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Functionally countable subalgebras and some

properties of the Banaschewski compactification

A.R. Olfati

Abstract. Let X be a zero-dimensional space and Cc(X) be the set of all conti-
nuous real valued functions on X with countable image. In this article we denote

by CKc (X) (resp., C
ψ
c (X)) the set of all functions in Cc(X) with compact (resp.,

pseudocompact) support. First, we observe that CKc (X) = O
β0X\X
c (resp.,

C
ψ
c (X) = M

β0X\υ0X
c ), where β0X is the Banaschewski compactification of X

and υ0X is the N-compactification of X. This implies that for an N-compact
space X, the intersection of all free maximal ideals in Cc(X) is equal to CKc (X),

i.e., M
β0X\X
c = CKc (X). By applying methods of functionally countable subal-

gebras, we then obtain some results in the remainder of the Banaschewski com-
pactification. We show that for a non-pseudocompact zero-dimensional space X,

the set β0X \ υ0X has cardinality at least 22
ℵ0 . Moreover, for a locally com-

pact and N-compact space X, the remainder β0X \ X is an almost P -space.
These results lead us to find a class of Parovičenko spaces in the Banaschewski
compactification of a non pseudocompact zero-dimensional space. We conclude
with a theorem which gives a lower bound for the cellularity of the subspaces
β0X \ υ0X and β0X \ X, whenever X is a zero-dimensional, locally compact
space which is not pseudocompact.

Keywords: zero-dimensional space; strongly zero-dimensional space; N-compact
space; Banaschewski compactification; pseudocompact space; functionally count-
able subalgebra; support; cellularity; remainder; almost P -space; Parovičenko
space
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1. Preliminaries

We recall that a zero-dimensional topological space is a Hausdorff space with a
base consisting of clopen sets. Mrówka showed in [13] that X is zero-dimensional
if and only if it can be embedded into the product space N

κ, where N is the set
of natural numbers with discrete topology and κ is a cardinal number.

We also recall that a topological space X is N-compact if it can be embedded
as a closed subset of the product space N

κ, for some cardinal number κ, see [3],
[13], [14], [15], [16], [17], [18] for more details on this subject.

For every zero-dimensional space X , there exists an N-compact space υ0X such
that X is dense in it and every continuous function f : X → Y , with Y being
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an N-compact space, has a unique extension f∗ : υ0X → Y . We can replace
an arbitrary N-compact space Y by the fixed discrete space Z (the set of integer
numbers) and have the following characterization of the N-compactification of
a zero-dimensional space, see e.g., [20, 5.4 (d)].

Theorem 1.1. For an N-compact extension T of a zero-dimensional space X
there is a homeomorphism between T and υ0X that fixes X pointwise if and only

if for each continuous function f : X → Z, there exists a continuous function

F : T → Z such that F |X = f .

We remind the reader that a Tychonoff space X is strongly zero-dimensional if
and only if every two disjoint zero-sets in X are separated by a clopen partition.
It is well known that every strongly zero-dimensional realcompact space is N-
compact. Since every countable subset of R (the set of real numbers) is Lindelöf
and zero-dimensional, it is strongly zero-dimensional. This fact implies that every
countable subset of R is N-compact. So we have the following lemma.

Lemma 1.2. Let X be a zero-dimensional Hausdorff space. For each continuous

function f : X → R with countable image, there exists an extension f∗ : υ0X → R

such that the image of f∗ is equal to the image of f .

For an arbitrary Tychonoff space X , we denote by Cc(X) the set of all conti-
nuous real-valued functions on X with countable image. The set Cc(X) forms a
subring of C(X) (i.e., the set of all continuous real valued functions on X) with
pointwise addition and multiplication. Ghadermazi, Karamzadeh and Namdari
showed in [5] that for a Tychonoff space X there exists a zero-dimensional space Y
such that Cc(X) ∼= Cc(Y ) as rings. In view of this fact, in the present ar-

ticle we restrict our attention to zero-dimensional spaces. In the same
article, the authors gave an example of a space X for which Cc(X) is not isomor-
phic to any C(Y ). They remarked that Cc(X), although not isomorphic to any
ring of continuous functions in general, enjoys most of the important properties
of C(X). The reader could find all prerequisites and unfamiliar notions for this
subring in [5].

For a zero-dimensional space X , by β0X we mean its Banaschewski compactifi-
cation. We recall that β0X is the unique (up to homeomorphism) zero-dimensional
compact space which contains X as a dense subset such that every continuous
two-valued function f : X → {0, 1} has an extension to β0X , see [20, 4.7, Coro-
llary (f)]. A topological space X is strongly zero-dimensional if and only if β0X
is homeomorphic to βX , i.e., if and only if βX is zero-dimensional (see [2]).

