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RANDOM WALK CENTRALITY AND A PARTITION

OF KEMENY’S CONSTANT

Steve Kirkland, Winnipeg

(Received November 13, 2015)

This paper is warmly dedicated to the memory of Miroslav Fiedler,

whose mathematical legacy continues to inspire.

Abstract. We consider an accessibility index for the states of a discrete-time, ergodic,
homogeneous Markov chain on a finite state space; this index is naturally associated with
the random walk centrality introduced by Noh and Reiger (2004) for a random walk on
a connected graph. We observe that the vector of accessibility indices provides a partition
of Kemeny’s constant for the Markov chain. We provide three characterizations of this
accessibility index: one in terms of the first return time to the state in question, and two
in terms of the transition matrix associated with the Markov chain. Several bounds are
provided on the accessibility index in terms of the eigenvalues of the transition matrix
and the stationary vector, and the bounds are shown to be tight. The behaviour of the
accessibility index under perturbation of the transition matrix is investigated, and examples
exhibiting some counter-intuitive behaviour are presented. Finally, we characterize the
situation in which the accessibility indices for all states coincide.
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1. Introduction and preliminaries

An n× n matrix is stochastic if it is entrywise nonnegative and in addition each

of its row sums is 1. Stochastic matrices are at the centre of the analysis of Markov

chains, and both are well-studied. One of the simplest examples of a Markov chain is

that of a random walk on a connected undirected graph G: the states of the Markov

chain are the vertices of G, and from state i, corresponding to a vertex of degree di

The research presented in this paper was supported in part by NSERC.
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say, transitions are only possible to the neighbours of i in the graph, each with

probability 1/di. Denote the adjacency matrix of G by A, and set D = diag(A1),

where 1 is the all-ones vector of the appropriate order, and for a vector x ∈ R
n,

diag(x) is the diagonal matrix all of whose diagonal entries are the corresponding

entries of x. Observe that for each i = 1, . . . , n, di,i is the degree of vertex i. It

follows that the transition matrix for the random walk on G is given by D−1A. In

this paper we assume familiarity with both stochastic matrices and Markov chains;

we refer the interested reader to [9] for necessary background. We also make use of

basic concepts and notation in graph theory, and we direct the reader to [2] for that

material.

In [8], the authors consider a random walk on a connected undirected graph,

say with n × n transition matrix T . Denoting the stationary vector for T by

w⊤, [8] introduces two quantities: the characteristic relaxation time of vertex k,

τk ≡
∞∑
j=0

((T j)k,k − wk), and the random walk centrality of vertex k, Ck ≡ wk/τk.

Observe that the series for τk converges only if T is primitive. While there is a good

deal of empirical work on random walk centrality (indeed [8] has been cited hun-

dreds of times) there is a paucity of literature analysing random walk centrality from

a rigorous mathematical perspective. Our goal in this paper is to investigate a quan-

tity that is closely related to the random walk centrality, and place it in the larger

context of a time-homogeneous Markov chain on a finite state space whose transi-

tion matrix is irreducible (that is, the directed graph associated with the transition

matrix is strongly connected). In particular, several connections with the existing

mathematical literature will be made that may inform further research on random

walk centrality.

Suppose for concreteness that T is an irreducible stochastic matrix of order n with

stationary vector w⊤ and mean first passage matrix M . We define the nonnegative

vector α ∈ R
n via the equation

(1) α⊤ = w⊤M − 1
⊤

(throughout we suppress the explicit dependence of α on T ). For each k = 1, . . . , n

the kth entry αk is the accessibility index of state k in the Markov chain corre-

sponding to T . The accessibility index αk admits a natural interpretation: since

αk =
∑
j 6=k

wjmj,k, we see that αk is the expected time, starting from stationarity,

that the Markov chain is first in state k (here we take the convention that if state k

is the initial state, then the Markov chain is first in state k at time 0). Note further

that since Mw = (K + 1)1, where K is Kemeny’s constant for the Markov chain

(see [6]), we have α⊤w = w⊤Mw−1
⊤w = Kw⊤

1 = K. Consequently, we may think
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of the vector α as a partition of Kemeny’s constant K, since the weighted average

of α (with weights given by the stationary vector w) yields K.

Our first result gives three characterizations of the accessibility index.

Theorem 1.1. Let T be an irreducible stochastic matrix of order n with station-

ary vector w⊤, and denote I − T by Q. Then for each k = 1, . . . , n, we have the

following:

(a) αk = q#k,k/wk, where Q
# denotes the group generalized inverse of Q;

(b) αk = r⊤k (I − T(k))
−2

1/(1 + r⊤k (I − T(k))
−1

1), where T(k) is the matrix formed

from T by deleting its kth row and column, and r⊤k is the vector formed from

e⊤k T by deleting its kth entry;

(c) αk = 1
2E(R2

k)/E(Rk) −
1
2 , where Rk is the mean first return time to state k,

and E(·) denotes the expected value.

P r o o f. (a) Let M be the mean first passage matrix for T , and let Q#
dg =

diag([q#1,1 . . . q#n,n]). Then from Theorem 8.4.1 of [1] we find that M = (I −Q# +

JQ#
dg)W

−1, where J is the all-ones matrix of the appropriate order, and W =

diag(w). Hence α⊤ = w⊤M−1
⊤ = w⊤(I−Q#+JQ#

dg)W
−1−1

⊤. Since w⊤Q# = 0⊤,

we find that α⊤ = 1
⊤Q#

dgW
−1. The conclusion now follows readily.

