Commentationes Mathematicae Universitatis Caroline

Mohammad Daher

Some remarks on the interpolation spaces A^{θ}, A_{θ}

Commentationes Mathematicae Universitatis Carolinae, Vol. 57 (2016), No. 3, 301-315
Persistent URL: http://dml.cz/dmlcz/145835

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Some remarks on the interpolation spaces A^{θ}, A_{θ}

Mohammad Daher

Abstract

Let $\left(A_{0}, A_{1}\right)$ be a regular interpolation couple. Under several different assumptions on a fixed A^{β}, we show that $A^{\theta}=A_{\theta}$ for every $\theta \in(0,1)$. We also deal with assumptions on \bar{A}^{β}, the closure of A^{β} in the dual of $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$.

Keywords: interpolation
Classification: 46B70

Introduction

We are looking for sufficient conditions on a regular interpolation couple (A_{0}, A_{1}) implying that $A^{\theta}=A_{\theta}$ for every $\theta \in(0,1)$. We already considered such questions in [Da1] and [Da2]. Unhappily, there was a mistake in a crucial lemma at the beginning of [Da2]. A corrected version of this paper was put on arXiv as [Da3]. The present paper uses the same machinery, which we essentially reproduce in part 2, with simplifications.

In the first part we recall the definitions and some known properties of A^{θ} and A_{θ}. In the second part, we collect results about the mapping $\tau \in \mathbb{R} \rightarrow$ $g^{\prime}(\theta+i \tau)$, where $g \in \mathcal{G}\left(A_{0}, A_{1}\right)$, and give in Theorem 5 a key abstract condition on a fixed A^{β}, stronger than $A^{\beta}=A_{\beta}$, implying that $A^{\theta}=A_{\theta}$ for every $\theta \in(0,1)$. We also define and study the maps $R^{\theta}: A^{\theta} \rightarrow\left[\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta}\right]^{*}$.

In the third part we deduce that $A^{\theta}=A_{\theta}$ for every $\theta \in(0,1)$ under geometric conditions on a fixed A^{β}, or on \bar{A}^{β}, defined as the norm closure of $R^{\beta}\left(A^{\beta}\right)$ in the dual space of $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$.

1. Notation, definitions and properties of interpolation spaces

We denote by X^{*} the dual of a Banach space X, by $\mathcal{C}_{0}(\mathbb{R}, X)$ the space of X-valued continuous functions on \mathbb{R} that tend to 0 at infinity. We denote by $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$ the space of first Baire class functions $f: \mathbb{R} \rightarrow \mathbb{C}$. Let \mathcal{B} be the σ algebra of Borel subsets of \mathbb{R}, completed by sets with Lebesgue measure zero. An a.s. defined map $f: \mathbb{R} \rightarrow X$ is strongly measurable if there exists a sequence $\left(f_{n}\right)_{n}$ of finitely valued maps $f_{n}: \mathbb{R} \rightarrow X$ such that, for every open ball B in X and $n \in \mathbb{N}, f_{n}^{-1}(B) \in \mathcal{B}$, and a.s. $\left\|f-f_{n}\right\|_{X} \rightarrow_{n \rightarrow \infty} 0$.

Let $S=\{z \in \mathbb{C} \mid 0 \leq \operatorname{Re}(z) \leq 1\}$ and S^{0} its interior. Given a map $f: S \rightarrow X$, we denote by $f(\theta+i \cdot): \mathbb{R} \rightarrow X$ the restriction of f to the line $\operatorname{Re} z=\theta, \theta \in[0,1]$ and by f_{τ} the translated map $f_{\tau}(z)=f(z+i \tau), \tau \in \mathbb{R}$.

Let $\bar{C}=\left(C_{0}, C_{1}\right)$ be a complex interpolation couple in the sense of [BL]. We first recall the definition of the interpolation space $C_{\theta}, \theta \in(0,1)$ [BL, Chapter 4]. Let $\mathcal{F}(\bar{C})$ be the space of functions f with values in $C_{0}+C_{1}$, which are bounded and continuous on S, holomorphic on S^{0}, such that, for $j \in\{0,1\}$, the maps $f(j+i \cdot)$ lie in $\mathcal{C}_{0}\left(\mathbb{R}, C_{j}\right)$. We equip $\mathcal{F}(\bar{C})$ with the norm

$$
\|f\|_{\mathcal{F}(\bar{C})}=\max \left[\sup _{\tau \in \mathbb{R}}\|f(i \tau)\|_{C_{0}}, \sup _{\tau \in \mathbb{R}}\|f(1+i \tau)\|_{C_{1}}\right] .
$$

The space $C_{\theta}=\left(C_{0}, C_{1}\right)_{\theta}=\{f(\theta) \mid f \in \mathcal{F}(\bar{C})\}, 0<\theta<1$, is a Banach space [BL, Theorem 4.1.2] for the norm defined by

$$
\|a\|_{C_{\theta}}=\inf \left\{\|f\|_{\mathcal{F}(\bar{C})} \mid f(\theta)=a\right\} .
$$

We now recall the definition of the complex interpolation space $C^{\theta}[\mathrm{BL}$, Chapter 4]. Let $\mathcal{G}(\bar{C})$ be the space of functions g with values in $C_{0}+C_{1}$, which are continuous on S, holomorphic on S^{0}, such that the map $z \rightarrow(1+|z|)^{-1}\|g(z)\|_{C_{0}+C_{1}}$ is bounded on S (this condition will be denoted by (C)), such that $g(j+i \tau)-$ $g\left(j+i \tau^{\prime}\right) \in C_{j}$ for every $\tau, \tau^{\prime} \in \mathbb{R}, j \in\{0,1\}$, and such that the following quantity is finite:

$$
\begin{aligned}
& \left\|g^{\cdot}\right\|_{Q \mathcal{G}(\bar{C})} \\
& \quad=\max \left[\sup _{\tau \neq \tau^{\prime} \in \mathbb{R}}\left\|\frac{g(i \tau)-g\left(i \tau^{\prime}\right)}{\tau-\tau^{\prime}}\right\|_{C_{0}}, \sup _{\tau \neq \tau^{\prime} \in \mathbb{R}}\left\|\frac{g(1+i \tau)-g\left(1+i \tau^{\prime}\right)}{\tau-\tau^{\prime}}\right\|_{C_{1}}\right] .
\end{aligned}
$$

This defines a norm on the space $Q \mathcal{G}(\bar{C})$, quotient of $\mathcal{G}(\bar{C})$ by the subspace of constant functions with values in $C_{0}+C_{1}$, and $Q \mathcal{G}(\bar{C})$ is complete with respect to this norm [BL, Lemma 4.1.3]. We recall [BL, proof of Lemma 4.1.3] that every $g \in \mathcal{G}(\bar{C})$ satisfies

$$
\begin{equation*}
\left\|g^{\prime}(z)\right\|_{C_{0}+C_{1}} \leq\left\|g^{\cdot}\right\|_{Q \mathcal{G}(\bar{C})}, \quad z \in S \tag{1}
\end{equation*}
$$

The space $C^{\theta}=\left\{a \in C_{0}+C_{1} \mid \exists g \in \mathcal{G}(\bar{C}), a=g^{\prime}(\theta)\right\}$ is a Banach space [BL, Theorem 4.1.4] with respect to the norm defined by:

$$
\|a\|_{C^{\theta}}=\inf \left\{\|g \cdot\|_{Q \mathcal{G}(\bar{C})} \mid g^{\prime}(\theta)=a\right\}
$$

By (1), the canonical map $C^{\theta} \rightarrow C_{0}+C_{1}$ is a one to one contraction. By [B], C_{θ} is isometrically identified with a subspace of C^{θ}, and by [BL, Theorem 4.2.2], $C_{0} \cap C_{1}$ is dense in $C_{\theta}, 0<\theta<1$.