Dowker has given an example of a zero-dimensional space X for which βX is
not zero-dimensional and hence βX 6= β0X , see [20, Exercise 4V]. The structure
of β0X is related to the clopen ultrafilters defined on X . Indeed β0X is homeo-
morphic to the set of all clopen ultrafilters equipped with the Stone topology, see
[20, 4.7]. An outline for recovering υ0X as a subspace of all clopen ultrafilters
on X which have the countable intersection property can be found in [20, Exer-
cise 5E]. Therefore we have X ⊆ υ0X ⊆ β0X . Note that for p ∈ β0X \υ0X , there
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exists a sequence {Vn : n ∈ N} of clopen neighborhoods of p in β0X such that
⋂∞
n=1 Vn does not meet X .
This article consists of two parts. In the first part, by applying the aforemen-

tioned notions, we characterize some important ideals in Cc(X). It is shown that
the set of all functions in Cc(X) with compact (resp., pseudocompact) support

coincides with the ideal O
β0X\X
c (resp., M

β0X\υ0X
c ). It is shown that for an N-

compact space X , the intersection of all free maximal ideals in Cc(X) coincides
with the ideal CK

c (X).
In the second part, we apply the subring Cc(X) and some related notions to find

some information about β0X . For example, we give the least cardinality of the
remainder β0X \υ0X , i.e., the set of all clopen ultrafilters on X which do not have
the countable intersection property. It is shown that for a non pseudocompact

space X , there are at least 22ℵ0
such clopen ultrafilters on X . We shall show that

if X is locally compact and N-compact, then β0X \ X is an almost P -space, i.e.,
a space for which the interior of every zero-set is nonempty, see [10] and [21]. We
show that zero-sets of β0X which do not meet X are Parovičenko spaces. Finally,
we show that whenever X is a locally compact, zero-dimensional space which is
not pseudocompact, the cellularity of the subspaces β0X \ υ0X and β0X \ X of
β0X are at least 2ℵ0 . We close this section with the following results which are
useful in the sequel. We recall that if I is a subset of Cc(X), the set Z[I] consists
of all zero-sets Z of X for which there exists f ∈ I such that Z = Z(f). We
denote Z[Cc(X)] briefly by Zc[X ].

Lemma 1.3. (a) For a sequence {Un : n ∈ N} of clopen subsets of X , there

exists a Z ∈ Zc[X ] such that Z =
⋂∞
n=1 Un.

(b) For Z ∈ Zc[X ], there exists a sequence {Wn : n ∈ N} of clopen subsets of

X such that Z =
⋂∞
n=1 Wn.

Proof: (a) Without loss of generality, we may assume that U1 ⊇ U2 ⊇ U3 · · · is
a decreasing sequence of clopen sets of X . Now define

f =

∞
∑

n=1

1

2n
χ

(X\Un)
,

where χ
X\Un

is the characteristic function of the clopen set X \ Un. It is easy

to see that f(X) ⊆ {0}
⋃

{ 1
2n : n ∈ N

⋃

{0}}. Therefore f ∈ Cc(X) and Z(f) =
⋂∞
n=1 Un.
(b) Suppose that Z ∈ Zc[X ]. Consider 0 < f ∈ Cc(X) such that Z = Z(f).

Choose a decreasing sequence r1 > r2 > · · · > rn > · · · of real numbers which
tends to zero, and for each n ∈ N, rn /∈ f(X). For each n ∈ N, define Wn =
f−1 ([0, rn)). Then each Wn is clopen in X , and Z(f) =

⋂∞
n=1 Wn. So we are

done. �

Corollary 1.4. Let X be a zero-dimensional space. For f ∈ Cc(X) there exists

F ∈ Cc(β0X) such that Z(f) = Z(F )
⋂

X .
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Proof: By part (b) of Lemma 1.3, there exists a sequence {Wn : n ∈ N} of clopen
subsets of X such that Z(f) =

⋂∞
n=1 Wn. For each n ∈ N, clβ0XWn is a clopen

subset in β0X . Part (a) of Lemma 1.3 implies that there exists an F ∈ Cc(β0X)
such that Z(F ) =

⋂∞
n=1 clβ0XWn. Clearly Z(f) = Z(F )

⋂

X . �

2. Characterization of some special ideals in Cc(X)

In the beginning of this section we characterize maximal ideals of Cc(X). This
characterization leads us to specify the ideal which consists of all functions in
Cc(X) with compact (resp., pseudocompact) support. The reader is reminded
that in [1] it is claimed that it can be shown that the space of maximal ideals
of Cc(X) with the Stone topology (i.e., the structure space of the ring Cc(X)) is
isomorphic to β0X . We settle the internal characterization of maximal ideals of
Cc(X) which has this result as an immediate consequence. In the sequel we prove
a counterpart of Gelfand-Kolmogoroff theorem in rings of continuous functions.
First, we need a lemma which is essential for characterizing all maximal ideals
of the ring Cc(X). We recall that a subspace of a zero-dimensional space is two-
embedded in X if each continuous map f of Y into the two-element discrete space
{0, 1} has a continuous extension F : X → {0, 1}.

Lemma 2.1. Let X be zero-dimensional. For any two functions f, g ∈ Cc(X) we

have

clβ0X (Z(f) ∩ Z(g)) = clβ0XZ(f) ∩ clβ0XZ(g).

Proof: Case 1. Suppose that Z(f) ∩ Z(g) = ∅. There exists an h ∈ Cc(X)
such that Z(f) = Z(h) and Z(g) = h−1(1). Choose some 0 < r < 1 such that
r /∈ h(X) and put U = h−1 ((−∞, r)). The subset U is clopen in X , Z(f) ⊆ U
and Z(g) ⊆ X \ U . Note that X is two-embedded in β0X . This implies that
clβ0XU ∩ clβ0X(X \ U) = ∅ and then clβ0XZ(f) ∩ clβ0XZ(g) = ∅.