(b) From Proposition 2.5.1 of [4] we find that

q#k,k =
r⊤k (I − T(k))

−2
1

(1 + r⊤k (I − T(k))−11)2
,

while from [3] we have wk = 1/(1 + r⊤k (I − T(k))
−1

1), and the desired formula fol-

lows.

(c) It is well-known that wk = 1/E(Rk), from which we deduce that E(Rk) =

1+ r⊤k (I−T(k))
−1

1. Next we observe that (I−T(k))
−2 =

∞∑
m=0

(m+1)(T(k))
m, so that

r⊤k (I − T(k))
−2

1 =
∞∑

m=0
(m + 1)r⊤k (T(k))

m
1. It is straightforward to determine that

for each m > 0, r⊤k (T(k))
m
1 = Pr{Rk > m+2}, where Pr{·} denotes the probability

of an event. Consequently, we find that

r⊤k (I − T(k))
−2

1 =

∞∑

m=0

(m+ 1)Pr{Rk > m+ 2} =

∞∑

m=0

(m+ 1)

∞∑

l=k+2

Pr{Rk = l}

=

∞∑

l=2

l(l− 1)

2
Pr{Rk = l} =

1

2
E(R2

k −Rk).

Hence we find from (b) that αk = 1
2E(R2

k −Rk)/E(Rk) =
1
2E(R2

k)/E(Rk) −
1
2 , as

desired. �
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Corollary 1.1. Maintaining the notation of Theorem 1.1, when T is primitive,

we have that for each k = 1, . . . , n, αk = 1/Ck.

P r o o f. From Theorem 8.3.1 of [1], we have Q# =
∞∑
j=0

(T j − 1w⊤), from which

we readily deduce that q#k,k = τk, k = 1, . . . , n. The conclusion now follows from

Theorem 1.1 a). �

From Corollary 1.1 it is evident that any results proven about the accessibility

index can be readily interpreted in terms of the random walk centrality. In the

remainder of the paper we frame our results in terms of the αks, as they are somewhat

more convenient to work with than the Cks.

Remark 1.1. Suppose that T is an irreducible stochastic matrix of order n with

stationary vector w⊤ and accessibility vector α. Let w̃ denote the vector formed

from w by deleting its last entry. Referring to Observation 2.3.4 of [4], we find that

(I − T )# is given by

(w̃⊤(I − T(n))
−1

1)1w⊤

+

[
(I − T(n))

−1 − 1w̃⊤(I − T(n))
−1 − (I − T(n))

−1
1w̃⊤ −wn(I − T(n))

−1
1

−w̃⊤(I − T(n))
−1 0

]
.

Consequently we find that for each j = 1, . . . , n− 1,

(2) αj = αn +
(I − T(n))

−1
j,j − w̃⊤(I − T(n))

−1ej − wje
⊤
j (I − T(n))

−1
1

wj
.

We round out this section by considering the accessibility index for two families

of well-structured examples. For an undirected graph G we write i ∼ j to indicate

that vertices i and j are adjacent.

Example 1.1. Let T be a weighted tree on n vertices, and for each edge e

of T , let θ(e) denote the corresponding edge weight. Let A be the adjacency matrix

of the weighted tree T—i.e. for each i, j = 1, . . . , n, ai,j = 0 if i and j are not

adjacent, while if i is adjacent to j, then ai,j = θ(e), where e is the edge between

i and j. Let d = A1 denote the corresponding vector of row sums. Set D =

diag(d), and note that the transition matrix of the random walk on T is given

by T = D−1A, which has stationary vector (
∑

j dj)
−1d⊤. For each k = 1, . . . , n,

αk = (
∑

j dj)
−1d⊤(k)(I −D−1

(k)A(k))
−1

1 = (
∑

j dj)
−1d⊤(k)(D(k) −A(k))

−1d(k). (Here

d(k) denotes the vector formed from d by deleting its kth entry.)

For each edge e of T and each k = 1, . . . , n, let Sk(e) denote the set of ver-

tices in the connected component of T \ e that does not include vertex k, and let

760



σk(e) be its indicator vector. It is straightforward to show that (D(k) − A(k))
−1 =∑

e∈T

θ(e)−1σk(e)σk(e)
⊤. Consequently, we find that for each k = 1, . . . , n,

αk =

∑
e∈T θ(e)−1(d⊤(k)σk(e))

2

∑
j dj

=

∑
e∈T θ(e)−1

(∑
j∈Sk(e)

dj
)2

∑
j dj

.

Suppose now that vertices k and l are adjacent in T , and let ê denote the edge

between them. For any edge e 6= ê in T , we have Sk(e) = Sl(e), from which it follows

that

αk − αl =

(( ∑

j∈Sk(ê)

dj

)2
−

( ∑

j∈Sl(ê)

dj

)2)/(
θ(ê)

∑

j

dj

)
.

Since
∑
j

dj =
∑

j∈Sk(ê)

dj +
∑

j∈Sl(ê)

dj , it now follows that

αk − αl =
1

θ(ê)
∑

j dj

(∑

j

dj

)(
2

∑

j∈Sk(ê)

dj −
∑

j

dj

)
.

In particular we find that αk < αl if and only if
∑

j∈Sk(ê)

dj <
∑
j

dj/2.

We claim that either there is a unique vertex k such that αk = minαj , or there

are two such vertices k1, k2 and they are necessarily adjacent in T . To see the claim,

suppose to the contrary that there are two vertices, k0, kd such that αk0
= αkd

=

minαj , where k0 ∼ k1 ∼ . . . ∼ kd is the path from k0 to kd, and where d > 2.

For each j = 1, . . . , d − 1, let Sj denote the component of T \ {kj−1 ∼ kj , kj ∼

kj+1} containing vertex kj . Similarly, let S0 denote the component of T \ {k0 ∼ k1}

containing vertex k0 and Sd the component of T \{kd−1 ∼ kd} containing vertex kd.