Every function $f \in \mathcal{F}(\bar{C})$ admits an integral representation involving the harmonic measure

$$
\begin{equation*}
f(z)=\int_{\mathbb{R}} f(i t) Q_{0}(z, t) d t+\int_{\mathbb{R}} f(1+i t) Q_{1}(z, t) d t, \quad z \in S^{0} \tag{2}
\end{equation*}
$$

where $t \rightarrow \frac{Q_{0}(z, t)}{1-\operatorname{Re} z}$ and $\frac{Q_{1}(z, t)}{\operatorname{Re} z}, z \in S^{0}, t \in \mathbb{R}$ are probability densities. By [BL, Lemma 4.3.2], every $f \in \mathcal{F}(\bar{C})$ satisfies

$$
\begin{equation*}
\|f(\theta)\|_{C_{\theta}} \leq\left(\int_{\mathbb{R}}\|f(i t)\|_{C_{0}} \frac{Q_{0}(\theta, t)}{1-\theta} d t\right)^{1-\theta}\left(\int_{\mathbb{R}}\|f(1+i t)\|_{C_{1}} \frac{Q_{1}(\theta, t)}{\theta} d t\right)^{\theta} \tag{3}
\end{equation*}
$$

For $x \in C_{0} \cap C_{1}$, taking $f=\varphi \otimes x$ for a suitable φ, (3) implies

$$
\begin{equation*}
\|x\|_{C_{\theta}} \leq\|x\|_{C_{0}}^{1-\theta}\|x\|_{C_{1}}^{\theta} \tag{4}
\end{equation*}
$$

Let $\bar{A}=\left(A_{0}, A_{1}\right)$ be an interpolation couple. If $A_{0} \cap A_{1}$ is dense in A_{0} and A_{1}, \bar{A} is called a regular interpolation couple. Then we have [BL, Theorem 2.7.1]

$$
\begin{equation*}
\left(A_{0} \cap A_{1}\right)^{*}=A_{0}^{*}+A_{1}^{*}, \quad A_{0}^{*} \cap A_{1}^{*}=\left(A_{0}+A_{1}\right)^{*} \tag{5}
\end{equation*}
$$

(in general, there is only a canonical contraction $\left.A_{0}^{*}+A_{1}^{*} \rightarrow\left(A_{0} \cap A_{1}\right)^{*}\right)$. Moreover we may apply the reiteration theorem [BL, Theorem 4.6.1] and the dual of A_{θ} is the space $\left(A_{0}^{*}, A_{1}^{*}\right)^{\theta}, 0<\theta<1$ [BL, Theorem 4.5.1].

When \bar{A} is a regular interpolation couple, let B_{j} be the closure of $A_{0}^{*} \cap A_{1}^{*}$ in $A_{j}^{*}, j=0,1$. It is clear that

$$
\begin{equation*}
B_{0} \cap B_{1}=A_{0}^{*} \cap A_{1}^{*} \tag{6}
\end{equation*}
$$

isometrically and the couple $\bar{B}=\left(B_{0}, B_{1}\right)$ is regular. By (5) and (6), isometrically,

$$
\begin{equation*}
B_{0}^{*}+B_{1}^{*}=\left(B_{0} \cap B_{1}\right)^{*}=\left(A_{0}^{*} \cap A_{1}^{*}\right)^{*}=\left(A_{0}+A_{1}\right)^{* *} \tag{7}
\end{equation*}
$$

By [BL, Theorem 4.2.2 b] we have isometrically, for $0<\theta<1$,

$$
\begin{equation*}
B_{\theta}=\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta} \tag{8}
\end{equation*}
$$

Since \bar{B} is regular, for $0<\theta<1$,

$$
\begin{equation*}
\left(B_{\theta}\right)^{*}=\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta} \tag{9}
\end{equation*}
$$

We now define maps $\widetilde{\rho}: \mathcal{G}\left(A_{0}, A_{1}\right) \rightarrow \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right)$ and $R: Q \mathcal{G}\left(A_{0}, A_{1}\right) \rightarrow$ $Q \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right)$. Let ρ be the canonical isometry $A_{0}+A_{1} \rightarrow\left(A_{0}+A_{1}\right)^{* *}$. By (7), ρ is also an isometry $A_{0}+A_{1} \rightarrow B_{0}^{*}+B_{1}^{*}$. Since $A_{j}, j \in\{0,1\}$, embeds in $A_{0}+A_{1}$, for $a_{j} \in A_{j}, \rho\left(a_{j}\right)$ is well defined as a continuous linear form on $B_{0} \cap B_{1}=A_{0}^{*} \cap A_{1}^{*}$.

Let $i_{j}: B_{j} \rightarrow A_{j}^{*}$ be the canonical isometry and let $i_{j}^{*}: A_{j}^{* *} \rightarrow B_{j}^{*}$ be the conjugate onto contraction (which is not one to one in general). Note that B_{j}^{*} embeds in $B_{0}^{*}+B_{1}^{*}$. If $a_{j} \in A_{j}, i_{j}^{*}\left(a_{j}\right)=\rho\left(a_{j}\right)$ is in $B_{0}^{*}+B_{1}^{*}$ (in particular i_{j}^{*} is one
to one on A_{j}), hence ρ is also a one to one contraction $A_{j} \rightarrow B_{j}^{*}$. Consequently the map $g(z) \rightarrow \rho(g(z))$ defines a one to one map $\widetilde{\rho}: \mathcal{G}\left(A_{0}, A_{1}\right) \rightarrow \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right)$ and a one to one contraction $R: Q \mathcal{G}\left(A_{0}, A_{1}\right) \rightarrow Q \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right)$. We shall see in Lemma 6 below that R induces a one to one contraction $R^{\theta}: A^{\theta} \rightarrow\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}$, $0<\theta<1$.

2. Properties of $g^{\prime}(\theta+i \cdot), g \in \mathcal{G}\left(C_{0}, C_{1}\right)$; the map R^{θ}

We first collect some basic properties.
Lemma 1. Let $\bar{C}=\left(C_{0}, C_{1}\right)$ be an interpolation couple.
a) Let $f \in \mathcal{F}(\bar{C})$. Then, for every $\theta \in(0,1), \tau \in \mathbb{R}$, we have that $\| f(\theta+$ $i \tau)\left\|_{C_{\theta}} \leq\right\| f \|_{\mathcal{F}(\bar{C})}$ and $f(\theta+i \cdot): \mathbb{R} \rightarrow C_{\theta}$ is continuous.
b) If moreover $f(\beta+i \cdot)$ lies in $\mathcal{C}_{0}\left(\mathbb{R}, C_{\beta}\right)$ and $f(\gamma+i \cdot)$ in $\mathcal{C}_{0}\left(\mathbb{R}, C_{\gamma}\right)$ for some $\beta, \gamma \in[0,1]$, then the map $F: z \rightarrow f((\gamma-\beta) z+\beta)$ belongs to $\mathcal{F}\left(C_{\beta}, C_{\gamma}\right)$, with norm less than $\|f\|_{\mathcal{F}(\bar{C})}$.
c) Let $G \in \mathcal{G}(\bar{C})$ be such that $G\left(j+i\right.$.) is valued in $C_{j}, j \in\{0,1\}$. Let $\delta \in(0,1]$. Then the map $f_{\delta}(z)=e^{\delta z^{2}} G(z), z \in S$, lies in $\mathcal{F}(\bar{C})$. In particular, for every $\theta \in(0,1), G(\theta+i \cdot): \mathbb{R} \rightarrow C_{\theta}$ is continuous.

Proof: a) Since $\|f\|_{\mathcal{F}(\bar{C})}=\left\|f_{\tau}\right\|_{\mathcal{F}(\bar{C})}$ for every $\tau \in \mathbb{R}$, the first assertion follows from the definition of C_{θ}. By (3), for $\tau, \tau^{\prime} \in \mathbb{R}$,

$$
\left\|f_{\tau}(\theta)-f_{\tau^{\prime}}(\theta)\right\|_{C_{\theta}} \leq\left(\int_{\mathbb{R}}\left\|f_{\tau}(i t)-f_{\tau^{\prime}}(i t)\right\|_{C_{0}} \frac{Q_{0}(\theta, t)}{1-\theta} d t\right)^{1-\theta}\left(2\|f\|_{\mathcal{F}(\bar{C})}\right)^{\theta}
$$

Since functions in $\mathcal{C}_{0}\left(\mathbb{R}, C_{0}\right)$ are uniformly continuous, this implies the (uniform) continuity of $f(\theta+i \cdot): \mathbb{R} \rightarrow C_{\theta}$.
b) The function F has on S^{0} the integral representation, with values in $C_{0}+C_{1}$:

$$
\begin{equation*}
F(z)=\int_{\mathbb{R}} F(i \tau) Q_{0}(z, \tau) d \tau+\int_{\mathbb{R}} F(1+i \tau) Q_{1}(z, \tau) d \tau \tag{10}
\end{equation*}
$$

Indeed, since $F(j+i \cdot)$ lies in $\mathcal{C}_{0}\left(\mathbb{R}, C_{0}+C_{1}\right)$, the RHS of (10) is well defined, harmonic, bounded: $S^{0} \rightarrow C_{0}+C_{1}$ and extends as a continuous function: $S \rightarrow$ $C_{0}+C_{1}$ (by conformal mapping this follows from the well known analogous result on the unit disk). It coincides with F on the boundary of S, hence on S^{0} since $F: S^{0} \rightarrow C_{0}+C_{1}$ is holomorphic (harmonic). Since $F(i \cdot)$ lies in $\mathcal{C}_{0}\left(\mathbb{R}, C_{\beta}\right)$ and $F(1+i \cdot)$ in $\mathcal{C}_{0}\left(\mathbb{R}, C_{\gamma}\right)$, with norm less than $\|f\|_{\mathcal{F}(\bar{C})}$, the RHS of (10) lies in $C_{\beta}+C_{\gamma}$, with norm less than $\|f\|_{\mathcal{F}(\bar{C})}$ and, as before, extends as a bounded continuous function: $S \rightarrow C_{\beta}+C_{\gamma}$.