Case 2. Now suppose that Z(f) ∩ Z(g) 6= ∅. Evidently

clβ0X (Z(f) ∩ Z(g)) ⊆ clβ0XZ(f) ∩ clβ0XZ(g).

Let p ∈ clβ0XZ(f) ∩ clβ0XZ(g). Assume that p does not belong to clβ0X(Z(f) ∩
Z(g)). There exists a clopen set U ⊆ β0X such that p ∈ U and U ∩ (clβ0X(Z(f)∩
Z(g))) = ∅. The subset V = U ∩ X is clopen in X and also is the zero-set of the
characteristic function χ

X\V
, i.e., Z(χ

X\V
) = V . Then V ∩ Z(f) ∩ Z(g) = ∅. By

Case 1, we have

clβ0X(V ∩ Z(f)) ∩ clβ0X(V ∩ Z(g)) = ∅,

and hence p does not belong to at least one of them; say p /∈ clβ0X(V ∩ Z(f)).
Choose a neighborhood W of p such that W ∩ V ∩ Z(f) = ∅ and hence W ∩ U ∩
Z(f) = ∅. But W ∩ U is a neighborhood of p and must intersect Z(f). This is
a contradiction and the proof is complete. �
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Now here is the characterization of maximal ideals of Cc(X). The reader will
note the resemblance to the Gelfand-Kolmogoroff theorem that describes maximal
ideals of function rings C(X).

Theorem 2.2. The maximal ideals of Cc(X) are in one-to-one correspondence

with the points of β0X and are given by

Mp
c = {f ∈ Cc(X) : p ∈ clβ0XZ(f)},

for p ∈ β0X .

Proof: First we show that for each p ∈ β0X , Mp
c is a maximal ideal. By

Lemma 2.1, one can verify that Mp
c forms an ideal. Suppose, on the contrary,

that there exists a maximal ideal M which properly contains Mp
c . Therefore there

exists some f ∈ M such that p /∈ clβ0XZ(f). Since β0X is zero-dimensional, there
exists a clopen subset U in β0X such that p ∈ U and U ∩ clβ0XZ(f) = ∅. The
set V = U ∩ X is clopen in X , and clearly p ∈ clβ0XV . Since V is the zero-set
of the characteristic function χ

X\V
∈ Cc(X), we have χ

X\V
∈ Mp

c . Consider the

function g = χ
X\V

+ f2. Obviously Z(g) = Z(χ
X\V

) ∩ Z(f) = V ∩ Z(f) = ∅.
Therefore M contains a unit of Cc(X) which implies that M = Cc(X).

Now we show that each maximal ideal M in Cc(X) has this form. By Lem-
ma 2.1, the set {clβ0XZ(f) : f ∈ M} is a family of closed subsets with the
finite intersection property, and since β0X is compact, there exists some p ∈
⋂

f∈M clβ0XZ(f). Therefore M ⊆ Mp
c and hence M = Mp

c . �

Suppose that p ∈ β0X . We define the set Op
c as follows.

Op
c = {f ∈ Cc(X) : p ∈ intβ0Xclβ0XZ(f)}.

It is easy to show that, in exact analogy with the C(X) case, Op
c is an ideal of

Cc(X), and the only maximal ideal containing Op
c is Mp

c . In the following, we
show that for p ∈ β0X , if Z ∈ Z[Op

c ], there exists a zero-set neighborhood Z ′ of p
in β0X such that Z = Z ′ ∩ X . Note that if X is not strongly zero-dimensional,
there exists a bounded real valued function on X which has no extension to β0X .
But for any zero-dimensional space, the following proposition allows us to extend
zero-sets of the functions in Op

c .

Proposition 2.3. For each p ∈ β0X ,

Z[Op
c ] = {Z ′ ∩ X : Z ′ ∈ Zc[β0X ], p ∈ intβ0XZ ′}.

Proof: Suppose that Z ∈ Z[Op
c ], i.e., p ∈ intβ0Xclβ0XZ. By Corollary 1.4, there

exists some Z ′ ∈ Zc[β0X ] such that Z ′ ∩ X = Z. Clearly p ∈ intβ0XZ ′. Hence Z
belongs to the right hand side set. Now let Z ′ ∈ Zc[β0X ] and p ∈ intβ0XZ ′. There
exists a clopen set U ⊆ β0X such that p ∈ U ⊆ intβ0XZ ′. Therefore U ∩ X ⊆
Z ′∩X and hence p ∈ intβ0Xclβ0X(Z ′∩X). This implies that Z ′∩X ∈ Z[Op

c ]. �

We recall that for a subset A ⊆ β0X , the set OA
c (resp., MA

c ) is equal to
⋂

p∈A Op
c (resp.,

⋂

p∈A Mp
c ). The set of all functions in Cc(X) with compact
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support is denoted by CK
c (X). In the following result we characterize the set

CK
c (X) as a certain ideal of Cc(X).

Theorem 2.4. For a zero-dimensional space X , CK
c (X) = O

β0X\X
c .

Proof: Suppose that f ∈ CK
c (X). Then clX (X \ Z(f)) is compact and hence

clβ0X (X \ Z(f)) ⊆ X . By Corollary 1.4, there exists some Z ′ ∈ Zc[β0X ] such
that Z(f) = Z ′ ∩X . Therefore X ∩ (β0X \Z ′) = X \Z(f). Since X is dense and
β0X \ Z ′ is open in β0X , clβ0X (β0X \ Z ′) ⊆ X . Thus

β0X \ X ⊆ β0X \ clβ0X (β0X \ Z ′) = intβ0XZ ′.