Since αk0
6 αk1

, we find from the above that

2

d∑

j=1

∑

l∈Sj

dl 6

d∑

j=0

∑

l∈Sj

dl,

so that
d∑

j=1

∑
l∈Sj

dl 6
∑
l∈S0

dl. Since αkd
6 αkd−1

, we find similarly that
d−1∑
j=0

∑
l∈Sj

dl 6

∑
l∈Sd

dl. Summing these two inequalities now yields

∑

l∈S0

dl + 2

d−1∑

j=1

∑

l∈Sj

dl +
∑

l∈Sd

dl 6
∑

l∈S0

dl +
∑

l∈Sd

dl,

which is impossible. We thus conclude that either there is a unique vertex minimiz-

ing αj , or there are just two such vertices, which are necessarily adjacent.
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Finally we claim that maxαj is attained only at a pendent vertex of T . To see

the claim, suppose to the contrary that for vertex m of degree k > 2 we have αm =

maxαj , and denote the edges incident with m by e1, . . . , ek. Considering the edges

incident with m, we find that for j = 1, . . . , k, 2
∑

l∈Sm(ej)

dl >
k∑

p=1

∑
l∈Sm(ep)

dl + dm.

Summing these inequalities and recalling that dm = k, we have 2
k∑

p=1

∑
l∈Sm(ep)

dl >

k
k∑

p=1

∑
l∈Sm(ep)

dl + k2, a contradiction since k > 2. Consequently, αj is maximized at

a pendent vertex, as claimed.

For a strongly connected directed graph H, we can define a random walk on H

analogously to the undirected case. Again the transition matrix of such a random

walk is given by D−1A, where A is the adjacency matrix of H and D = diag(A1).

Next we consider an example of a random walk on a particular family of tournaments.

Example 1.2. Suppose that n > 3, and consider the tournament on n vertices

whose adjacency matrix is given by

A =




0 0 0 . . . 0 1

1 0 0 . . . 0 0

1 1 0 . . . 0 0
...
...
. . .

. . .
...
...

1 1 . . . 1 0 0

0 1 . . . 1 1 0




.

We now form the transition matrix T for the simple random walk on this tournament,

i.e.,

T =




0 0 0 . . . 0 1

1 0 0 . . . 0 0
1
2

1
2 0 . . . 0 0

...
...

. . .
. . .

...
...

1
n−2

1
n−2 . . . 1

n−2 0 0

0 1
n−2 . . . 1

n−2
1

n−2 0




.

It is straightforward to verify that stationary vector for T is given by

w⊤ =
1

(n− 1)
∑n−2

j=1 1/j + n− 2

[
n− 2

n− 1

2

n− 1

3
. . .

n− 1

n− 2

n− 1

n− 1
n− 2

]
.

In particular, the maximum entries are w(1) and w(n), while the entries w(2),

w(3), . . . , w(n − 1) are decreasing, with the pattern w(j) = constant/j. Our goal

is to compute α for this example.
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A computation reveals that

(I − T(n))
−1 =




1 0 0 . . . 0 0

1 1 0 . . . 0 0

1 1
2 1 0 . . . 0 0

1 1
2

1
3 1 0 . . . 0

...
...
...
. . .

. . .
. . .

...

1 1
2

1
3 . . . 1

n−3 1 0

1 1
2

1
3 . . . 1

n−3
1

n−2 1




.

We deduce that

e⊤1 (I − T(n))
−1

1 = 1, e⊤j (I − T(n))
−1

1 = 1 +

j−1∑

l=1

1

l
,

for j = 2, . . . , n−1. Letting w̃ be the vector formed from w by deleting its last entry,

we find similarly that w̃⊤(I − T(n))
−1e1 = 1 − wn = 1 − (n− 2)/((n − 1)

n−2∑
j=1

1/j

+ n− 2) and

w̃⊤(I −T(n))
−1ej = wj

(
1+

n−1∑

l=j+1

1

l

)
=

n− 1

j((n− 1)
∑n−2

j=1 1/j + n− 2)

(
1+

n−1∑

l=j+1

1

l

)
,

for j = 2, . . . , n− 1.

It now follows that αn = w̃⊤(I − T(n))
−1

1 = 2 − 3w1 +
n−1∑
l=3

(w2 + . . .+ wl−1)/l.

Referring to (2), we see that for each j = 1, . . . , n− 1,

αj = αn +
(I − T(n))

−1
j,j − w̃⊤(I − T(n))

−1ej − wje
⊤
j (I − T(n))

−1
1

wj
.

Substituting j = 1 yields α1 = αn + (1− (1− wn)− w1)/w1 = αn.

For j = 2, . . . , n− 1, note that

(I − T(n))
−1
j,j − w̃⊤(I − T(n))

−1ej − wje
⊤
j (I − T(n))

−1
1

= 1− wj

(
1 +

n−1∑

l=j+1

1

l

)
− wj

(
1 +

j−1∑

l=1

1

l

)
= 1− wj

(
2 +

n−1∑

l=1

1

l
−

1

j

)
.

Hence we have

(I − T(n))
−1
j,j − w̃⊤(I − T(n))

−1ej − wje
⊤
j (I − T(n))

−1
1

wj
=

(n− 2)j

n− 1
+ j

n−2∑

l=1

1

l
− 2−

n−1∑

l=1

1

l
+

1

j
= j

(
n− 2

n− 1
+

n−2∑

l=1

1

l

)
−

(
2 +

n−1∑

l=1

1

l

)
+

1

j
.
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It now follows that for j = 2, . . . , n− 1,

αj = αn + j

(
n− 2

n− 1
+

n−2∑

l=1

1

l

)
−

(
2 +

n−1∑

l=1

1

l

)
+

1

j
.