Let us verify that $F: S^{0} \rightarrow C_{\beta}+C_{\gamma}$ is holomorphic. More generally, if a function $F: S^{0} \rightarrow X$ is holomorphic, bounded by K as mapping: $S^{0} \rightarrow Y$ where Y continuously embeds in X, then $F: S^{0} \rightarrow Y$ is holomorphic. Indeed let $\bar{D}\left(z_{0}, r\right) \subset S^{0}$ be a closed disk, with $0<r<1$. Since F is holomorphic with
values in X, we have $F(z)=\sum_{k \geq 0} c_{k}\left(z-z_{0}\right)^{k}$ in X for $z \in D\left(z_{0}, r\right)$. Since

$$
\left\|c_{k}\right\|_{Y}=\left\|\int_{0}^{2 \pi} F\left(z_{0}+r e^{i t}\right) e^{-i k t} \frac{d t}{2 \pi}\right\|_{Y} \leq K
$$

the series converges normally in Y on $\bar{D}\left(z_{0}, r\right)$, hence its sum $F: D\left(z_{0}, r\right) \rightarrow Y$ is holomorphic. Taking $Y=C_{\beta}+C_{\gamma}, X=C_{0}+C_{1}, K=\|f\|_{\mathcal{F}(\bar{C})}$ ends the verification.
c) In order to show that f_{δ} lies in $\mathcal{F}(\bar{C})$ we only have to verify that $f_{\delta}(j+i \cdot)$ lies in $\mathcal{C}_{0}\left(\mathbb{R}, C_{j}\right), j \in\{0,1\}$, and that $f_{\delta}: S \rightarrow C_{0}+C_{1}$ is bounded. By assumption $G(j+i \cdot)$ is valued and Lipschitz in C_{j}, hence continuous: $\mathbb{R} \rightarrow C_{j}$. Moreover

$$
\begin{aligned}
\left\|f_{\delta}(j+i \tau)\right\|_{C_{j}} & \leq e^{1-\tau^{2}}\left(\|G(j+i \tau)-G(j)\|_{C_{j}}+\|G(j)\|_{C_{j}}\right) \\
& \leq e^{1-\tau^{2}}\left(|\tau|\|G \cdot\|_{Q \mathcal{G}(\bar{C})}+\|G(j)\|_{C_{j}}\right)
\end{aligned}
$$

which proves the first assertion. Condition (C) gives the desired boundedness since, for $z=\theta+i \tau \in S$,

$$
\left\|f_{\delta}(\theta+i \tau)\right\|_{C_{0}+C_{1}} \leq K(G) e^{1-\tau^{2}}\left(1+\sqrt{1+\tau^{2}}\right)
$$

By a), $f_{\delta}(\theta+i \cdot): \mathbb{R} \rightarrow C_{\theta}$ is continuous, hence so is $G(\theta+i \cdot)$.
Lemma 2. Let $\bar{C}=\left(C_{0}, C_{1}\right)$ be an interpolation couple and let $g \in \mathcal{G}(\bar{C})$. Let $F_{h}(z)=\frac{1}{h}[g(z+i h)-g(z)], z \in S^{0}$ and $h \neq 0$. Then, for every $0<\theta<1$, for every $\tau \in \mathbb{R}$,
i) in $C_{0}+C_{1}$, one has that

$$
\begin{equation*}
h F_{h}(\theta+i \tau)=g(\theta+i \tau+i h)-g(\theta+i \tau)=i \int_{\tau}^{\tau+h} g^{\prime}(\theta+i t) d t \tag{11}
\end{equation*}
$$ and letting n be in \mathbb{N}^{*},

$$
\begin{equation*}
F_{\frac{1}{n}}(\theta+i \tau) \rightarrow_{n} i g^{\prime}(\theta+i \tau) \tag{12}
\end{equation*}
$$

ii) $F_{h}(\theta+i \cdot): \mathbb{R} \rightarrow C_{\theta}$ is continuous (hence (11) holds in C_{θ}) and is bounded by $\|g \cdot\|_{Q \mathcal{G}}(\bar{C})$.
iii) $\left\|g^{\prime}(\theta+i \tau)\right\|_{C^{\theta}} \leq\left\|g^{\cdot}\right\|_{Q \mathcal{G}(\bar{C})}$.

Note that in general the map $g^{\prime}(\theta+i \cdot): \mathbb{R} \rightarrow C^{\theta}$ is not strongly measurable.
Proof: i) The function $g: S^{0} \rightarrow C_{0}+C_{1}$ is holomorphic, which implies (11) and the continuity of $t \rightarrow g^{\prime}(\theta+i t): \mathbb{R} \rightarrow C_{0}+C_{1}$, hence (12).
ii) The map F_{h} lies in $\mathcal{G}(\bar{C})$; on $\operatorname{Re} z=j$ its values in C_{j} are bounded by $\|g \cdot\|_{Q \mathcal{G}(\bar{C})}, j \in\{0,1\}$. Lemma 1 c) applied to $G=F_{h}$ gives the first assertion.

Let $f_{h, \delta}(z)=e^{\delta z^{2}} F_{h}(z), z \in S, \delta>0$. By Lemma 1 c) again

$$
\begin{align*}
\left\|F_{h}(\theta)\right\|_{C_{\theta}} & =\left\|e^{-\delta \theta^{2}} f_{h, \delta}(\theta)\right\|_{C_{\theta}} \leq\left\|f_{h, \delta}\right\|_{\mathcal{F}(\bar{C})} \\
& \leq \max \left(\sup _{\tau \in \mathbb{R}}\left\|F_{h}(i t)\right\|_{C_{0}}, e^{\delta} \sup _{\tau \in \mathbb{R}}\left\|F_{h}(1+i t)\right\|_{C_{1}}\right) \tag{13}\\
& \leq e^{\delta}\left\|g^{\cdot}\right\|_{Q \mathcal{G}(\bar{C})}
\end{align*}
$$

Let $g_{\tau}(z)=g(z+i \tau)$, so that $\left\|g_{\tau}\right\|_{Q \mathcal{G}(\bar{C})}=\|g \cdot\|_{Q \mathcal{G}(\bar{C})}$, and $\left(g_{\tau}(z+i h)-g_{\tau}(z)\right) / h=$ $F_{h}(z+i \tau)$. By (13) applied to g_{τ} we get

$$
\left\|F_{h}(\theta+i \tau)\right\|_{C_{\theta}} \leq e^{\delta}\|g \cdot\|_{Q \mathcal{G}(\bar{C})}
$$

Taking $\delta \rightarrow 0$ ends the proof.
iii) Keeping the notation of ii), by definition,

$$
\left\|g^{\prime}(\theta+i t)\right\|_{C^{\theta}} \leq\left\|g_{\dot{t}}\right\|_{Q \mathcal{G}(\bar{C})}=\left\|g^{\cdot}\right\|_{Q \mathcal{G}(\bar{C})}
$$

Lemma 3. Let \bar{A} be a regular interpolation couple.
a) Every x^{*} in the unit ball of $\left(A_{\theta}\right)^{*}, 0<\theta<1$, is w^{*}-limit of a sequence in the unit ball of $\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta}$.
b) Let $g \in \mathcal{G}(\bar{A})$ and assume that, for some $\beta \in(0,1)$, for every $t \in \mathbb{R}, g^{\prime}(\beta+$ it) $\in A_{\beta}$. Then, for every $x^{*} \in\left(A_{\beta}\right)^{*},\left\langle g^{\prime}(\beta+i \cdot), x^{*}\right\rangle$ lies in $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$. In particular the function $g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow A_{\beta}$ is weakly measurable.

Proof: a) Let x^{*} be in the open unit ball of $\left(A_{\theta}\right)^{*}=\left(A_{0}^{*}, A_{1}^{*}\right)^{\theta}$ and let $h \in$ $\mathcal{G}\left(A_{0}^{*}, A_{1}^{*}\right)$ be such that $h^{\prime}(\theta)=x^{*}$ and $\|h \cdot\|_{Q \mathcal{G}\left(A_{0}^{*}, A_{1}^{*}\right)} \leq 1$. Let $H_{1 / n}$ be associated to h as in Lemma 2. By Lemma 2 ii), i), the sequence $\left(H_{1 / n}(\theta)\right)_{n}$ lies in the closed unit ball of $\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta}$, hence of $\left(A_{0}^{*}, A_{1}^{*}\right)^{\theta}$ and converges to $h^{\prime}(\theta)$ in $A_{0}^{*}+A_{1}^{*}$, hence w^{*} on $A_{0} \cap A_{1}$. Since $A_{0} \cap A_{1}$ is dense in $A_{\theta},\left(H_{1 / n}(\theta)\right)_{n}$ converges w^{*} in $\left(A_{\theta}\right)^{*}$ to $h^{\prime}(\theta)=x^{*}$.
b) The map $\phi_{\beta}=g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow A_{0}+A_{1}$ is continuous, bounded: $\mathbb{R} \rightarrow A^{\beta}$ by Lemma 2 iii), hence by assumption it is bounded: $\mathbb{R} \rightarrow A_{\beta}$. Hence $\left\langle\phi_{\beta}(),. a^{*}\right\rangle$ is continuous on \mathbb{R} for every $a^{*} \in A_{0}^{*} \cap A_{1}^{*}$ and even for every $a^{*} \in\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$, since $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$ is the closure of $A_{0}^{*} \cap A_{1}^{*}$ in $\left(A_{\beta}\right)^{*}=\left(A_{0}^{*}, A_{1}^{*}\right)^{\beta}$. Let x^{*} be in the open unit ball of $\left(A_{\beta}\right)^{*}$. By a) there exists a sequence $\left(b_{n}^{*}\right)_{n}$ in the unit ball of $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$ such that

$$
\forall t \in \mathbb{R} \quad\left\langle\phi_{\beta}(t), b_{n}^{*}\right\rangle \underset{n}{\rightarrow}\left\langle\phi_{\beta}(t), x^{*}\right\rangle .
$$