Hence by Proposition 2.3, for all p ∈ β0X \X , Z ′ ∩X ∈ Zc[O
p
c ] and therefore f ∈

O
β0X\X
c . For the reverse inclusion, suppose that f ∈ O

β0X\X
c . Then β0X \ X ⊆

intβoXclβ0XZ(f). By Proposition 2.3, there exists some Z ′ ∈ Zc[β0X ] such that
Z ′ ∩X = Z(f) and β0X \X ⊆ intβ0XZ ′. This implies that β0X \ intβ0XZ ′ ⊆ X .
Since

β0X \ intβ0XZ ′ = clβ0X(β0X \ Z ′) ⊆ X

and X \ Z(f) ⊆ β0X \ Z ′, clearly clX(X \ Z(f)) is compact and hence f ∈
CK
c (X). �

The following two results are important for the rest of this section. Recall that
a subset S ⊆ X is Cc-embedded in X if for each f ∈ Cc(S), there exists some
F ∈ Cc(X) such that F |X = f .

Proposition 2.5. If S ⊆ X is Cc-embedded in X , then it is separated by a

clopen partition from every Z ∈ Zc[X ] disjoint from it.

Proof: Suppose that h ∈ Cc(X) and S ∩ Z(h) = ∅. Define f(s) = 1
h(s) for all

s ∈ S. Let F ∈ Cc(X) be such that F |S = f . Put k = hF . Clearly k ∈ Cc(X)
and k|S = 1 and k|Z(h) = 0. It is enough to choose some 0 < r < 1 such that

r /∈ k(X). Then U = k−1 ((−∞, r)) is a clopen subset of X such that Z(h) ⊆ U
and S ⊆ X \ U . �

In the sequel, we investigate conditions under which non-trivial Cc-embedded
subsets exist. Note that C-embedded subsets have no benefits for our purpose.
Indeed, we know nothing about the cardinality of the image of the extension of a
function with countable image. The following lemma gives us a condition under
which a Cc- embedded subset exists in a zero-dimensional space.

Lemma 2.6. Let X be zero-dimensional and suppose f ∈ Cc(X) carries a sub-

set S ⊆ X homeomorphically to a closed subset f(S) ⊆ f(X). Then S is Cc-
embedded in X .

Proof: Suppose that f |S : S → f(S) is a homeomorphism. Therefore f−1 :
f(S) → S is continuous. Consider some g ∈ Cc(S). We observe that the
composite g ◦ f−1 belongs to Cc(f(S)). The set f(X) is countable and there-
fore normal. Hence g ◦ f−1 has an extension G to f(X). It is obvious that
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G ∈ Cc(f(X)). The composite G ◦ f belongs to Cc(X). For s ∈ S, we have
G ◦ f(s) = G(f(s)) = g ◦ f−1(f(s)) = g(s). Therefore G ◦ f is the extension of g
to X which has a countable image. �

The foregoing lemma leads us to the following corollary.

Corollary 2.7. Let X be a zero-dimensional space and E ⊆ X . Suppose the

function h ∈ Cc(X) is unbounded on E. Then E contains a closed copy of N,

which is Cc-embedded in X and h approaches infinity on E.

In what follows, we adapt the original approach of Mandelker in [11] and [12]
to functionally countable subalgebras for characterizing the subset consisting of
all functions in Cc(X) with pseudocompact support. We denote by Cψ

c (X), the
set of all functions in Cc(X) with pseudocompact support. Recall that a subset
S ⊆ X is relatively pseudocompact with respect to Cc(X), if for each f ∈ Cc(X),
the function f |S is bounded. We have the following equivalence for relatively
pseudocompact subsets with respect to Cc(X).

Proposition 2.8. Let X be a zero-dimensional space. A subset A ⊆ X is rela-

tively pseudocompact with respect to Cc(X) if and only if clβ0XA ⊆ υ0X .

Proof: For the necessity, suppose that clβ0XA ∩ (β0X \ υ0X) 6= ∅ and choose
some p ∈ clβ0XA ∩ (β0X \ υ0X). There exists a sequence {Vn : n ∈ N} of clopen
neighborhoods of p in β0X such that υ0X ∩ (

⋂∞
n=1 Vn) = ∅. By part (a) of

Lemma 1.3, there exists some F ∈ Cc(β0X) such that Z(F ) =
⋂∞
n=1 Vn. Put

f = F |X and define h = 1
f
. Clearly h ∈ Cc(X) and since p is a limit point of

A in β0X , h is unbounded on A, which is a contradiction. For the sufficiency,
consider f ∈ Cc(X). The extension fυ0 ∈ Cc(υ0X) is bounded on the compact
subset clβ0XA. Therefore f is bounded on A. �

For continuing our investigation, we need a proposition which is due to Pierce.
The reader can find it in [19, Lemma 1.9.3].

Proposition 2.9. A zero-dimensional space X is not pseudocompact if and only

if there exists a continuous and onto map f : X → N.

Theorem 2.10. If f ∈ Cc(X) and X \ Z(f) is relatively pseudocompact with

respect to Cc(X), then X \ Z(f) is pseudocompact.