In particular, we find that for j = 2, . . . , n− 1, αj is an increasing function of j that

is close to being linear.

2. Bounds on the accessibility index

In the restricted setting of a random walk on a connected graph [8] considers

an expression for τk in terms of eigenvalues and eigenvectors associated with the

transition matrix T . Denoting the eigenvalues of T by 1 ≡ λ1, λ2, . . . , λn, and

setting γ = max{|λ2|, . . . , |λn|}, [8] states that

(3) τk ≈
akbk
|ln γ|

,

where a and b⊤ are right and left eigenvectors of T corresponding to the eigenvalue

associated with γ, normalized so that b⊤a = 1. (It seems that there may be an

implicit assumption that the eigenvalue associated with γ is a simple eigenvalue of

T here.)

Example 2.1. Let n ∈ N and consider the undirected graph G on n+3 vertices

formed fromK1,n+2 by adding a single edge. With a suitable labelling of the vertices,

the transition matrix for the random walk on G is given by

T =




0 1
2 0 . . . 0 1

2

1
2 0 0 . . . 0 1

2

0 0 0 . . . 0 1

...
...

...
. . .

...
...

0 0 0 . . . 0 1
1

n+2
1

n+2
1

n+21
⊤ 0




.

It turns out that the eigenvalues of T are given by 1,− 1
2 , 0 (with multiplicity n− 1)

and − 1
4 ± 1

2

√
1
4 + 2n/(n+ 2). Hence, in the notation above we have γ = |λ|, where

λ = − 1
4 − 1

2

√
1
4 + 2n/(n+ 2). We have the following right and left eigenvectors
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respectively, corresponding to λ and partitioned conformally with T :

x =




(1− 2λ)−1
1

−λ−1
1

−1


 , y⊤ =

[ 2

(n+ 2)(1− 2λ)
1
⊤ −

1

(n+ 2)λ
1
⊤ −1

]
.

A short computation shows that y⊤x = 1 + n/((n+ 2)λ2) + 4/((n+ 2)(1− 2λ)2),

and it now follows that for k = n+ 3, the right side of (3) is equal to

1

(1 + n/((n+ 2)λ2) + 4/((n+ 2)(1− 2λ)2))
∣∣∣ln

(
1
4 + 1

2

√
1
4 + 2n/(n+ 2)

)∣∣∣
.

On the other hand, using Proposition 2.5.1 of [4], we find that (n + 3, n+ 3) entry

of (I − T )#, which coincides with τn+3, is equal to (n+ 2)(n+ 8)/(2n+ 6)2.

Note that as n → ∞, 1
4 + 1

2

√
1
4 + 2n/(n+ 2) → 1, so that the right side of (3)

diverges to infinity. On the other hand, for n → ∞, (n+ 2)(n+ 8)/(2n+ 6)2 → 1
4 ,

so that the left side of (3) converges to 1
4 . Evidently the approximation provided by

(3) is not especially accurate for this family of examples.

Motivated by (3) and Example 2.1, in this section we provide several eigenvalue-

eigenvector-based bounds on αk, and hence on τk. We begin with the following

simple lower bound on the accessibility index.

Proposition 2.1. For each k = 1, . . . , n, αk > 1− wk; equality holds for state k

if and only if the directed graph of T is a directed star, possibly with a loop at the

centre vertex, with k as the centre vertex.

P r o o f. Without loss of generality, we take k = n. From (1) we have αn =

w̃⊤(I − T(n))
−1

1, where w̃ is obtained from w by deleting its last entry. Since

(I−T(n))
−1 > I, we find that αn > w̃⊤

1 = 1−wn, establishing the inequality. From

this argument we deduce that αn = 1−wn if and only if w̃
⊤T1 = 0, i.e. if and only

if T(n) = 0. Evidently T(n) = 0 if and only if the directed graph of T is a directed

star with centre at vertex n, possibly with a loop at vertex n. �

Remark 2.1. Let T be an irreducible stochastic matrix of order n, denote the

eigenvalues of T by 1 ≡ λ1, λ2, . . . , λn, and denote the stationary vector of T by w
⊤.

Meyer in [7] has shown that for Q = I − T, we have

(4) |q#j,j | <
n− 1

n∏
k=2

(1− λk)
, j = 1, . . . , n
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(the argument establishing this fact is embedded in the proof of that paper’s main

result, Theorem 2.1). From (4) we thus see that for any j = 1, . . . , n, αj <

(n− 1)/
(
wj

n∏
k=2

(1 − λk)
)
.

The following example shows that for diagonal entries of Q#, the upper bound

(n− 1)/
n∏

k=2

(1 − λk) cannot be improved.

Example 2.2. Suppose that 0 < t < 1, and that u ∈ R
n−1 is a nonnegative

nonzero vector such that u⊤
1 6 1. Consider the matrix T given by

T =




0 0 . . . 0 t 1− t

1 0 0 . . . 0 0

0 1 0 . . . 0 0

...
...
. . .

. . .
...

...

0 0 . . . 1 0 0

u⊤ 1− u⊤
1




,

and observe that T is irreducible.

Denoting the eigenvalues of T by 1 ≡ λ1, λ2, . . . , λn, it is shown in [4] (see for-

mula (5.38)) that

(5)

n∏

k=2

(1− λk) = 1− t+ (n− 1)

n−1∑

k=1

uk − (1− t)

n−2∑

k=1

(n− k − 1)uk.