The functions $\left\langle\phi_{\beta}(),. b_{n}^{*}\right\rangle$ are continuous and uniformly bounded on \mathbb{R}, hence $\left\langle\phi_{\beta}(),. x^{*}\right\rangle$ belongs to $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$.
Lemma 4. Let \bar{C} be an interpolation couple, $g \in \mathcal{G}(\bar{C})$, let $F_{\frac{1}{n}}$ be associated to g as in Lemma 2, $0<\beta<1$. Let us consider the following properties:
a) for almost every τ the sequence $\left(F_{\frac{1}{n}}(\beta+i \tau)\right)$ converges in C_{β},
b) $g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow C_{\beta}$ is strongly measurable,
c) there is a closed separable subspace E of C_{β} such that $g^{\prime}(\beta+i t) \in E$ for every $t \in \mathbb{R}$.

Then $b) \Leftrightarrow$ a). If \bar{C} is a regular couple, then $c) \Rightarrow b$).
Let a'), b') be analogous to a), b) with C^{β} instead of C_{β}. Then we have that $\left.\left.\left.b^{\prime}\right) \Leftrightarrow b\right) \Leftrightarrow a^{\prime}\right) \Leftrightarrow a$).

Comments. We shall prove in Theorem 5 that a) implies c) if \bar{C} is regular.
The sequence $\left(F_{\frac{1}{n}}(\beta+i \tau)\right)$ always lies in C_{β} by Lemma 2 ii$)$. Condition b) obviously implies that $g^{\prime}(\beta+i \cdot)$ is a.s. valued in a closed separable subspace E of C_{β}, but b$\left.) \Rightarrow \mathrm{c}\right)$ is less obvious. In the proof of c$) \Rightarrow \mathrm{b}$) we actually use that $g^{\prime}(\beta+i t) \in C_{\beta}$ for every $t \in \mathbb{R}$ and $g^{\prime}(\beta+i \cdot)$ is a.s. valued in a closed separable subspace of C_{β}. In the appendix we shall remove the regularity assumption in c) $\Rightarrow \mathrm{b}$) and the same proof will give $\left.\mathrm{c}^{\prime}\right) \Rightarrow \mathrm{b}^{\prime}$), where in $\left.\mathrm{c}^{\prime}\right) F$ is a closed subspace of C^{β}.

Proof: b) $\Rightarrow b^{\prime}$) and a$) \Rightarrow \mathrm{a}^{\prime}$) are obvious.
$\left.\left.\mathrm{b}^{\prime}\right) \Rightarrow \mathrm{a}\right)$: By Lemma 2 iii$), \phi_{\beta}=g^{\prime}(\beta+i \cdot)$ is uniformly bounded in C^{β}. Hence, by assumption, $\phi_{\beta}: \mathbb{R} \rightarrow C^{\beta}$ is locally Bochner integrable. By the Lebesgue differentiation theorem [DU, Chapter II, Theorem 9, p. 49] in C^{β},

$$
\lim _{n} n \int_{\tau}^{\tau+\frac{1}{n}} \phi_{\beta}(t) d t=\phi_{\beta}(\tau), \quad \text { a.s. in } \tau
$$

By Lemma 2 i) and ii), the integral lies in C_{β} for every τ and coincides with $-\frac{i}{n} F_{\frac{1}{n}}(\beta+i \tau)$. Since C_{β} is closed in C^{β}, the limit holds in C_{β}, implying a).
a) \Rightarrow b): The a.s. limit coincides a.s. with $i g^{\prime}(\beta+i \cdot)$ by (12). By Lemma 2 ii), $F_{\frac{1}{n}}(\beta+i \cdot): \mathbb{R} \rightarrow C_{\beta}$ is continuous, hence the a.s. limit is strongly measurable: $\mathbb{R}^{n} \rightarrow C_{\beta}$. The same argument shows that $\left.\left.\mathrm{a}^{\prime}\right) \Rightarrow \mathrm{b}^{\prime}\right)$.
c) $\Rightarrow \mathrm{b})$: By assumption and Lemma 3 the map $g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow C_{\beta}$ is weakly measurable and a.s. valued in a closed separable subspace of C_{β}. By Pettis' theorem [DU, Chapter II, p. 42] it is strongly measurable.

By the equivalence $a) \Leftrightarrow b$) in Lemma 4, the next theorem was proved in [Da3], in a more intricate way. The proof below closely follows the proof of [BL, Lemma 4.3.3].

Theorem 5. Let $\beta \in(0,1)$. Let \bar{A} be a regular interpolation couple.
a) Let $g \in \mathcal{G}(\bar{A})$, let $F_{\frac{1}{n}}$ be associated to g as in Lemma 2. Assume that for almost every τ, the sequence $\left(F_{\frac{1}{n}}(\beta+i \tau)\right)_{n}$, which is valued in A_{β} by Lemma 2 ii), converges in A_{β} (necessarily to $i g^{\prime}(\beta+i \tau)$ by Lemma $\left.2 i\right)$). Then, for every $\theta \in(0,1)$ and every $\tau \in \mathbb{R}$, the sequence $\left(F_{\frac{1}{n}}(\theta+i \tau)\right)_{n}$ converges in A_{θ} (necessarily to $i g^{\prime}(\theta+i \tau)$, which thus lies in $\left.A_{\theta}\right)$. Moreover $g^{\prime}(\theta+i \cdot)$ is valued in a closed separable subspace of A_{θ}.
b) If the assumption of a) holds for every $g \in \mathcal{G}(\bar{A})$, then $A_{\theta}=A^{\theta}$ for every $\theta \in(0,1)$.

Proof: a) By Lemma 2 ii), the sequence $\left(F_{\frac{1}{n}}(\beta+i \cdot)\right)_{n}$ is uniformly bounded by $\|g \cdot\|_{Q \mathcal{G}(\bar{A})}$ and it is continuous: $\mathbb{R} \rightarrow A_{\beta}$. Let $f_{\frac{1}{n}}(z)=e^{z^{2}} F_{\frac{1}{n}}(z)$. Then $f_{\frac{1}{n}}(\beta+i \cdot)=e^{(\beta+i \cdot)^{2}} F_{\frac{1}{n}}(\beta+i \cdot)$ lies in $\mathcal{C}_{0}\left(\mathbb{R}, A_{\beta}\right)$. Let $\gamma \in\{0,1\}$. By Lemma 1, $f_{\frac{1}{n}}((\gamma-\beta) z+\beta)$ lies in $\mathcal{F}\left(A_{\beta}, A_{\gamma}\right)$, with norm less than $e\|g \cdot\|_{Q \mathcal{G}(\bar{A})}$. By (3) applied in $\mathcal{F}\left(A_{\beta}, A_{\gamma}\right)$, for $\eta \in(0,1)$,

$$
\begin{aligned}
& \left\|\left(f_{\frac{1}{n}}-f_{\frac{1}{m}}^{m}\right)((\gamma-\beta) \eta+\beta)\right\|_{\left(A_{\beta}, A_{\gamma}\right)_{\eta}} \\
& \quad \leq\left(\int_{\mathbb{R}}\left\|\left(f_{\frac{1}{n}}-f_{\frac{1}{m}}\right)((\gamma-\beta) i t+\beta)\right\|_{A_{\beta}} \frac{Q_{0}(\eta, t)}{1-\eta} d t\right)^{1-\eta}\left(2 e\|g\|_{Q \mathcal{G}(\bar{A})}\right)^{\eta} .
\end{aligned}
$$

By the assumption and Lebesgue's convergence theorem the above integral tends to 0 as $n, m \rightarrow \infty$, hence so does the LHS. Let $\theta=(1-\eta) \beta+\eta \gamma \in(\beta, \gamma)$ (so θ runs through $(0, \beta) \cup(\beta, 1))$. By the reiteration theorem [BL, Theorem 4.6.1] $\left(A_{\beta}, A_{\gamma}\right)_{\eta}=A_{\theta}$, and the LHS is $e^{\theta^{2}}\left\|\left(F_{\frac{1}{n}}-F_{\frac{1}{m}}\right)(\theta)\right\|_{A_{\theta}}$. Hence $\left(F_{\frac{1}{n}}(\theta)\right)_{n}$ is a Cauchy sequence in A_{θ}, so it converges in A_{θ}, to $i g^{\prime}(\theta)$ by Lemma 2 i). Applying this to $g_{\tau}, \tau \in \mathbb{R}$, instead of g, one gets $F_{\frac{1}{n}}(\theta+i \tau) \rightarrow i g^{\prime}(\theta+i \tau)$ in A_{θ}. In particular the assumption of a) also holds at θ instead of β. Since $F_{\frac{1}{n}}(\theta+i \cdot): \mathbb{R} \rightarrow A_{\theta}$ is continuous by Lemma 2 ii), it takes values in a closed separable subspace E_{n} of A_{θ} and $g^{\prime}(\theta+i \cdot)$ is valued in the (separable) closure of $\cup_{n} E_{n}$ in A_{θ}. This proves a) for $\theta \neq \beta$. Since the assumption of a) holds at θ, the conclusion also holds at β.
b) is obvious from a).