Proof: Suppose on the contrary that S = clX(X \Z(f)) is not pseudocompact.
By Proposition 2.9, there exists some h ∈ Cc(S) with h ≥ 1 that is unbounded on
X \Z(f). By Corollary 2.7, there exists a countable discrete subset D ⊆ X \Z(f)
such that D is Cc-embedded in S and h is unbounded on D. Proposition 2.5
implies that there exists a clopen set O ⊆ S such that D ⊆ O and Z(f)∩S ⊆ S\O.
Define the function k as follows,

k(x) =

{ 1
h(s) ∨ χ

S\O
(s), s ∈ S

1, s ∈ clX (X \ S) .
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Since clX (X \ S) = clX intXZ(f), the function k is well-defined. For, if

x ∈ S ∩ clX (X \ S) ,

then x ∈ Z(f) ∩ S and hence χ
S\O

(x) = 1. Therefore 1
h(x) ∨ χ

S\O
(x) = 1. The

pasting lemma implies that k is continuous on X . Clearly k ∈ Cc(X) and k > 0.
Hence 1

k
is unbounded on D. Thus S is not relatively pseudocompact with respect

to Cc(X), a contradiction. �

Theorem 2.11. Let X be a zero-dimensional space and f ∈ Cc(X). If β0X \
υ0X ⊆ clβ0XZ(f), then β0X \ υ0X ⊆ intβ0Xclβ0XZ(f).

Proof: Suppose that p ∈ β0X \ υ0X . There exists a sequence {Vn : n ∈ N} of
clopen neighborhoods of p in β0X such that υ0X ∩ (

⋂∞
n=1 Vn) = ∅. By part (a) of

Lemma 1.3, there exists some h ∈ Cc(β0X) such that Z(h) =
⋂∞
n=1 Vn. Put T =

β0X \ Z(h). Consider the function 1
h

on T . If Z(h) meets clβ0X(X \ Z(f)), then
1
h

which is continuous on T is unbounded on X \ Z(f). Hence by Corollary 2.7,
there exists a countable closed set S ⊆ X \ Z(f) which is Cc-embedded in T .
Thus S is Cc-embedded in X and by Proposition 2.5, there exists a clopen set
O ⊆ X such that S ⊆ O and Z(f) ⊆ X \ O. Therefore clβ0XS ∩ clβ0XZ(f) = ∅.
Since S is closed in T and also is noncompact, there exists some p ∈ clβ0XS \ T .
This implies that p ∈ Z(h) and p /∈ clβ0XZ(f) which is a contradiction. Hence
Z(h) ∩ clβ0X(X \ Z(f)) = ∅ and so

Z(h) ⊆ β0X \ clβ0X(X \ Z(f)) ⊆ clβ0XZ(f).

Therefore clβ0XZ(f) is a neighborhood of p. �

Now we are ready to characterize the set Cψ
c (X) as an ideal of Cc(X).

Theorem 2.12. Let X be a zero-dimensional space. Then

Cψ
c (X) = Mβ0X\υ0X

c = Oβ0X\υ0X
c .

Proof: By Theorem 2.11, the second equality is clear. Assume that f ∈ Cψ
c (X).

Since S(f) = X \Z(f) is pseudocompact and (υ0X \ Z(fυ0))∩X = X \Z(f), the
subset υ0X \ Z(fυ0) is also pseudocompact. Note that S(fυ0) = υ0X \Z(fυ0) is
a cozero-set of the real compact space υ0X , and hence it is realcompact, see [6,
Corollary 8.14]. Therefore S(fυ0) must be compact. We observe that

β0X = clβ0XZ(f) ∪ clβ0XS(f) = clβ0XZ(f) ∪ S(fυ0),

and hence we have β0X \ υ0X ⊆ clβ0XZ(f). Thus f ∈ M
β0X\υ0X
c . Now if

f ∈ O
β0X\υ0X
c , there exists a compact set K such that

β0X \ υ0X ⊆ β0X \ K ⊆ clβ0XZ(f),

and hence

X \ Z(f) ⊆ β0X \ clβ0XZ(f) ⊆ K ⊆ υ0X.
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Since X \ Z(f) is relatively pseudocompact with respect to Cc(X), by Theo-
rem 2.10, the set X \ Z(f) is pseudocompact. �

For an N-compact space, Theorems 2.4 and 2.12 imply the following corollary
which says that in an N-compact space, CK

c (X) is equal to the intersection of all
free maximal ideals in Cc(X).

Corollary 2.13. If X is an N-compact space, then CK
c (X) = M

β0X\X
c .

3. Remainder of the Banaschewski compactification via Cc(X)

In this section, first we want to find the least cardinality of the remainder β0X\
υ0X . In other words, we show that for a zero-dimensional non-pseudocompact

space X , we have at least 22ℵ0
clopen ultrafilters on X which do not have the

countable intersection property. In the rest of this section we observe that the
remainder of the Banaschewski compactification of an N-compact space is an
almost P -space, and a connection between the remainder and Parovičenko spaces
is given. Finally, for a zero-dimensional, locally compact space X which is not
pseudocompact, we give a lower bound for the cellularity of the subspaces β0X \
υ0X and β0X \ X of β0X . The following two lemmas are needed in the sequel.
The second one is a consequence of Proposition 2.9.

Lemma 3.1. Each Cc-embedded subset S of X is two-embedded.