Next, we set Q = I − T and consider q#n,n. It is straightforward to determine that

the inverse of the leading principal submatrix of order n− 1 of Q is given by




1 t t . . . t

1 1 t . . . t
...
...
. . .

. . .
...

1 1 . . . 1 t

1 1 . . . 1 1



.

An uninteresting computation now reveals that

(6) q#n,n =

n−1∑

i=1

ui

[ i(i+1)

2
+ t

(n(n− 1)

2
+ i(n− 2)− i2

)
+

t2(n− 2− i)(n− 1− i)

2

]

×

(
1− t+

n−1∑

i=1

ui[i+ t(n− i− 1)]

)−2

.
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From (6) and (5) we find that q#n,n
n∏

k=2

(1− λk)/(n− 1) is given by a(t)/b(t), where

a(t) =

(
1− t+ (n− 1)

n−1∑

k=1

uk − (1 − t)

n−2∑

k=1

(n− k − 1)uk

)

×

n−1∑

i=1

ui

[ i(i+ 1)

2
+ t

(n(n− 1)

2
+ i(n− 2)− i2

)
+

t2(n− 2− i)(n− 1− i)

2

]

and b(t) = (n − 1)
(
1 − t +

n−1∑
i=1

ui[i + t(n − i − 1)]
)2
. Referring to (7), we find that

as t → 1−, q#n,n
n∏

k=2

(1− λk)/(n− 1) → 1. In particular, we see that for the diagonal

entries of Q#, the upper bound of (4) is sharp.

The inequality (4) and Example 2.2 provides a bound on the accessibility index

for any irreducible stochastic matrix T ; next we turn our attention to the case that

T corresponds to a reversible Markov chain. Recall that for an irreducible stochastic

matrix T with stationary vector w, the corresponding Markov chain is said to be

reversible if W 1/2TW−1/2 is symmetric, where W = diag(w). The proof of the

following result is essentially given in [5]; we give a shortened argument here.

Theorem 2.1. Suppose that T is an irreducible transition matrix of order n

that is associated with a reversible Markov chain. Denote the eigenvalues of T by

1 ≡ λ1 > λ2 > λ3 > . . . > λn and let w be the stationary vector for T . For each

k = 1, . . . , n, we have

(7)
1− wk

wk(1− λn)
6 αk 6

1− wk

wk(1 − λ2)
.

In the case that λ2 = λn, equality holds throughout (7); this is equivalent to T

having the form t1w⊤ + (1− t)I for some 0 6 t 6 1/(1−min
j

wj).

Suppose now that λ2 > λn. Equality holds in the upper bound if and only if there

is a permutation matrix P with Pe1 = ek such that P
⊤TP has the form

(8)

[
1− α(1− wk)w

−1
k αwk

−1w⊤

α1 (1− α)S

]
,

where:

i) w is the vector formed from w by deleting its kth entry;

ii) 0 < α < 1;

iii) S is stochastic;
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iv) lettingW = diag(w), S is such thatW
1/2

SW
−1/2

is symmetric with eigenvalues

1 ≡ µ1 > µ2 > . . . > µn−1; and

v) 1− α/wk > (1− α)µ2.

Equality holds in the lower bound in (7) if and only if there is a stochastic matrix S

such that T can be permuted to the form (8) where:

vi) 0 < α 6 1;

vii) W is as in (i);

viii) W
1/2

SW
−1/2

is symmetric with eigenvalues 1 ≡ µ1 > µ2 > . . . > µn−1; and

ix) 1− α/wk 6 (1− α)µn−1.

P r o o f. Since T corresponds to a reversible Markov chain, the matrix A =

W 1/2TW−1/2 is symmetric, where W = diag(w). Further, v1 ≡ W 1/2
1 is the Perron

vector of A having the 2-norm equal to 1. Set Q = I − A. In order to prove the

theorem, it suffices to show that for each k = 1, . . . , n, (1 − wk)/(1− λn) 6 q#k,k 6

(1− wk)/(1− λ2), then characterize the equality cases.

Let v2, . . . , vn denote an orthonormal collection of eigenvectors corresponding to

λ2, . . . , λn, respectively. For any such k we have

q#k,k =

n∑

j=2

(e⊤k vj)
2

1− λj
6

1

1− λ2

n∑

j=2

(e⊤k vj)
2 =

1

1− λ2
(1− (e⊤k v1)

2) =
1− wk

1 − λ2
.

An analogous argument shows that (1− wk)/(1− λn) 6 q#k,k, k = 1, . . . , n. Evidently

if λ2 = λn, then equality must hold throughout (7), and this is readily seen to be

equivalent to the condition that for some 0 6 t 6 1/(1−min
j

wj), T = t1w⊤+(1−t)I.

Henceforth we assume that λ2 > λn, and without loss of generality, we take k = 1.

Suppose that (1− w1)/(1− λ2) = q#1,1. Examining the argument above, it must be

the case that for each j such that λ2 > λj , e
⊤
1 vj = 0. Further, by taking linear

combinations of the orthonormal basis of the λ2-eigenspace for A if necessary, we

can assume without loss of generality that in fact e⊤1 vj = 0 for j = 3, . . . , n. We

partition off the first row and columns of A, writing A as

A =

[
a u⊤

u M

]
.

For each j = 3, . . . , n, let zj be formed from vj by deleting the first entry. Evidently

Mzj = λjzj and u
⊤zj = 0, j = 3, . . . , n. It now follows that u must be an eigenvector

of M, say with Mu = (1−α)u for some 0 < α 6 1.Write M = (1−α)Y, and denote

the eigenvalues of Y by µ1 > µ2 > . . . > µn−1.
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Since v1 and v2 are orthogonal to v3, . . . , vn, it follows that for some s, t ∈ R,

v1, v2 are scalar multiples of the vectors

[
s

u

]
,

[
t

u

]
,

respectively. From the fact that the Perron value of A is 1, it follows that s = α

and a = 1 − u⊤u/α. From this we find that t = −u⊤u/α and λ2 = 1− α − u⊤u/α.