Lemma 6. Let \bar{A} be a regular interpolation couple. Then the mapping R : $Q \mathcal{G}\left(A_{0}, A_{1}\right) \rightarrow Q \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right)$ (defined in part 1) induces a one to one contraction $R^{\theta}: A^{\theta} \rightarrow\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}$, for $\theta \in(0,1)$.
Proof: We identify A^{θ} and $\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}$ with quotients of

$$
Q \mathcal{G}\left(A_{0}, A_{1}\right) \text { and } Q \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right)
$$

respectively. We define R^{θ} by $R^{\theta}\left(g^{\prime}(\theta)\right)=\left(R\left(g^{*}\right)\right)^{\prime}(\theta)$. Since R is a contraction: $Q \mathcal{G}\left(A_{0}, A_{1}\right) \rightarrow Q \mathcal{G}\left(B_{0}^{*}, B_{1}^{*}\right), R^{\theta}$ is a contraction: $A^{\theta} \rightarrow\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}$. Let us verify that it is one to one. For $a \in A^{\theta}$ and $b \in B_{0} \cap B_{1}=A_{0}^{*} \cap A_{1}^{*}=\left(A_{0}+A_{1}\right)^{*}$, we have

$$
\left\langle R^{\theta}(a), b\right\rangle=\langle a, b\rangle .
$$

If $R^{\theta}(a)=0$ in $\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}=\left(B_{\theta}\right)^{*}$, then $\langle a, b\rangle=0$ for every b as above, thus $a=0$ in $A_{0}+A_{1}$, hence in A^{θ}.

We denote by \bar{A}^{θ} the norm closure of $R^{\theta}\left(A^{\theta}\right)$ in $\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}$. Note that \bar{A}^{θ} embeds in $A_{0}+A_{1}$ since A^{θ} does, and $\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}$ embeds in $B_{0}^{*}+B_{1}^{*}=\left(A_{0}+A_{1}\right)^{* *}$. Thus $A_{0}^{*} \cap A_{1}^{*}$ is a subspace of $\left(\bar{A}^{\theta}\right)^{*}$.

Let $\sigma_{\theta}: \bar{A}^{\theta} \rightarrow\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}=\left(B_{\theta}\right)^{*}$ be the isometric inclusion map. Its adjoint is onto, i.e. $\left(\bar{A}^{\theta}\right)^{*}=\sigma_{\theta}^{*}\left[\left(B_{\theta}\right)^{* *}\right]$. Let U, respectively U_{0}, be the unit balls of $\left(\bar{A}^{\theta}\right)^{*}$, respectively B_{θ}. Since $B_{0} \cap B_{1}$ is dense in B_{θ}, it follows that $\sigma_{\theta}^{*}\left(U_{0} \cap\left(B_{0} \cap B_{1}\right)\right)$ is w^{*}-dense in U. Since σ_{θ}^{*} coincides with the identity on $B_{0} \cap B_{1}=A_{0}^{*} \cap A_{1}^{*}$, we get that

$$
\begin{equation*}
U_{0} \cap\left(A_{0}^{*} \cap A_{1}^{*}\right) \text { is } w^{*} \text { dense in } U \subset\left(\bar{A}^{\theta}\right)^{*} \tag{14}
\end{equation*}
$$

Lemma 7. Let \bar{A} be a regular interpolation couple. For every $\theta \in(0,1), R^{\theta}$: $A_{\theta} \rightarrow\left(B_{0}^{*}, B_{1}^{*}\right)^{\theta}=\left[\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta}\right]^{*}$ is an isometry. In particular A_{θ} is closed in \bar{A}^{θ}.
Proof: By Lemma 3 the unit ball of $\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta}=B_{\theta}$ is w^{*}-dense in the unit ball of $\left(A_{\theta}\right)^{*}$. Hence, for $a \in A_{0} \cap A_{1}$,

$$
\|a\|_{A_{\theta}}=\sup \left\{|\langle a, b\rangle| \mid\|b\|_{B_{\theta}} \leq 1\right\}=\left\|R^{\theta}(a)\right\|_{\left(B_{\theta}\right)^{*}} .
$$

Comment. Though we shall not use it, note that by Lemma $7, B_{\theta}$ may be isometrically identified with a (closed) subspace of $\left(\bar{A}^{\theta}\right)^{*}$, hence, with the notation of (14), $U_{0} \cap\left(A_{0}^{*} \cap A_{1}^{*}\right)=U \cap\left(A_{0}^{*} \cap A_{1}^{*}\right)$. Indeed, for $b \in B_{0} \cap B_{1}$, by (8) for the first equality and Lemma 7 for the first inequality,

$$
\|b\|_{B_{\theta}}=\|b\|_{\left(A_{\theta}\right)^{*}} \leq\|b\|_{\left(\bar{A}^{\theta}\right)^{*}} \leq\|b\|_{\left(B_{\theta}\right)^{* *}}=\|b\|_{B_{\theta}}
$$

Remark 8. Let $g \in \mathcal{G}(\bar{A})$ and let $F_{\frac{1}{n}}$ be associated to g as in Lemma 2. Then, for every $t \in \mathbb{R}$ and $b \in\left(A_{0}^{*}, A_{1}^{*}\right)_{\theta}=\stackrel{\stackrel{n}{B}}{\theta}$

$$
\begin{equation*}
\left\langle F_{\frac{1}{n}}(\theta+i t), b\right\rangle \rightarrow_{n} i\left\langle R^{\theta} \circ g^{\prime}(\theta+i t), b\right\rangle . \tag{15}
\end{equation*}
$$

In particular the RHS of (15) lies in $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$.
Indeed, by (12), (15) holds for every $t \in \mathbb{R}, a^{*} \in A_{0}^{*} \cap A_{1}^{*}$. By Lemma 2 ii) and Lemma 7, $\left\|F_{\frac{1}{n}}(\theta+i t)\right\|_{\left(B_{\theta}\right)^{*}} \leq\|g \cdot\|_{Q \mathcal{G}(\bar{C})}$. By Lemma 6 and Lemma 2 iii)

$$
\left\|R^{\theta} \circ g^{\prime}(\theta+i t)\right\|_{\left(B_{\theta}\right)^{*}} \leq\left\|g^{\prime}(\theta+i t)\right\|_{A^{\theta}} \leq\left\|g^{\cdot}\right\|_{Q \mathcal{G}(\bar{C})}
$$

Then a 3ε argument proves the first claim since $A_{0}^{*} \cap A_{1}^{*}$ is norm dense in B_{θ}. Lemma 2 ii) proves the second claim.
Lemma 9. Let \bar{A} be a regular interpolation couple and let $g \in \mathcal{G}(\bar{A})$. If, for some $\beta, R^{\beta} \circ \phi_{\beta}=R^{\beta} \circ g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow \bar{A}^{\beta}$ is strongly measurable:, then $\phi_{\beta}: \mathbb{R} \rightarrow A_{\beta}$ is strongly measurable.

Proof: It is similar to the proof of $\left.\mathrm{b}^{\prime}\right) \Rightarrow$ a) in Lemma 4, replacing A^{β} by \bar{A}^{β}, since A_{β} is closed in \bar{A}^{β} by Lemma 7 .

The following lemma completes Lemma 9.