Proof: Let f : S → {0, 1} be a continuous two-valued function, then f ∈ Cc(X).
Therefore there exists some G ∈ Cc(X) such that G|S = f . The image of G is
countable and there exists a real number 0 < r < 1 such that r /∈ G(X). The
subset U = G−1 ((∞, r)) is clopen in X and f−1(0) ⊆ U and f−1(1) ⊆ X \ U .
Define F : X → {0, 1} to be 0 on U and 1 on X \U . The function F is continuous
and two-valued, and its restriction to S is f . �

Lemma 3.2. Let X be a zero-dimensional space. Then X is pseudocompact if

and only if β0X = υ0X .

Proof: For the necessity, suppose that X is pseudocompact. If β0X \ υ0X 6= ∅,
for any p ∈ β0X \ υ0X , there exists a countable set consisting of clopen neigh-
borhoods of p, say {Un : n ∈ N}, in β0X with υ0X ∩ (

⋂∞
n=1 Un) = ∅. By part (a)

of Lemma 1.3, there exists a function f ∈ Cc(β0X) such that Z(f) =
⋂∞
n=1 Un.

If we restrict f to X , then for the function g = f |X ∈ Cc(X), we have Z(g) = ∅.
Hence g is a unit of Cc(X). The function 1

g
belongs to Cc(X) and clearly g is

unbounded on X , which is a contradiction.
For the sufficiency, assume that β0X = υ0X . If X is not pseudocompact, then

by Proposition 2.9, there exists a continuous and onto map f : X → N. The
function f has countable image and therefore has an extension to υ0X . But υ0X
is compact and the extension of f is unbounded which is a contradiction. This
completes the proof. �
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Now we are ready to present one of our main theorems in this section. This
result is notable whenever we deal with zero-dimensional spaces which are not
strongly zero-dimensional.

Theorem 3.3. For a zero-dimensional space X , let f ∈ Cc(β0X) and Z(f)∩X =
∅. Then Z(f) contains a copy of βN, the Stone-Čech compactification of N, and

therefore its cardinality is at least 22ℵ0
.

Proof: Denote the restriction of f to X by g. So Z(g) = ∅ and g belongs to
Cc(X). This function has an inverse in Cc(X), say 1

g
. Obviously 1

g
is unbounded

on X . Hence by Corollary 2.7, there exists a Cc-embedded copy of N in X
on which the function 1

g
tends to infinity. Since N is Cc-embedded in X , by

Lemma 3.1, it is also two-embedded in X and therefore two-embedded in β0X .
Thus every continuous two-valued function on N is two-embedded in clβ0XN. By
the uniqueness theorem in the existence of the Banaschewski compactification,
clβ0XN and β0N are homeomorphic, and also we have clβ0XN \ N ⊆ Z(f). The
discrete space N is strongly zero-dimensional and hence β0N = clβ0XN = βN. The

cardinality of βN is equal to 22ℵ0
and therefore |Z(f)| ≥ 22ℵ0

. �

Since each Gδ-point is a zero-set, Lemma 1.3 and Theorem 3.3 imply the fol-
lowing corollary.

Corollary 3.4. For a zero-dimensional space X , no point p ∈ β0X \ X is a

Gδ-point of β0X .

In the next result, by applying Theorem 3.3, we give the least cardinality of
the remainder β0X \ υ0X , whenever X is a non-pseudocompact zero-dimensional
space.

Proposition 3.5. Let X be a non-pseudocompact zero-dimensional space. The

remainder β0X \ υ0X has at least 22ℵ0
points.

Proof: Since X is zero-dimensional and non-pseudocompact, by Proposition 2.9,
there exists a continuous and onto function f : υ0X → N. Therefore the function
g = 1

f
is continuous whose image equals to the set { 1

n
: n ∈ N}. Note that

the set { 1
n

: n ∈ N} ∪ {0} is zero-dimensional and compact. Hence by [20, 4.7,

Proposition (d)], g has a continuous extension G : β0X → { 1
n

: n ∈ N} ∪ {0}.

For each n ∈ N, choose some xn such that g(xn) = 1
f(xn) = 1

n
. Each g−1( 1

n
) is

clopen in υ0X and hence the cluster points of the set {xn : n ∈ N} is contained in
β0X\υ0X . If we consider a cluster point p of the set {xn : n ∈ N}, then we observe
that G(p) = 0. Therefore G ∈ Cc(β0X) and Z(G) 6= ∅. Since Z(G) ∩ υ0X = ∅,

Theorem 3.3 implies that |Z(G)| ≥ 22ℵ0
. Thus the cardinality of β0X \ υ0X is at

least 22ℵ0
. �

We recall that the character of the space X at a point p, denoted χ(p, X) or
χ(p), is the least cardinal equal to the cardinal number of a (filter) base for the
neighborhoods of p. By Proposition 3.5, for a zero-dimensional non pseudocom-
pact space X , we have the following corollary.
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Corollary 3.6. Let X be a zero-dimensional and non pseudocompact space.

Then

(a) if p ∈ β0X \ υ0X , then {p} is not a zero-set of β0X \ υ0X ;

(b) β0X \ υ0X has no isolated point;

(a) the character of β0X \ υ0X at each of its points is uncountable.