Next, observe that since v1 = W 1/2
1 is a scalar multiple of

[
α
u

]
, it now follows

that u = αw
−1/2
1 W

1/2
1. Consequently, we find that u⊤u = α2(1− w1)/w1, and so

a = 1−α(1 − w1)/w1 while λ2 = 1−α/w1. Since the eigenvalues of A are 1, λ2 and

(1− α)µ2, . . . , (1− α)µn−1, it must be the case that 1− α/w1 > (1− α)µ2. Observe

that this last condition cannot hold if α = 1, so in fact we have 0 < α < 1.

Assembling the observations above, we find that

A =

[
1− α(1 − w1)w

−1
1 αw

−1/2
1 1

⊤W
1/2

αw
−1/2
1 W

1/2
1 (1− α)Y

]
.

Recalling that T = W−1/2AW 1/2, (8) now follows. The converse is straightforward.

Finally, an analogous argument establishes the characterization of equality in the

lower bound in (7); observe that in this case, the value α = 1 is admissible. �

Remark 2.2. Suppose that G is a connected undirected graph on n vertices with

adjacency matrix A, and let D denote the diagonal matrix of vertex degrees. Then

T = D−1A is the transition matrix of the random walk on G. In this remark, we

identify the graphs for which the corresponding random walk yields equality in either

the left-hand or right-hand inequality in (2.1). Note that T has just two distinct

eigenvalues if and only if G = Kn, and evidently equality holds throughout (2.1) in

that case.

Suppose now that G 6= Kn, and that equality holds in either of the inequalities

of (7), say with k = 1. Necessarily T is of the form given in (8). Partitioning A

conformally with T and writing D as

[
d1 0⊤

0 D

]
, we have

T =

[
0 d−1

1 r⊤

D
−1

r D
−1

A

]
,

where A is the adjacency matrix of the subgraph G of G induced by vertices 2, . . . , n,

and where the vector r is 1 or 0 in position j− 1 according as vertex j is adjacent to

vertex 1 or not, j = 2, . . . , n. Since D
−1

r must be a multiple of the all ones vector
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(and so in particular must be positive), we deduce that r = 1. Hence D
−1

1 = α1

for some 0 < α 6 1; since D = D0 + I, where D0 is the diagonal matrix of vertex

degrees of G, it follows that in fact G must be regular, say of degree δ. If δ = 0, then

G is an empty graph and we find that G = K1,n−1; it is readily seen that equality

holds in the lower bound in (2.1) in that case.

Suppose henceforth that δ > 1. Since r = 1, we have d1 = n − 1, and it follows

now that w1 = 1/(δ + 2). Since 1−α(1− w1)/w1 = 0, we deduce that α = 1/(δ + 1).

Denote the eigenvalues of A by γ1 ≡ δ > γ2 > . . . > γn−1, so that µj = γj/δ, j =

2, . . . , n−1. The conditions 1−α/w1 > (1−α)µ2 and 1−α/w1 > (1−α)µn−1 are thus

equivalent to γ2 6 −1 and γn−1 > −1, respectively. It is well-known that γ2 6 −1

if and only if G = Kn−1 and that γn−1 > −1 if and only if G = 1
2 (n− 1)K2. In the

former case we have G = Kn, and in the latter we have G = K1 ∨
1
2 (n− 1)K2, where

‘∨’ denotes the join operation for graphs. Observe that for G = K1 ∨
1
2 (n− 1)K2,

equality holds in the lower bound in (2.1).

Consequently, there are just three families of graphs for which the random walks

yield equality in (7): complete graphs, stars, and graphs of the form K1 ∨ ℓK2.

3. Behaviour of the accessibility index

Suppose that we have an irreducible stochastic matrix T and a corresponding

accessibility index αk. Intuitively, one may expect that if we decrease a transition

probability into state k (with a compensating increase of another transition proba-

bility), then the accessibility index for state k will increase. Our next result confirms

that intuition in the case that αk is sufficiently small.

Theorem 3.1. Suppose that T is an irreducible stochastic matrix of order n, and

that for some 1 6 k 6 n, αk < 2. Fix indices 1 6 i, j 6 n, i, j 6= k, and suppose that

ti,j , ti,k > 0, consider the family of stochastic matrices T (ε) = T + εei(ej − ek)
⊤,

ε ∈ (−ti,j , ti,k) and denote the corresponding accessibility indices by αk(ε). Then

dαk(ε)/dε
∣∣
ε=0

> 0.

P r o o f. Without loss of generality, we take k = n. From Theorem 1.1 (b), we

find, keeping the notation of that result, that for all sufficiently small ε > 0,

αn(ε) =
r⊤n (I − T(n) − εeie

⊤
j )

−2
1

1 + r⊤n (I − T(n) − εeie⊤j )
−11

.