Lemma 10. a) Let $\varphi: \mathbb{R} \rightarrow X^{*}$ be a strongly measurable function such that for every $x \in X,\langle\varphi(), x\rangle=$.0 a.s.. Then $\varphi=0$ a.s..
b) In particular, let $\varphi: \mathbb{R} \rightarrow \bar{A}^{\beta}$ be a strongly measurable function and $g \in \mathcal{G}(\bar{A})$. Then $R^{\beta} \circ \phi_{\beta}=\varphi$ a.s. as soon as, for every $a^{*} \in A_{0}^{*} \cap A_{1}^{*}$, $\left\langle\varphi(),. a^{*}\right\rangle=\left\langle R^{\beta} \circ \phi_{\beta}(),. a^{*}\right\rangle$ a.s.
Proof: a) Since φ is strongly measurable, φ is a.s. valued in a closed separable subspace $E \subset X^{*}$. Then the closed unit ball of $E^{*}=X^{* *} / E^{\perp}$, being compact and metrizable for its w^{*}-topology, is separable for this topology. Hence there exists a countable set $\left(x_{k}\right)$ in the unit ball of X whose image is w^{*}-dense in X^{*}. By assumption, a.s. in $t,\left\langle\varphi(t), x_{k}\right\rangle=0$ for every k. For such a $t, \varphi(t)=0$.
b) Since R^{β} and the canonical map $\left(B_{0}^{*}, B_{1}^{*}\right)^{\beta} \rightarrow B_{0}^{*}+B_{1}^{*}$ are one to one, it is enough to show that $R^{\beta} \circ \phi_{\beta}=\varphi$ a.s. as functions with values in $B_{0}^{*}+B_{1}^{*}$. Note that $R^{\beta} \circ \phi_{\beta}=\phi_{\beta}$ is continuous: $\mathbb{R} \rightarrow B_{0}^{*}+B_{1}^{*}=\left(B_{0} \cap B_{1}\right)^{*}=\left(A_{0}+A_{1}\right)^{* *}$ (see (7)). The claim follows from the assumption and from a) applied to $X=$ $B_{0} \cap B_{1}=A_{0}^{*} \cap A_{1}^{*}$ and $R^{\beta} \circ \phi_{\beta}-\varphi$.

3. Conditions implying $A^{\theta}=A_{\theta}$ for every θ

Proposition 11. Let \bar{A} be a regular interpolation couple. Assume that A_{β} has the Radon-Nikodym property [DU] for some $0<\beta<1$. Then $A^{\theta}=A_{\theta}$ for every $0<\theta<1$.

Proof: Since A_{β} has the Radon-Nikodym property, Lipschitz maps: $\mathbb{R} \rightarrow A_{\beta}$ are a.s. differentiable [DU, Chapter IV, Theorem 2, p. 107]. Actually, the proof does not use the fact that the Lipschitz map f under consideration is valued in a Radon-Nikodym space, but only that the differences $f(b)-f(a)$ are, for every $a, b \in \mathbb{R}$. So, for $g \in \mathcal{G}(\bar{A})$, by Lemma 2 ii), we may apply this result to $g(\beta+i \cdot)$: it is a.s. differentiable: $\mathbb{R} \rightarrow A_{\beta}$. The conclusion follows from Theorem 5 .

Comment. Actually, for any interpolation couple \bar{C} and $g \in \mathcal{G}(\bar{C})$, there exists $c \in$ $C_{0}+C_{1}$ such that $g(j+i t)+c$ lies in $C_{j}, j \in\{0,1\}, t \in \mathbb{R}$, which, by Lemma 1 c), implies that $(g+c)(\theta+i \cdot)$ is valued in C_{θ}. Indeed, let $g(1)-g(0)=c_{0}+c_{1}$, where $c_{j} \in C_{j}$ and where $\left\|c_{0}\right\|_{C_{0}}+\left\|c_{1}\right\|_{A_{1}} \leq\|g(1)-g(0)\|_{C_{0}+C_{1}}+\|g \cdot\|_{Q \mathcal{G}(\bar{C})}$. By (1), $\|g(1)-g(0)\|_{C_{0}+C_{1}} \leq\|g \cdot\|_{Q \mathcal{G}(\bar{C})}$, so that $\left\|c_{0}\right\|_{C_{0}}+\left\|c_{1}\right\|_{C_{1}} \leq 2\|g \cdot\|_{Q \mathcal{G}(\bar{C})}$, and we then let

$$
c=-g(0)-c_{0}=c_{1}-g(1)
$$

Theorem 12. Let \bar{A} be a regular interpolation couple. Assume that, for some $\beta \in(0,1)$,

1) A_{β} is weakly sequentially complete,
2) $\left(A_{0}^{*}, A_{1}^{*}\right)^{\beta}=\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$.

Then $A^{\theta}=A_{\theta}$, for every $\theta \in(0,1)$.
Proof: Let $g \in \mathcal{G}(\bar{A})$. We claim that $g^{\prime}(\beta+i \cdot)$ is valued in a closed separable subspace of A_{β}. Indeed by Lemma 2 ii), the associated function $F_{1 / n}(\beta+i \cdot): \mathbb{R} \rightarrow$
A_{β} is bounded and continuous, hence valued in a separable subspace E_{n} of A_{β}. By Remark 8 , for every $t \in \mathbb{R}$ and $a^{*} \in\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$, the sequence $\left(\left(F_{1 / n}(\beta+i t), a^{*}\right)\right)_{n}$ is Cauchy. By assumption 2), $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}=\left(A_{\beta}\right)^{*}$. So, for every $t \in \mathbb{R},\left(F_{1 / n}(\beta+\right.$ $i t))_{n}$ is weak Cauchy in A_{β}, hence in E, the norm closure of $\cup_{n} E_{n}$ in A_{β}. By assumption 1) it converges weakly in E. Since the canonical map $A_{\beta} \rightarrow A_{0}+A_{1}$ is one to one, the limit point is $i g^{\prime}(\beta+i t)$, which thus lies in the separable space E. Then Lemma $4, \mathrm{c}) \Rightarrow$ a) and Theorem 5 end the proof.

In [Da1] we showed that if A^{β} is a weakly compactly generated Banach space (in short WCG, see [DU, Chapter VIII, p. 251]) for some $\beta \in(0,1)$, then $A^{\theta}=A_{\theta}$, for every $\theta \in(0,1)$. The next theorem weakens the assumption. Two properties of a WCG space X will be used:
$\left(\mathrm{P}_{1}\right)$ if a convex set Z is w^{*}-dense in the unit ball $B_{X^{*}}$, then every $x^{*} \in B_{X^{*}}$ is the w^{*}-limit of a sequence in Z (see e.g. [FHHMZ]),
$\left(\mathrm{P}_{2}\right)$ if $\phi: \mathbb{R} \rightarrow X$ is a weakly measurable function, then there exists a strongly measurable function $\varphi: \mathbb{R} \rightarrow X$ such that, for every $a^{*} \in X^{*},\left\langle\phi(),. a^{*}\right\rangle=$ $\left\langle\varphi(),. a^{*}\right\rangle$ a.s. [DU, p. 642].

For the convenience of the reader we give a direct proof of $\left(\mathrm{P}_{1}\right)$: Since X is WCG, there exists, by the Davis-Figiel-Johnson-Pelczynski theorem (see e.g. [FHHMZ, Corollary 13.24]), a reflexive space E and an injection with dense range $J: E \rightarrow X$. Let x^{*} be in the unit ball of X^{*}. By assumption there is a net $\left(z_{\alpha}\right)$ in Z such that $z_{\alpha} \rightarrow x^{*}$ in the w^{*}-topology of X^{*}. Then $J^{*}\left(z_{\alpha}\right) \rightarrow J^{*}\left(x^{*}\right)$ weakly in E. So there is a sequence $\left(y_{n}\right)$ in Z such that $J^{*}\left(y_{n}\right) \rightarrow_{n \rightarrow \infty} J^{*}\left(x^{*}\right)$ in the norm of E^{*}. Then $y_{n} \rightarrow_{n \rightarrow \infty} x^{*}$ in the w^{*}-topology of X^{*} because $J(E)$ is dense in X.
Theorem 13. Let \bar{A} be a regular couple and let $\beta \in(0,1)$. Assume that \bar{A}^{β} is $W C G$. Then $A^{\theta}=A_{\theta}$ for every $\theta \in(0,1)$.

The proof needs the following lemma:
Lemma 14. Let \bar{A} be a regular couple, let $\beta \in(0,1)$ and assume that \bar{A}^{β} is WCG. Let $g \in \mathcal{G}(\bar{A})$. Then the map $R^{\beta} \circ g^{\prime}(\beta+i \cdot)=R^{\beta} \circ \phi_{\beta}: \mathbb{R} \rightarrow \bar{A}^{\beta}$ is strongly measurable. Moreover, for every $x^{*} \in\left(\bar{A}^{\beta}\right)^{*},\left\langle R^{\beta} \circ \phi_{\beta}(),. x^{*}\right\rangle$ lies in $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$.

Proof: By assumption \bar{A}^{β} satisfies $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$. We first claim that $R^{\beta} \circ \phi_{\beta}$: $\mathbb{R} \rightarrow \bar{A}^{\beta}$ is weakly measurable. Let U be the closed unit ball of $\left(\bar{A}^{\beta}\right)^{*}$ and U_{0} be the closed unit ball of B_{β}. Let $Z=U_{0} \cap\left(A_{0}^{*} \cap A_{1}^{*}\right)$. By (14), Z is w^{*}-dense in U. Since $g^{\prime}(\beta+i$. $)$ is continuous: $\mathbb{R} \rightarrow A_{0}+A_{1}$, for every $a^{*} \in A_{0}^{*} \cap A_{1}^{*}=B_{0} \cap B_{1}$, $\left\langle R^{\beta} \circ \phi_{\beta}(),. a^{*}\right\rangle=\left\langle\phi_{\beta}(),. a^{*}\right\rangle$ is continuous. By $\left(\mathrm{P}_{1}\right)$, every $x^{*} \in U$ is the w^{*}-limit of a sequence in Z, hence $\left\langle R^{\beta} \circ \phi_{\beta}(),. x^{*}\right\rangle$ is in $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$, which proves the claim and the last assertion of the lemma.