Proof: (a) If p is a zero-set of β0X \ υ0X , there exists a sequence {Un : n ∈ N}
of clopen neighborhoods of p in β0X such that {p} = (β0X \ υ0X) ∩ (

⋂∞
n=1 Un).

Also there exists a sequence {Vn : n ∈ N} of clopen neighborhoods of p in β0X
such that υ0X ∩ (

⋂∞
n=1 Vn) = ∅. Hence {p} = (

⋂∞
n=1 Un) ∩ (

⋂∞
n=1 Vn). Part (a)

of Lemma 1.3 implies that there exists f ∈ Cc(β0X) such that {p} = Z(f). But
this contradicts Proposition 3.5.

(b) Since each isolated point is a zero-set, clearly part (a) implies part (b).
(c) If for some p the character at p is countable, then p is a Gδ-point and hence

a zero-set of β0X \ υ0X , which contradicts part (a). �

We recall that a topological space is scattered if each of its nonempty subsets
has an isolated point with the relative topology. Lemma 3.2 together with part (b)
of Corollary 3.6 imply the following corollary.

Corollary 3.7. For a zero-dimensional space X , if β0X is scattered then X is

pseudocompact.

In the following, we observe some results about connections between the Ba-
naschewski compactification and almost P -spaces. We recall that a topological
space X is an almost P -space if each nonempty Gδ-subset of X has a nonempty
interior, see [10] and [21].

Proposition 3.8. β0X is an almost P -space if and only if X is a pseudocompact

almost P -space.

Proof: For the necessity, suppose that β0X is an almost P -space. If X is not
pseudocompact, then for each p ∈ β0X \ υ0X , there exists a countable collection
of clopen subsets of X , say {Un : n ∈ N}, such that

⋂∞
n=1 Un = ∅ and for each

n ∈ N, p ∈ clβ0XUn. Note that for each n ∈ N, clβ0XUn is a clopen subset of β0X .
Hence G =

⋂∞
n=1 clβ0XUn is a Gδ-subset in β0X . By our hypothesis, intβ0XG 6= ∅.

Therefore G intersects X . But G ∩ X =
⋂∞
n=1 Un = ∅, which is a contradiction

and therefore X is pseudocompact. Since X is dense in β0X , by Proposition 2.1
in [10], X is an almost P -space.

For the sufficiency, suppose that X is a pseudocompact almost P -space. Let
H be a nonempty Gδ-subset of β0X . There exist a sequence {Vn : n ∈ N}
of clopen subsets of β0X and p ∈ H such that p ∈

⋂∞
n=1 Vn ⊆ H . For each

n ∈ N, Vn ∩ X is clopen in X and the collection Ω = {Vn ∩ X : n ∈ N} has
the finite intersection property. Inasmuch as β0X = υ0X , Ω is contained in a
clopen ultrafilter with the countable intersection property. Hence

⋂∞
n=1 (Vn ∩ X)

is nonempty and therefore a Gδ-subset of X . So there exists a neighborhood O
in β0X such that O ∩ X ⊆

⋂∞
n=1 (Vn ∩ X). By taking closure, we observe that

O ⊆
⋂∞
n=1 Vn. Hence H has a nonempty interior. �
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In the following theorem, we introduce a class of almost P -spaces in connection
with the Banaschewski compactification of locally compact and N-compact spaces.

Theorem 3.9. Let X be a locally compact and N-compact space. Then β0X \X
is an almost P -space.

Proof: Let G be a nonempty Gδ-set in β0X \ X and p ∈ G. There exists a
sequence of open sets in β0X , say {Vn : n ∈ N}, such that G = (β0X \ X) ∩
(
⋂∞
n=1 Vn). Also there exists a sequence of clopen sets {Un : n ∈ N} of X such

that
⋂∞
n=1 Un = ∅ and p ∈

⋂∞
n=1 clβ0XUn. Note that the Gδ-set

⋂∞
n=1 clβ0XUn is

a subset of β0X \ X . Obviously H = (
⋂∞
n=1 clβ0XUn) ∩ (

⋂∞
n=1 Vn) is a Gδ-subset

of β0X and p ∈ H ⊆ β0X \X . There exists a sequence of clopen subsets of β0X ,
say {On : n ∈ N}, such that p ∈

⋂∞
n=1 On ⊆ H . By part (a) of Lemma 1.3,

there exists some F ∈ Cc(β0X) such that Z(F ) =
⋂∞
n=1 On. Since X is locally

compact, for each i ∈ N, there exists an open set Wi ⊆ X such that clXWi is
compact and for each x ∈ Wi, F (x) ≤ 1

i
. It is enough to show that the set

(β0X \ X)∩clβ0X

(
⋃

i∈N
Wi

)

is a subset of Z(F ). Consider some t ∈ (β0X \ X)∩

clβ0X

(
⋃

i∈N
Wi

)

. Each neighborhood P of t in β0X intersects infinitely many
Wi’s. To see this, assume that for a neighborhood P of t, there exists some n ∈ N

such that P ∩ Wm = ∅, for all m > n. This implies that t ∈ clβ0X (
⋃n

i=1 Wi).
Each Wi has a compact closure in X , and hence clβ0X (

⋃n

i=1 Wi) is a compact
subset of X which implies that t ∈ X . This contradicts the choice of t. Since
each neighborhood P of t in β0X intersects infinitely many Wi’s, the function F
vanishes in t. Hence

T = (β0X \ X) ∩ clβ0X

(

⋃

i∈N

Wi

)

⊆ Z(F ).