From the Sherman-Morrison formula, we find that

(I − T(n) − εeie
⊤
j )

−1 = (I − T(n))
−1 +

ε(I − T(n))
−1eie

⊤
j (I − T(n))

−1

1− εe⊤j (I − T(n))−1ei
.
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Set g(ε) ≡ 1+ r⊤n (I − T(n) − εeie
⊤
j )

−1
1 and f(ε) ≡ r⊤n (I − T(n) − εeie

⊤
j )

−2
1, so that

αn(ε) = f(ε)/g(ε). It now follows that

g(ε) = 1+ r⊤n (I−T(n))
−1

1+
ε

1− εe⊤j (I − T(n))−1ei
r⊤n (I−T(n))

−1eie
⊤
j (I−T(n))

−1
1,

and that

f(ε) = r⊤n (I − T(n))
−2

1

+
ε

1− εe⊤j (I − T(n))−1ei
(r⊤n (I − T(n))

−2eie
⊤
j (I − T(n))

−1
1

+ r⊤n (I − T(n))
−1eie

⊤
j (I − T(n))

−2
1)

+
( ε

1− εe⊤j (I − T(n))−1ei

)2
(e⊤j (I − T(n))

−2ei)

× (r⊤n (I − T(n))
−1eie

⊤
j (I − T(n))

−1
1).

Straightforward computations show that

df(ε)

dε

∣∣∣
ε=0

= r⊤n (I − T(n))
−2eie

⊤
j (I − T(n))

−1
1+ r⊤n (I − T(n))

−1eie
⊤
j (I − T(n))

−2
1,

while
dg(ε)

dε

∣∣∣
ε=0

= r⊤n (I − T(n))
−1eie

⊤
j (I − T(n))

−1
1.

Hence we have

df(ε)

dε

∣∣∣
ε=0

g(0)− f(0)
dg(ε)

dε

∣∣∣
ε=0

(9)

= g(0)
dg(ε)

dε
|ε=0

(
r⊤n (I − T(n))

−2ei

r⊤n (I − T(n))−1ei
+

e⊤j (I − T(n))
−2

1

e⊤j (I − T(n))−11
−

f(0)

g(0)

)
.

Evidently
r⊤n (I − T(n))

−2ei

r⊤n (I − T(n))−1ei
,

e⊤j I − T(n))
−2

1

e⊤j (I − T(n))−11
> 1,

while f(0)/g(0) = αn(0) < 2 by hypothesis. Consequently (df(ε)/dε)
∣∣
ε=0

g(0) −

f(0)(dg(ε)/dε)
∣∣
ε=0

> 0, and the conclusion follows readily. �

Example 3.1. Suppose that n ∈ N with n > 4, that 0 < a < 1 and 0 < t, b < 1.

Consider the n× n matrix

T =




0 0⊤n−3 a 1− a

0n−3 (1− t)In−3 0n−3 t1n−3

0 0⊤n−3 1 0

b 1−b
n−21

⊤
n−3

1−b
n−2 0



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(here subscripts on matrices and vectors denote their orders). Keeping the nota-

tion of Theorem 3.1 and considering i = 1, j = n − 1, we want to look at the

effect on αn of decreasing t1,n and increasing t1,n−1 by the corresponding amount.

Thus, for ε ∈ (−a, 1 − a), we let T (ε) = T + εe1(en−1 − en)
⊤, and denote the

corresponding accessibility index for state n by αn(ε). As in the proof of Theo-

rem 3.1, we find that (dαn(ε)/dε)
∣∣
ε=0
is negative, or zero or positive according as

r⊤n (I − T(n))
−2ei/(r

⊤
n (I − T(n))

−1ei)+e⊤j (I − T(n))
−2

1/(e⊤j (I − T(n))
−1

1)−αn(0) is

negative or zero or positive, respectively.

It it straightforward to determine that

(I−T(n))
−1 =




1 0⊤n−3 a

0n−3 t−1In−3 0n−3

0 0⊤n−3 1


 and (I−T(n))

−2 =




1 0⊤n−3 2a

0n−3 t−2In−3 0n−3

0 0⊤n−3 1


 .

We find readily that

r⊤n (I − T(n))
−2e1)

r⊤n (I − T(n))−1e1
= 1,

e⊤n−1(I − T(n))
−2

1

e⊤n−1(I − T(n))−11
= 1,

while

αn =
r⊤n (I − T(n))

−2
1

1 + r⊤n (I − T(n))−11
=

b(1 + 2a) + (1−b)(n−3)
(n−2)t2 + 1−b

n−2

1 + b(1 + a) + (1−b)(n−3)
(n−2)t + 1−b

n−2

.

It now follows that αn > 2 if and only if (2n− 3 + (n − 3)b)t2 + 2(n− 3)(1 − b)t −

(n− 3)(1− b) 6 0, i.e., if and only if

t 6 t0 ≡
−(n− 3)(1 − b) +

√
(n− 3)2(1− b)2 + (n− 3)(1− b)(2n− 3 + (n− 3)b)

2n− 3 + (n− 3)b

(observe that t0 > 0). In particular, we find that if t < t0, then decreasing t1,n and

increasing t1,n−1 has the (counterintuitive) effect of decreasing αn. It is also not

so difficult to show that if t = t0, then moving weight between t1,n and t1,n−1 in

either direction does not affect the value of αn. Thus we see that in some sense, the

hypothesis that αn < 2 of Theorem 3.1 cannot be weakened without affecting the

conclusion.

Next we provide a result parallel to Theorem 3.1 for the case that i = k.

Theorem 3.2. Suppose that T is an irreducible stochastic matrix of order n, and

that for some 1 6 k 6 n, αk < 1. Fix an index j 6= k, and suppose that tk,j , tk,k > 0;

consider the family of stochastic matrices T (ε) = T + εek(ej − ek)
⊤, ε ∈ (−tk,j , tk,k),

with the corresponding accessibility indices αk(ε). Then (dαk(ε)/dε)
∣∣
ε=0

> 0.
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P r o o f. Without loss of generality we assume that k = n. Referring to Theo-

rem 1.1 (b) and keeping the notation of that result, we have for all sufficiently small

ε > 0,

αn(ε) =
(rn + εej)

⊤(I − T(n))
−2

1

1 + (rn + εej)⊤(I − T(n))−11
.