So, by $\left(\mathrm{P}_{2}\right)$, there exists a strongly measurable function $\varphi: \mathbb{R} \rightarrow \bar{A}^{\beta}$ such that, for every $x^{*} \in\left(\bar{A}^{\beta}\right)^{*},\left\langle R^{\beta} \circ \phi_{\beta}(),. x^{*}\right\rangle=\left\langle\varphi(),. a^{*}\right\rangle$ a.s. In particular this holds for
every $a^{*} \in B_{0} \cap B_{1}=A_{0}^{*} \cap A_{1}^{*}$. By Lemma 10 b$), R^{\beta} \circ \phi_{\beta}=\varphi$ a.s., which ends the proof.

Proof of Theorem 13: Let $g \in \mathcal{G}(\bar{A})$. By Lemma 14 and Lemma $9, g^{\prime}(\beta+i \cdot)$: $\mathbb{R} \rightarrow A_{\beta}$ is strongly measurable. Lemma $\left.4, \mathrm{~b}\right) \Rightarrow$ a) and Theorem 5 end the proof.

Definition 15. A Banach space X is weakly Lindelöf if every weakly open covering of X has a countable subcovering.

For example a WCG space is weakly Lindelöf [FHHMZ, Theorem 14.31]. We shall only use the fact that weakly Lindelöf spaces have Property $\left(\mathrm{P}_{2}\right)$ [E, Proposition 5.4 and (4), p. 671].

Proposition 16. Let \bar{A} be a regular couple. Assume that $A^{\beta}=A_{\beta}$ and that A_{β} is weakly Lindelöf for some $\beta \in(0,1)$. Then $A^{\theta}=A_{\theta}$ for every $\theta \in(0,1)$.

Proof: The second assumption implies $\left(\mathrm{P}_{2}\right)$. Let $g \in \mathcal{G}(\bar{A})$. By the first assumption and Lemma 3 b$), \phi_{\beta}=g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow A_{\beta}$ is weakly measurable. So, by $\left(\mathrm{P}_{2}\right)$, there exists a strongly measurable function $\varphi: \mathbb{R} \rightarrow A_{\beta}$ such that, for every $x^{*} \in\left(A_{\beta}\right)^{*},\left\langle\phi_{\beta}(),. x^{*}\right\rangle=\left\langle\varphi(),. x^{*}\right\rangle$ a.s. This holds in particular for every $a^{*} \in A_{0}^{*} \cap A_{1}^{*}=\left(A_{0}+A_{1}\right)^{*}$. By Lemma $7, A_{\beta}=A^{\beta}$ implies $A_{\beta}=\bar{A}_{\beta}$. So, by Lemma $10, \phi_{\beta}=\varphi$ a.s., i.e. $\phi_{\beta}: \mathbb{R} \rightarrow A_{\beta}$ is strongly measurable. Lemma 4 , b) \Rightarrow a) and Theorem 5 end the proof.

The next theorem extends Proposition 16.
Theorem 17. Let \bar{A} be a regular couple such that A_{β} is weakly Lindelöf for some $\beta \in(0,1)$. Assume that

1) there exists a continuous projection $P: \bar{A}^{\beta} \rightarrow A_{\beta}$,
2) for every $g \in \mathcal{G}(\bar{A})$ and $y^{*} \in\left(\bar{A}^{\beta}\right)^{*}$, the map $\left\langle R^{\beta} \circ g^{\prime}(\beta+i \cdot)\right.$, $\left.y^{*}\right\rangle$ lies in $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$.
Then $A_{\theta}=A^{\theta}$ for every $\theta \in(0,1)$.
Comment. Assumption 1) is consistent by Lemma 7. The conclusion of 2) is always true for $y^{*} \in\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$ by Remark 8 . By the proof of Lemma 14, assumption 2) is verified if $\left(\bar{A}^{\beta}\right)^{*}$ satisfies $\left(\mathrm{P}_{1}\right)$.

Remark 18. Assume that A_{β} is a weakly Lindelöf space. Then assumptions 1) and 2) in Theorem 17 are equivalent to $A^{\beta}=A_{\beta}$.

Indeed Theorem 17 gives one implication. Conversely, if $A^{\beta}=A_{\beta}$, then $\bar{A}^{\beta}=A_{\beta}$ by Lemma 7, and 2) follows from Lemma 3 b).

Proof of Theorem 17: Let $g \in \mathcal{G}(\bar{A})$ and let us denote $g^{\prime}(\beta+i \cdot)=\phi_{\beta}$.
Step 1: By both assumptions $P \circ R^{\beta} \circ \phi_{\beta}():. \mathbb{R} \rightarrow A_{\beta}$ is weakly measurable. Since A_{β} is weakly Lindelöf, there exists by $\left(\mathrm{P}_{2}\right)$ a strongly measurable function
$\varphi: \mathbb{R} \rightarrow A_{\beta}$ such that

$$
\begin{equation*}
\forall x^{*} \in\left(A_{\beta}\right)^{*} \quad\left\langle P\left[R^{\beta} \circ \phi_{\beta}(.)\right], x^{*}\right\rangle=\left\langle\varphi(.), x^{*}\right\rangle \quad \text { a.s.. } \tag{16}
\end{equation*}
$$

We shall apply this only to $x^{*}=a^{*} \in A_{0}^{*} \cap A_{1}^{*}$. Note that $a^{*} \in\left(\bar{A}^{\beta}\right)^{*}($ see $(14))$, but we do not know a priori whether $P^{*} a^{*}=a^{*}$. If we get

$$
\begin{equation*}
\forall a^{*} \in A_{0}^{*} \cap A_{1}^{*}=B_{0} \cap B_{1} \quad\left\langle\phi_{\beta}(.), a^{*}\right\rangle=\left\langle\varphi(.), a^{*}\right\rangle \quad \text { a.s. } \tag{17}
\end{equation*}
$$

Lemma 10 implies $R^{\beta} \circ \phi_{\beta}=\varphi$ a.s., i.e. $\phi_{\beta}: \mathbb{R} \rightarrow A_{\beta}$ is strongly measurable. Then Lemma 4, b) \Rightarrow a) and Theorem 5 will end the proof.

Step 2: We now show that (16) implies (17). Let y^{*} be in the unit ball U of $\left(\bar{A}^{\beta}\right)^{*}$. By (14) there is a net $\left(a_{\alpha}^{*}\right)_{\alpha}$ in $U_{0} \cap\left(A_{0}^{*} \cap A_{1}^{*}\right)$ such that $a_{\alpha}^{*} \rightarrow y^{*}$ in the w^{*}-topology of $\left(\bar{A}^{\beta}\right)^{*}$. Let $F_{\frac{1}{n}}(\beta+i$.) be associated to g as in Lemma 2 (and valued in A_{β}). By (11), for every $\tau \in \mathbb{R}$ and every integer n,

$$
\begin{equation*}
\int_{\tau}^{\tau+1 / n}\left\langle\phi_{\beta}(t), a_{\alpha}^{*}\right\rangle d t=-\frac{i}{n}\left\langle F_{\frac{1}{n}}(\beta+i \tau), a_{\alpha}^{*}\right\rangle \rightarrow_{\alpha}-\frac{i}{n}\left\langle F_{\frac{1}{n}}(\beta+i \tau), y^{*}\right\rangle \tag{18}
\end{equation*}
$$

We shall prove in Step 3 that, for every τ, n, and $y^{*} \in\left(\bar{A}^{\beta}\right)^{*}$,

$$
\begin{equation*}
\int_{\tau}^{\tau+1 / n}\left\langle\phi_{\beta}(t), a_{\alpha}^{*}\right\rangle d t \rightarrow_{\alpha} \int_{\tau}^{\tau+1 / n}\left\langle R^{\beta} \circ \phi_{\beta}(t), y^{*}\right\rangle d t \tag{19}
\end{equation*}
$$

Note that $R^{\beta} \circ \phi_{\beta}($.$) is bounded in \bar{A}^{\beta}$ by Lemma 2 iii), weakly measurable by assumption 2, hence $\left\langle R^{\beta} \circ \phi_{\beta}(),. y^{*}\right\rangle$ is locally integrable). By (18) and (19),

$$
\begin{equation*}
\int_{\tau}^{\tau+1 / n}\left\langle R^{\beta} \circ \phi_{\beta}(t), y^{*}\right\rangle d t=-\frac{i}{n}\left\langle F_{\frac{1}{n}}(\beta+i \tau), y^{*}\right\rangle \tag{20}
\end{equation*}
$$

By (16) and (20) applied to $y^{*}=P^{*} a^{*}$, for $a^{*} \in A_{0}^{*} \cap A_{1}^{*}$,

$$
\begin{aligned}
i n \int_{\tau}^{\tau+1 / n}\left\langle\varphi(t), a^{*}\right\rangle d t & =i n \int_{\tau}^{\tau+1 / n}\left\langle R^{\beta} \circ \phi_{\beta}(t), P^{*} a^{*}\right\rangle d t \\
& =\left\langle F_{\frac{1}{n}}(\beta+i \tau), P^{*} a^{*}\right\rangle=\left\langle F_{\frac{1}{n}}(\beta+i \tau), a^{*}\right\rangle
\end{aligned}
$$

Note that $\left\langle\varphi(t), a^{*}\right\rangle$ is locally integrable since $\left\langle R^{\beta} \circ \phi_{\beta}(t), P^{*} a^{*}\right\rangle$ is. Taking limits when $n \rightarrow \infty$ (by Lebesgue's differentiation theorem on the LHS, by (12) on the RHS), we get (17), as desired.