It is easy to see that T is nonempty, open in β0X \ X and T ⊆ G, which shows
that G has a nonempty interior. This completes the proof. �

Using Corollary 3.6 together with Theorem 3.9, we can find a class of spaces
whose importance is in Boolean algebras; see for example [4]. We recall that
a compact zero-dimensional space X is called a Parovičenko space if it has the
following properties:

(a) X has no isolated points;
(b) nonempty Gδ-sets have nonempty interiors;
(c) X is an F -space (i.e., for each f ∈ C(X), the subsets pos(f) and neg(f)

are completely separated).

The reader should be warned that some authors include the condition that the
weight of the space X is 2ℵ0 . We apply the definition which has no restriction on
the weight of the space, see e.g., [4].

The following proposition gives us a large class of Parovičenko spaces in the
Banaschewski compactification of a non pseudocompact zero-dimensional space.
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Proposition 3.10. Let Z be a zero-set of β0X such that Z ∩ X = ∅. Then Z is

a Parovičenko space.

Proof: Evidently Z is compact and zero-dimensional. Since Z is a Gδ-subset
of β0X , W = β0X \ Z is σ-compact and therefore strongly zero-dimensional, see
[6, 16.17]. Thus β0W = βW . The space W is Lindelöf and hence is N-compact.
We observe that Z = β0W \ W = βW \ W . So by Theorem 3.9, Z must be an
almost P -space. Also since W is locally compact and σ-compact, by Theorem
14.27 of [6], Z is an F -space. Part (b) of Corollary 3.6, implies that Z contains
no isolated point. Hence Z must be a Parovičenko space. �

Let X be a zero-dimensional, locally compact space which is not pseudocom-
pact. We close this section by giving a lower bound for the cellularity of the
subspaces β0X \ υ0X and β0X \ X of β0X . We recall that the cellularity of a
space Y , denoted by c(Y ), is the smallest cardinal number κ for which each pair-
wise disjoint family of nonempty open sets of Y has κ or fewer members. Also the
reader is reminded that for a zero-dimensional space X and a cardinal number
κ, a partition of X of cardinality κ is a family {Ui : i ∈ I} of pairwise disjoint
clopen subsets of X whose union is X and |I| = κ. Note that by Proposition
2.9, every zero-dimensional space which is not pseudocompact, has a partition of
cardinality ℵ0. The following theorem which is due to Tarski, is needed for our
purpose, see [8].

Theorem 3.11 (Tarski). Let E be an infinite set. Then there is a collection ℜ of

subsets of E such that |ℜ| = |E|ℵ0 , |R| = ℵ0 for each R ∈ ℜ and the intersection

of any two distinct members of ℜ is finite.

Theorem 3.12. Let X be a zero-dimensional and locally compact space which

is not pseudocompact. If X has a partition of cardinality κ, then the cellularity

of each of the subspaces β0X \ υ0X and β0X \ X of β0X are at least κℵ0 .

Proof: We just prove that the cellularity of β0X \ υ0X is at least κℵ0 . The
second assertion can be derived similarly. Let {Ui : i ∈ I} be a partition of X
with |I| = κ. For each i ∈ I, choose a nonempty clopen and compact subset
Wi ⊆ Ui. Note that {clυ0XUi : i ∈ I} is a partition of cardinality κ for υ0X and
for each i ∈ I, clυ0XWi = Wi is clopen in υ0X . For each subset J ⊆ I, define

A(J) = (β0X \ υ0X) ∩ clβ0X

(

⋃

i∈J

Wi

)

.

Since for each J ⊆ I, {Wi : i ∈ J} is a locally finite family of clopen subsets of υ0X ,
then

⋃

i∈J Wi is clopen in υ0X (see [2, Theorem 1.1.11]) and hence clβ0X(
⋃

i∈J Wi)
is clopen in β0X . This implies that for each subset J ⊆ I, A(J) is clopen in
β0X \ υ0X . It is clear that for each two subsets J1 and J2 of I, A(J1) ∩ A(J2) =
A(J1 ∩ J2). For a subset J ⊆ I, we claim that A(J) = ∅ if and only if J is finite.
For, if J ⊆ I is finite, then clβ0X(

⋃

i∈J Wi) =
⋃

i∈J Wi and hence A(J) = ∅. For
the converse, if J ⊆ I is infinite, then for each j ∈ J , choose some xj ∈ Wj .
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Clearly the subset B = {xj : j ∈ J} is a closed and discrete subset of υ0X . Since
β0X is compact, the subset B has a cluster point p in β0X \ υ0X . This implies
that A(J) 6= ∅.

Now apply Theorem 3.12 to find a collection Υ of κℵ0 infinite subsets of I such
that any two members of Υ have finite intersection. Define T = {A(J) : J ∈ Υ}.
Evidently T contains κℵ0 pairwise disjoint clopen subsets of β0X \ υ0X . This
implies that c(β0X \ υ0X) ≥ κℵ0 . �

By applying Proposition 2.9 and Theorem 3.12, the following corollary is im-
mediate.

Corollary 3.13. Let X be a zero-dimensional, locally compact space which is

not pseudocompact. Then the cellularity of each of the subspaces β0X \ υ0X and

β0X \ X of β0X are at least 2ℵ0 .
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