A straightforward computation shows that

dαn(ε)

dε

∣∣∣
ε=0

=
e⊤j (I − T(n))

−1
1

1 + r⊤n (I − T(n))−11

(
e⊤j (I − T(n))

−2
1

e⊤j (I − T(n))−11
− αn(0)

)
.

Since e⊤j (I − T(n))
−2

1 > e⊤j (I − T(n))
−1

1, the conclusion follows readily. �

Example 3.2. Suppose that 0 6 t < 1 and a, b > 0 with a+ b < 1. Consider the

following family of stochastic matrices of order n > 3, parameterized by ε ∈ (−a, b):

T (ε) =




0 0⊤n−2 1

0n−2 (1 − t)In−2 t1n−2

a 1−a−b
n−2 1

⊤
n−2 b


+ εen(e1 − en)

⊤.

We consider the corresponding accessibility index αn(ε). Using the technique of

Theorem 3.2, we find that (dαn(ε)/dε)
∣∣
ε=0

< 0 if and only if αn(0) > 1. This is in

turn equivalent to the condition (1 − t)(1 − a − b) > t2. Thus we find that when t

is sufficiently small we have the surprising effect that decreasing the (n, n) entry of

T (0) and increasing its (n, 1) entry will decrease the accessibility index for state n.

Our next example illustrates the fact that, in general, the stationary vector and

the accessibility vector can exhibit different qualitative behaviour.

Example 3.3. Suppose that n ∈ N with n > 3, and define T (x) ≡ n−1J +

x(e1 − e2)(e1 − e2)
⊤, x ∈ [−1/n, 1/n]. Evidently each such T (x) is doubly stochas-

tic, so that w⊤ = n−1
1
⊤. It can be verified that (I − T (x))# = I − n−1J +

(e1 − e2)(e1 − e2)
⊤
x/(1− 2x), from which we find that α = (n − 1)1 + (e1 + e2)×

nx/(1− 2x). Thus we see that while the stationary distribution is insensitive to the

value of x, the accessibility indices for states 1 and 2 are increasing as functions of x

on the interval [−1/n, 1/n].

As observed in Section 1, for an irreducible stochastic matrix T with stationary

vector w⊤ and accessibility vector α we have α⊤w = K, where K is Kemeny’s

constant for the corresponding Markov chain. In particular it follows that max
k

αk >

K > min
k

αk, with equality holding in either the left-hand or the right-hand inequality

if and only if α = K1. Motivated by this simple observation, we turn our attention
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to characterizing the situation in which the accessibility vector is a scalar multiple

of 1.

Theorem 3.3. Let T be an irreducible stochastic matrix of order n > 2 having

stationary vector w⊤. Form w̃ from w by deleting its last entry. Then α is a scalar

multiple of 1 if and only if we have

(10) (I − T(n))
−1
j,j = w̃⊤(I − T(n))

−1ej + wje
⊤
j (I − T(n))

−1
1, j = 1, . . . , n− 1.

When (10) holds, then α = (w̃⊤(I − T(n))
−1

1)1.

P r o o f. From Remark 1.1 and (2), we see that αn = (w̃⊤(I − T(n))
−1

1) and

thus we find that all entries of α coincide with αn if and only if the diagonal entries

of (I −T(n))
−1−1w̃⊤(I−T(n))

−1− (I−T(n))
−1

1w̃⊤ are all zero. This last is readily

seen to be equivalent to (10). �

Example 3.4. Suppose that n ∈ N with n > 5, fix a ∈ [0, 1), b ∈ (0, 1/(n− 1)],

and consider the n× n stochastic matrix T given by

T =

[
a(n− 2)−1(J − I) (1 − a)1

b1⊤ 1− (n− 1)b

]
.

Note that necessarily we take b 6 1/(n− 1). The stationary vector for T is readily

seen to be w⊤ = ((n − 1)b + 1 − a)−1 [ b1⊤ | 1− a ] . In this example, we use The-

orem 3.3 to determine the conditions on a and b which ensure that α is a multiple

of 1.

We have I − T(n) = (1 + a(n− 2)
−1

)I − a(n− 2)−1J, so that (I − T(n))
−1 =

(n− 2)(n− 2 + a)
−1

(I + a(n− 2)−1(1 − a)−1J). It now follows that (10) holds if

and only if

(11) 1 +
a

(n− 2)(1− a)
=

2b

(n− 1)b+ 1− a

(
1 +

(n− 1)a

(n− 2)(1− a)

)
.

Rearranging (11) and simplifying, it now follows that (10) holds if and only if

(12) b =
(1− a)(n− 2− (n− 3)a)

(n2 − 4n+ 5)a− (n2 − 5n+ 6)
.

Recalling that we must have b ∈ (0, 1/(n− 1)], we find that when (10) holds, it must

also be the case that

(1− a)(n− 2− (n− 3)a)

(n2 − 4n+ 5)a− (n2 − 5n+ 6)
6

1

n− 1
.
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Rearranging this last inequality yields ((n− 1)a− (n− 2))((n− 3)a− 2(n− 2)) 6 0.

Hence, in order that all entries in α are equal, we must also have (n− 2)/(n− 1) 6

a < 1. We thus deduce that α is a multiple of the all ones vector if and only if

(n− 2)/(n− 1) 6 a < 1 and b is given by (12). When both the conditions are met,

we have

αj =
(n− 1)(n− 2− (n− 3)a)

2(1− a)(n− 2 + a)

for j = 1, . . . , n. This common value is of course Kemeny’s constant for T .
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