Step 3: We prove the claim (19). Let U, U_{0} be respectively the closed unit balls of $\left(\bar{A}^{\beta}\right)^{*}$ and $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}$. By (14), $U_{0} \cap\left(A_{0}^{*} \cap A_{1}^{*}\right)$ is w^{*}-dense in U. The map $y^{*} \rightarrow\left\langle R^{\beta} \circ \phi_{\beta}(),. y^{*}\right\rangle$ is continuous from $\left(U, w^{*}\right)$ into the space of complex valued functions on \mathbb{R} equipped with the topology of pointwise convergence. The image K of U is compact for this topology and the image K_{0} of $U_{0} \cap\left(A_{0}^{*} \cap A_{1}^{*}\right)$
is dense in K. Moreover K is bounded in $\ell^{\infty}(\mathbb{R})$ (see Step 2). By assumption 2), K actually lies in $\mathcal{B}_{1}(\mathbb{R}, \mathbb{C})$. Hence (19) follows from $[R$, Main Theorem b)].

Our last result does not deal with the equality between A_{θ} and A^{θ}, but uses some of the machinery from part 2.

Proposition 19. Let $\left(A_{0}, A_{1}\right)$ be a regular couple such that A_{0} is a subspace of A_{1}, and let $0<\theta<\beta<1$. Assume that the embedding $i: A_{0} \rightarrow A_{1}$ is compact. Then i extends as a compact embedding $A_{\theta} \rightarrow A_{\beta}$.

Proof: Step 1: Since $A_{0}=A_{0} \cap A_{1}$ and $A_{1}=A_{0}+A_{1}$ we know that i factors through A_{β}. We claim that the embedding $i_{\beta}: A_{0} \rightarrow A_{\beta}$ is compact. Indeed let $\left(x_{n}\right)_{n \geq 0}$ be a bounded sequence in A_{0}. Since $i: A_{0} \rightarrow A_{1}$ is compact, there exists a subsequence $\left(x_{n_{k}}\right)_{k \geq 0}$ such that $i\left(x_{n_{k}}\right)$ has a limit in A_{1}, hence $\left(x_{n_{k}}\right)_{k \geq 0}$ is a Cauchy sequence in A_{1}. By (4), for every $k, k^{\prime} \in \mathbb{N}$, we have

$$
\left\|x_{n_{k}}-x_{n_{k^{\prime}}}\right\|_{A_{\beta}} \leq\left\|x_{n_{k}}-x_{n_{k^{\prime}}}\right\|_{A_{0}}^{1-\beta}\left\|x_{n_{k}}-x_{n_{k^{\prime}}}\right\|_{A_{1}}^{\beta}
$$

so that the sequence $\left(i\left(x_{n_{k}}\right)\right)_{k \geq 0}$ is Cauchy in A_{β}. (This step does not need the regularity of the couple $\left(A_{0}, A_{1}\right)$).

Step 2: By assumption A_{0} is dense in A_{1} and in A_{β}. Hence $i^{*}: A_{1}^{*} \rightarrow A_{0}^{*}$ is an injection which factors through $\left(A_{\beta}\right)^{*}$. Let B_{j} be the closure of $A_{0}^{*} \cap A_{1}^{*}=A_{1}^{*}$ in A_{j}^{*}, so that $i^{*}: B_{1}=A_{1}^{*} \rightarrow B_{0}$. By the regularity of $\left(A_{0}, A_{1}\right)$ and by Step 1 , $i_{\beta}^{*}:\left(A_{\beta}\right)^{*}=\left(A_{0}^{*}, A_{1}^{*}\right)^{\beta} \rightarrow A_{0}^{*}$ is a compact embedding. Hence so is its restriction $\left(A_{0}^{*}, A_{1}^{*}\right)_{\beta}=B_{\beta} \rightarrow A_{0}^{*}$, which is actually an embedding $B_{\beta} \rightarrow B_{0}$.

Applying Step 1 to the regular couple (B_{β}, B_{0}), we get a compact embedding with dense range $j: B_{\beta} \rightarrow\left(B_{\beta}, B_{0}\right)_{\eta}, \eta \in(0,1)$. By [BL, Theorem 4.2.1] and the reiteration theorem [BL, Theorem 2.7.1], $\left(B_{\beta}, B_{0}\right)_{\eta}=\left(B_{0}, B_{\beta}\right)_{1-\eta}=B_{\theta}$ if $\theta=(1-\eta) \beta$.

Hence the adjoint $j^{*}: B_{\theta}^{*} \rightarrow B_{\beta}^{*}$ is a compact embedding. By Lemma $7, A_{\theta}$ and A_{β} are respectively isometric subspaces of B_{θ}^{*} and B_{β}^{*}. The restriction of j^{*} to A_{θ} is a compact embedding which is identity on A_{0}, hence sends A_{θ} into A_{β} and coincides with i_{β} on A_{0}.

Appendix: We give a variant of Lemma 4, which does not need regularity for c) $\Rightarrow \mathrm{b}$) and proves $\left.c^{\prime}\right) \Rightarrow b^{\prime}$). Lemma 3 is replaced by the following:

Lemma 20. Let F be a separable Banach space which is a (non closed in general) subspace of a Banach space E, let $J: F \rightarrow E$ be the canonical map, and assume that J is continuous. Let $\varphi: \mathbb{R} \rightarrow F$ be a function such that $J \circ \varphi: \mathbb{R} \rightarrow E$ is continuous. Then $\varphi: \mathbb{R} \rightarrow F$ is strongly measurable.
Proof: Since F is separable, F and $\overline{J(F)}$ (the closed subspace of E spanned by $J(F)$) are Polish spaces and $J: F \rightarrow \overline{J(F)}$ is one to one and continuous. By Souslin's theorem (see e.g. [A, Theorem 3.2.3 and its corollary]) the map $J^{-1}: J(F) \rightarrow F$ is Borel measurable. Since $\varphi=J^{-1} \circ J \circ \varphi$ and $J \circ \varphi: \mathbb{R} \rightarrow \overline{J(F)}$
is continuous, $\varphi: \mathbb{R} \rightarrow F$ is Borel measurable. Since F is separable, φ is strongly measurable by Pettis' theorem [DU, Chapter II, p. 42].
Lemma 21. Let \bar{C} be an interpolation couple, $g \in \mathcal{G}(\bar{C}), 0<\beta<1$. With the notation of Lemma $4, c) \Rightarrow b$) and $\left.c^{\prime}\right) \Rightarrow b^{\prime}$).
Proof: This follows from Lemma 20 since $F=C_{\beta}$ or C^{β} embeds in $E=C_{0}+C_{1}$ and $g^{\prime}(\beta+i \cdot): \mathbb{R} \rightarrow C_{0}+C_{1}$ is continuous.

References

[A] Arveson W., An Invitation to C^{*}-algebra, Graduate Texts in Math., 39, Springer, New York-Heidelberg, 1976.
[BL] Bergh J., Lofström J., Interpolation Spaces. An Introduction, Springer, Berlin-Heidelberg-New York, 1976.
[B] Bergh J., On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775-777.
[Da1] Daher M., Une remarque sur l'espace A^{θ}, C.R.Acad. Sci. Paris Ser. I Math. 322 (1996), no. 7, 641-644.
[Da2] Daher M., Une remarque sur les espaces d'interpolation A^{θ} qui sont LUR, Colloq. Math. 123 (2011), no. 2, 197-204.
[Da3] Daher M., Une remarque sur les espaces d'interpolation faiblement localement uniformément convexes, arXiv:1206.4848.
[DU] Diestel J., Uhl J.J., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, Rhode Island, 1977.
[E] Edgar G.A., Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), no. 4, 663-677.
[FHHMZ] Fabian M., Habala P., Hajek P., Montesinos V., Zizler V., Banach Space Theory, CMS Books in Mathematics, Springer, New York, 2011.
[R] Rosenthal H.P., Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), no. 2, 362-378.

Department of Maths, Paris VII University

E-mail: m.daher@orange.fr
(Received October 2, 2014, revised February 17, 2016)

