇i0ϕi1...ip} = 0. Then we find directly that the components

ϕ̄i1...ip = e−2pψϕi1...ip of the tensor ϕ̄ = e−2pψϕ satisfy the equations∑
cicl

{∇̄i0 ϕ̄i1...ip} = e−2pψ
∑
cicl

{∇i0ϕi1...ip} = 0. (3.11)

From (3.11) we conclude that the tensor field ϕ̄ is a Killing tensor of degree p
on the manifold M̄ . �

3.4. It follows from Nijenhuis (see [11]) that in an n-dimensional affine space
An the components ϕ̄i1...ip of the Killing tensor ϕ̄ of degree p can be expressed
in the form of an pth degree polynomial in the x̄i’s

ϕi1...ip = e−2pψ

p∑
q=0

Ai1...ipj1...jq x̄
j1 . . . x̄jq . (3.12)

The coefficients Ai1...ipj1...jq are constant and symmetric in the set of indices
i1, . . . , ip and the set of indices j1, . . . , jq. In addition to these properties the
coefficients Ai1...ipj1...jq have the following symmetries∑

cicl

{Ai1...ipj1...jp−s
}jp−s+1

= 0
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for s = 1, . . . , p− 1 and ∑
cicl

{Ai1...ipj1} = 0.

Taking the components (3.12) of the Killing tensor ϕ̄ in An and using Lemma 2,
we can formulate Theorem 2.

4 Applications to Riemannian geometry

4.1. Let (M, g) be a pseudo-Riemannian manifold of dimensional n. Then
from the present theorems 1 and 2 we conclude that an arbitrary Killing vector
ω has the following local covariant components ωi = e2ψ(Aikx

k + Bi) where
ψ = [2(n + 1)]−1 ln | det g|, A’s and B’s are constants and Aik + Aki = 0 (see
also [17]). It follows that the group of infinitesimal isometric transformations
has 1

2n(n+ 1) parameters (see also [2, §71]).
4.2. Following [25, 5], a skew-symmetric covariant tensor field ϑ of degree p

(1 ≤ p ≤ n− 1) is called a conformal Killing tensor if ϑ ∈ kerD for

D = ∇− 1

p+ 1
d− 1

n− p+ 1
g ∧ d∗

where d∗ is the codifferential operator d∗ : C∞Λp+1M → C∞ΛpM and

(g ∧ d∗ϑ)i0i1...ip =

p∑
a=1

(−1)a+1gi0ia(d
∗ϑ)i1...̂ia...ip .

Obviously, the set of conformal Killing tensors constitutes an vector space of
tensor fields on (M, g), denoted by Cp(M, IR) (see [21]). If a conformal Killing
tensor ϑ belongs to kerd∗, then it is a Killing-Yano tensor. On the other hand,
if a conformal Killing tensor ϑ belongs to kerd, it is called a closed conformal
Killing tensor or a planar tensor (see [20, 21, 22]). We denote the vector space
of these tensors by Pp(M, IR).
By [5] on an arbitrary n-dimensional pseudo-Riemannian manifold (M, g) of

constant nonzero sectional curvature C (C �= 0) the vector space Cp(M, IR) of
conformal Killing tensors is decomposed uniquely in the form

Cp(M, IR) = Kp(M, IR)⊕Pp(M, IR). (4.1)

From (4.1) we conclude that any conformal Killing tensor ϑ of degree p is de-
composed uniquely in the form ϑ = ω + θ where ω is a Killing-Yano tensor of
degree p and θ is a closed conformal Killing tensor of degree p.
Following theorem 1, on an n-dimensional pseudo-Riemannian manifold (M, g)

of constant nonzero sectional curvature C (C �= 0) there is a local coordi-
nate system x1, . . . , xn in which an arbitrary Killing-Yano tensor ω of degree p
(2 ≤ p ≤ n− 1) has the components

ωi1...ip = e(p+1)ψ(Ai0i1...ipx
i0 +Bi1...ip) (4.2)
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where ψ = [2(n + 1)]−1 ln | det g|, ψk = ∂ψ
∂xk and Ai0i1...ip , Bi1...ip are arbitrary

skew-symmetric constants. On the other hand, by [19] on a pseudo-Riemannian
manifold (M, g) of constant nonzero curvature C (C �= 0) the components θi1...ip
of a closed conformal Killing tensor θ of degree p (1 ≤ p ≤ n− 1) can be found
from the equations

θi1i2...ip = − 1

pC
∇i1ωi2...ip (4.3)

where ∇i1ωi2...ip = ∂i1ωi2...ip −ωk...ipΓki2i1 −· · ·−ωi2...kΓkipi1 is the expression for
the covariant derivative∇ω of the Killing-Yano tensor of degree p−1. Moreover,
by virtue of (3.1) on a pseudo-Riemannian manifold (M, g) of constant curvature
C (C �= 0) the Christoffel symbols Γkij have the following form Γkij = ψiδ

k
j +ψjδ

k
i

(see also [17]). Therefore, we can deduce from (4.2) and (4.3) that

θi1...ip = − 1

C
epψ(ψ[i1A|k|i2...ip]x

k + ψ[i1Bi2...ip] +
1

p
Ai1i2...ip).

Consequently we have

Theorem 3 On an n-dimensional pseudo-Riemannian manifold (M, g) of con-
stant nonzero sectional curvature C (C �= 0) there is a local coordinate sys-
tem x1, . . . , xn in which an arbitrary conformal Killing tensor ϑ of degree p
(2 ≤ p ≤ n− 1) has the components

ϑi1...ip = e(p+1)ψ(Aki1...ipx
k +Bi−1...ip)

− 1

C
epψ

(
ψ[i1C|k|i2...ip]x

k + ψ[i1Di2...ip] +
1

p
Ci1i2...ip

)
where ψ = [2(n + 1)]−1 ln | det g|, ψk = ∂ψ

∂xk and Ai0i1...ip , Bi1...ip , Ci1...ip and
Di1...ip are arbitrary skew-symmetric constants.

Remark 3 For a conformal Killing vector field, see K. Yano and T. Nagano
[27].
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